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Abstract

We compare the predictive performance of economic models of choice un-

der risk to various machine learning (ML) models by presenting nearly 1,000

subjects with a consumer decision problem—the selection of a bundle of con-

tingent commodities from a budget set. We compare models’ predictions at the

individual level and relate them to the consistency of decisions with revealed

preference axioms. Using dual measures of completeness and restrictiveness, we

show that Expected Utility Theory (EUT) performs as well as non-EUT and

outperforms all ML models, with a wider margin as choices align more with

utility maximization.
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1 Introduction

Expected Utility Theory (EUT) is central to economics, serving both as a norma-

tive guide for choice and also as a descriptive model of how individuals choose. At

the same time, much of the experimental and empirical evidence of “anomalies” in

choice behavior suggests that EUT may not be the right model of choice under risk.

Specifically, empirical violations of the independence axiom on which EUT is based

provoke intriguing questions about the rationality of individual choice under risk

and, In particular, the status of independence as the touchstone of rationality. These

criticisms have led to the development of various non-EUT alternatives that relax the

independence axiom while adhering to the basic axioms of ordering (completeness

and transitivity) and monotonicity with respect to First-Order Stochastic Dominance

(FOSD).

The analysis of choice under risk is, therefore, driven by four key questions

commonly posed in demand analysis (Varian, 1982, Varian, 1983): (i) Consistency. Is

choice under risk consistent with a model of utility maximization? (ii) Structure. Is

the observed data consistent with a utility function that aligns with certain theories

but not others? (iii) Recoverability. Can the underlying risk preferences be recovered

from observed choices? (iv) Extrapolation. How accurately can we predict choice

under risk in different scenarios?

The economic approach thus involves testing whether behavior can be ratio-

nalized by some preference ordering (or posit a utility function with some special

structure), deriving the associated demand functions, and fits those to data using

some econometric technique. There is a wide variety of formats to this economic

approach, ranging from nonparametric to semiparametric to parametric methods.

The estimated preference parameters can then be used to extrapolate and predict

behavior. By now this type of analysis has become quite standard (Deaton and

Muellbauer, 1980).

While economic models revolve around constructing parameter estimates of the

underlying utility function and using those to forecast behavior, machine learning
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(ML) models are built for the purpose of extrapolation by seeking functions that

minimize out-of-sample prediction error. As pointed by Mullainathan and Spiess

(2017), among others, ML does not produce stable estimates of the underlying pref-

erence parameters. As a result, the “revealed” preference ordering may not be the

“true,” underlying preference ordering. In that case, positive predictions and welfare

conclusions based on the “revealed” preferences will be misleading, at least when

applied in other settings. ML, therefore, should be used in economics where improved

prediction has large applied value.

This paper explores the promise of ML in predicting individual-level choice under

risk. We emphasize the term individual to highlight that we will investigate behavior

at the level of the individual subject. There is no general reason to suppose that

treating aggregate data as if they had been generated by a single type (or a mixture

of types) is valid. Clearly, even high-level consistency in individual-level decisions does

not imply that aggregate data are consistent. In fact, the considerable heterogeneity

in subjects’ behaviors entails that even if behaviors are individually consistent, they

are mutually inconsistent. Thus, any aggregate-level economic analysis is inevitably

misspecified because there is no utility function that pooled choices maximize (Afriat’s

Theorem).

Most importantly, we present subjects with a standard economic decision problem

that can be interpreted either as a portfolio choice problem—the allocation of wealth

between two risky assets—or a consumer decision problem—the selection of a bundle

of contingent commodities from a standard budget set. These decision problems are

presented using a graphical experimental interface of Choi et al. (2007b) that allows

for the collection of a rich individual-level data set. Because of the user-friendly

interface, each subject faces a large menu of highly heterogeneous budget sets, and

the large amount of data generated by this design allows us to apply statistical models

to individual data rather than pooling data or assuming homogeneity across subjects.1

Let pi denote the i-th observation of the price vector and xi denote the asso-

ciated demand bundle. Assume we have i = 1, ..., n observations of these prices

and quantities generated by some individual’s choices. The question we ask (and

answer) is which approach—economics or ML—provides the “best estimate” of the

1The power of the experiment depends on two factors. The first is that the number of decisions
made by each subject is large. The second is that the range of choice sets is generated so that budget
lines cross frequently (see Choi et al., 2007b).
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demand bundle x0 when the prevailing prices are p0 based on previously observed

behavior {(pi,xi)}ni=1? The key dual concepts in this regard are completeness and

restrictiveness by Fudenberg et al. (2022, 2023):

• The completeness of a model is the fraction of the predictable variation in

the data that the model captures. A more complete model better captures

the regularities in the data, but the model might have enough flexibility to

accommodate any regularity.

• The restrictiveness of a model discern completeness due to the “right” regu-

larities by evaluating its distance to synthetic data. An unrestrictive model is

complete on any possible data, so the fact that it is complete on the actual data

is uninstructive.

In the experiment, there are two equiprobable states of nature denoted by s = 1, 2

and two associated Arrow securities, each of which promises a token (the experimental

currency) payoff in one state and nothing in the other. Let x = (x1, x2) ≥ 0 denote

a bundle of securities, where xs denotes the number of units of security s. A bundle

x must satisfy the budget constraint p · x = m, where m is the endowment and

p = (p1, p2) ≥ 0 is the vector of security prices and ps denotes the price of security s.

The data set consists of observations on nearly 1,000 subjects. For each subject, we

have 50 observations {(pi,xi)}50
i=1 over a wide range of budget sets.

For each subject, we first assess, using revealed preference tests, how closely indi-

vidual choice behavior complies with the Generalized Axiom of Revealed Preference

(GARP) and with monotonicity with respect to FOSD (Nishimura et al., 2017 and

Polisson et al., 2020). We then calculate the completeness and restrictiveness of the

EUT model and a non-EUT model generated by a Rank-Dependent Utility (RDU)

function (Quiggin, 1982). RDU weakens the independence axiom but maintains

ordering and monotonicity with respect to FOSD, making EUT a special case of

this theory.2

We find that RDU does not outperform EUT—the average completeness of EUT

(89.3%) is essentially the same as that of RDU (89.2%), and the restrictiveness of

2Machina (1994) concludes that RDU is “the most natural and useful modification of the classical
expected utility formula.” Starmer (2000) points out that although the number of non-EUT models
“is well into double figures,” the preferences generated by RDU is the leading contender. See Diecidue
and Wakker (2001) for a comprehensive discussion.
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EUT (18.6%) is marginally higher than that of RDU (16.6%). At the individual

level, there is considerable heterogeneity in the completeness of the EUT and RDU

models across subjects, and notable symmetry between the completeness scores of

the two models within subjects. However, EUT has higher completeness for 60.6%

of our subjects.3 We therefore compare EUT to the ML models and replicate all

our results—which are nearly identical—with RDU instead of EUT in the Online

Appendix.

The core of our analysis involves a subject-by-subject comparison of the complete-

ness of EUT with the most complete model among eight ML models, spanning three

main families—regularized regressions, tree-based methods, and neural networks.

Figure 1 below depicts our main result. The horizontal axis presents quartiles over

the distribution of subjects’ consistency scores with GARP and FOSD. The vertical

axis indicates the fraction of subjects for whom EUT is more complete than the

most complete ML model within each class, as well as more complete than the best

ML model overall (the horizontal lines). Over all subjects, the economic model is

more complete for 65.4% and this fraction increases monotonically from 54.2% for

subjects in the bottom quartile of consistency scores to 73.8% for subjects in the

top quartile, who are (almost) perfectly rationalizable as maximizing a (continuous)

utility function that is increasing with respect to FOSD. For those who are generally

consistent with GARP and FOSD, there is little room for improving the prediction

of the economic models.

[Figure 1 here]

We also note that EUT is not less restrictive than most ML models, which are

specifically designed for prediction. Its higher individual-level completeness suggests

that EUT is better suited to capturing the heterogeneous behaviors of subjects.

Much of the experimental and behavioral literature on decisions under risk focuses

on identifying violations of EUT. However, EUT is a fundamental component of

economics and should not be discarded lightly, even for the sake of parsimony. We

interpret our results as a ‘victory’ for economic models, particularly EUT, which is

foundational to much of economics.

3Following the literature, our estimates of completeness come from cross-validation methods. This
process conducts out-of-sample estimation, where nested models may outperform their associated
nesting models. We discuss this more in Section 3.2.1.
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The rest of the paper is organized as follows. The next section provides a discussion

of the closely related literature and the main references. Section 3 describes the

experimental data and introduces the template for our analysis. Section 4 discusses

the results and their importance. Section 5 discusses the contributions that the paper

offers, provides directions for future research, and contains some concluding remarks.

2 Related Literature

Our paper contributes to the body of work that seeks to use artificial intelligence

(AI) and ML techniques to enhance economic models – theoretical and empirical. We

do not attempt to provide a full overview of possible applications.4 Instead, we focus

on closely related papers at the intersection of ML and economic theory.

Peysakhovich and Naecker (2017) compare the performances of EUT and promi-

nent non-EUT alternatives to the performance of regularized regression models using

experimental data on the willingness to pay for three-outcome lotteries under risk

(known probabilities) and ambiguity (unknown probabilities). While the economic

models perform as well as the regularized regression models at predicting choices

under risk, they “fail to compete” predicting choices under ambiguity. Fudenberg

and Liang (2019) formulate the approach on initial play in 3× 3 matrix games. They

examine problems where ML models correctly predict (aggregate) modal actions and

economic models do not, construct a hypothesis explaining the performance gap,

and incorporate their hypothesis via modifications to existing economic theories and

successfully close the gap.

Subsequent work applies similar methodologies to other areas of microeconomic

theory. Clithero et al. (2023) find a performance gap between the Becker et al.

(1964) mechanism and ML models when predicting purchase decisions. Fudenberg

and Karreskog Rehbinder (2024) find that semi-grim trigger strategies perform well

relative to ML models in predicting cooperation rates in repeated games. Other

papers, such as Hsieh et al. (2023) and Peterson et al. (2021), conduct the same

4As of September 2024, it is clear that the entirety of economics is fundamentally changed by the
introduction of AI and ML, from labor economics (e.g. Brynjolfsson et al., 2023) to macroeconomics
(e.g. Fernández-Villaverde et al., 2023), econometrics (e.g. Chernozhukov et al., 2018), and
experimental economics (e.g. Horton, 2023). New subfields of human-AI interaction are quickly
emerging in behavioral and experimental economics (e.g. Charness et al., 2023; Almog et al., 2024),
mechanism design (e.g. Brunnermeier et al., 2023), and others. There also exist applications of
economic tools to generative AI models (Chen et al., 2023; Kim et al., 2024).
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type of predictive exercise between economic models of choice under risk using neural

networks as Bernoulli utility functions.

Two recent papers by Ludwig and Mullainathan (2024) and Mullainathan and

Rambachan (2024) investigate closely related questions, albeit with different method-

ological approaches. Instead of evaluating predictive performance, these papers use

generative adversarial approaches that generate synthetic observations to maximize

an objective under a constraint that the generations be realistic. While we do not

explore these alternative methodologies in the current work, their approach represents

promising avenues for future research.

Fudenberg et al. (2022) and Fudenberg et al. (2023) respectively develop the

measures of completeness and restrictiveness, which we adopt here to evaluate a

model’s prediction accuracy and flexibility. Fudenberg et al. (2022) calculate the

completeness of models predicting certainty equivalents for binary lotteries under

risk (as well as predicting initial play in matrix games and human generation of

random sequences). They observe that a three-parameter specification generated by

Cumulative Prospect Theory (CPT), proposed by Kahneman and Tversky (1979),

is a nearly complete model for predicting their aggregate-level data of certainty

equivalents. Building on this analysis, Fudenberg et al. (2023) show that CPT

achieves much higher completeness then a two-parameter specification generated by

Disappointment Aversion, proposed by Gul (1991), but CPT is also substantially less

restrictive. Similarly, Fudenberg and Puri (2022a) and Fudenberg and Puri (2022b)

evaluate the completeness of multiple EUT and non-EUT specifications with and

without simplicity preferences (Puri, 2018).

We also note that part of the literature focuses on comparing out-of-domain

performance of economic models against ML models, instead of solely out-of-sample

performance. This scope is subtly different since the goal is to produce a model that

is robust to a shift in the inputs or distribution of responses. In this regard, the

literature finds positive results about economic model performance in choice under

risk, social preference, and stochastic choice settings.

Andrews et al. (2024) propose two measures of relative cross-domain transfer

performance of a model: against (i) optimal cross-domain transfer and (ii) the same

model estimated within-domain. They generate statistical methods to estimate trans-

fer performance across domains, showing that economic models overall have better

transfer performance than ML models when predicting certainty equivalents of bi-
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nary choice lotteries, stemming primarily from their ability to better extrapolate

to different payoff values in the domain. Fehr et al. (2023) find similar results in

social preferences choice from budget sets when new budget lines fall outside of the

training domain. Kobayashi and Lucia (2023) focus on transfer performance on binary

prediction tasks in two scenarios with prevalent non-EUT behavior: common ratio

tasks á la Allais and preference randomization tasks. They find that ML models have

better out-of-sample prediction than three-group economic mixture models within a

task type, but worse out-of-domain prediction when training on questions of one type

and testing on another.

We share the point of view of Peysakhovich and Naecker (2017), that individual

heterogeneity requires behavior to be examined at an individual level, but we go

further. Most importantly, previous studies evaluate prediction accuracy and flexi-

bility from a small number of individual decisions and relatively constrained choice

scenarios. Aside from pure technicalities, our dataset has a number of advantages

over earlier datasets: First, the choice of a bundle subject to a budget constraint

provides more information about preferences than a typical discrete choice. Second,

we present each subject with many choices, yielding a much larger data set. This

makes it possible to analyze behavior at the level of the individual subject, both in

terms of prediction as well as estimation, without the need to pool data or assume

that subjects are homogeneous. Third, because choices are from standard budget

sets, we are able to use classical revealed preference analysis to decide if subject

behavior is consistent with the essence of all models of economic decision-making

– maximizing a well-behaved utility function – and relate the consistency scores to

prediction accuracy at the individual level.

3 Framework for Analysis

3.1 Experiment and Data

In our preferred interpretation of the experiment, there are two equiprobable states

of nature s = 1, 2 and an Arrow security for each state. Let xs ≥ 0 denote the demand

for the security that pays off in state s and ps > 0 denote the corresponding price.

The budget set is then given by B = {x : p · x = m}, where x = (x1, x2) is a demand

allocation, p = (p1, p2) is a price vector and m is the endowment. We also define
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the token share of the security that pays off in one state to be the number of tokens

payable in that state as a fraction of the sum of tokens payable in both states, and

denote x = x1/(x1 + x2) to be the token share for the first state. Let {(Bi, xi)}ni=1 be

the data generated by a subject’s choices from linear budget sets, where Bi denotes

the i-th observation of the budget line and xi denotes the corresponding token share.5

Also let B denote the set of budget lines.

The experiment consisted of 50 independent decision problems. In each decision

problem, subjects were asked to allocate tokens between two accounts, labeled x

and y. The x account corresponds to the x-axis and the y account corresponds to

the y-axis in a two-dimensional graph. Each choice involved choosing a point on a

budget line of possible token allocations. Each decision problem started by having

the computer select a budget line randomly from the set of lines that intersect at

least one axis at or above the 50 token level and intersect both axes at or below the

100 token level. The budget lines selected for each subject in his decision problems

were independent of each other and of the budget lines selected for other subjects in

their decision problems.6

To choose an allocation, subjects used the mouse or the arrows on the keyboard

to move the pointer on the computer screen to the desired allocation. The payoff at

each decision round was determined by the number of tokens in the x account and the

number of tokens in the y account. At the end of the round, the computer selected

one of the accounts, x or y, with equal probability. Each subject received the number

of tokens allocated to the account that was chosen. At the end of the experiment, the

computer selected one decision round for each participant and the subject was paid

the amount he had earned in that round.

Our subject pool consists of 956 subjects. This dataset includes subjects from

5More precisely, the data generated by an individual’s choices are
{(
x̄i1, x̄

i
2, x

i
1, x

i
2

)}50
i=1

, where(
x̄i1, x̄

i
2

)
are the endpoints of the budget line and

(
xi1, x

i
2

)
are the coordinates of the choice made by

the subject and xi1/x̄
i
1 +xi2/x̄

i
2 = 1 is the the budget line in decision round i = 1, ...50. Without loss

of generality, the income m is normalized to 1.
6Notice that subjects in our experiment could not exhibit almost-optimizing behavior if they had

any difficulties understanding the decision problem or using the computer program. The fact that
choices nearly satisfy GARP implies that subjects had to exhibit stable patterns of choices over the
course of the experiment, which suggests that we maintain subjects’ engagement—otherwise, one
would expect them to lapse into quasi-random behavior and/or to adopt a low-effort heuristic that
would generate many violations (since each round started by having the computer select a budget
set randomly, any choice mechanism that does not depend solely on the parameters of the budget
set will necessarily generate substantial violations of GARP).
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the symmetric treatment of Choi et al. (2007a), similar datasets from subject pools

gathered by Zame et al. (2024) and Cappelen et al. (2023), as well as other previously

collected data.7

3.2 Measures

Following the terminology and notation of Fudenberg et al. (2023), a predictive

mapping f : B → [0, 1] is a map from budget lines into token shares. Mappings

are evaluated using the squared error loss function ` : [0, 1] × [0, 1] → R where

` [f(Bi), xi] = [f(Bi)− xi]2 is the error assigned to a predicted token share f(Bi)
when the chosen token share is xi. The expected prediction error for a mapping f is

the expected loss

EP (f) = EP [`(f(B), x)]

where P denotes the joint distribution of (B, x).8 We are interested in comparing

families of parametric mappings FΘ = {fθ}θ∈Θ, where the prediction error of a family

of parametric mappings FΘ is denoted by the lowest expected prediction error of

mappings in the family

EP (FΘ) = EP [`(f ∗Θ(Bi), xi)]

where f ∗Θ = arg minf∈FΘ
EP (f).

In recent work, Fudenberg et al. (2022) and Fudenberg et al. (2023) propose a

method to use ML techniques to evaluate a theory’s prediction accuracy and flexibility.

The key dual measures in this regard are completeness and restrictiveness. The

completeness of a model is the fraction of the predictable variation in the data that

the model captures. A more complete model better captures the regularities in the

data, but the model might have enough flexibility to accommodate any regularity.

A more flexible model need not have higher completeness, but such a model is

necessarily less parsimonious and thus less falsifiable with an available set of data.

The restrictiveness of a model discern completeness due to the “right” regularities by

7It is of course possible that presenting choice problems graphically biases behavior in some
particular way—every experimental data set may be contaminated by the “frame” that subjects put
around the experiment—but there is no evidence that this experimental environment and design
are especially vulnerable (see Brown and Healy, 2018 and Azrieli et al., 2018 for these two issues,
respectively). The considerable heterogeneity in subjects’ behaviors mitigates the framing concerns.

8Note that the marginal over budget sets is exogenously set by the experiment, and thus the
main object of interest is the (distribution over the) set of responses conditional on a budget set B.
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evaluating its distance to synthetic data. An unrestrictive model can be complete on

any possible data, so the fact that it is complete on the actual data is uninstructive.

The completeness and restrictiveness of nested models can be easily compared – the

completeness/restrictiveness of a nested model is lower/higher than of the associated

nesting model. Yet, in practice, the use of out-of-sample prediction estimates for

completeness may result in nested models having a higher completeness.

3.2.1 Completeness

Completeness is the amount that a mapping improves predictions over a naive

baseline relative to the amount that an ideal mapping with irreducible error improves

predictions over a naive baseline. That is, the completeness of a family of mappings

FΘ, denoted by κΘ, is defined by

κΘ =
EP (fn)− EP (f ∗Θ)

EP (fn)− EP (f ∗)

where fn is a naive benchmark mapping and the (perfect) predictor with irreducible

error is defined by

f ∗(B) = arg min
x̂∈[0,1]

EP [`(x̂, x)|B].

Since subjects see budget sets at most once, it is possible to construct a function

from budget sets to demand that will achieve zero error, and thus we assume that

f ∗(Bi) = xi. The naive baseline fn is assumed to be i.i.d uniform choice over the

interval [0, 1]. Given a subject’s true demand x, the expected error of a naive model

is 1
3
(1− 3x+ 3x2).

We follow Fudenberg et al. (2022) and use 10-fold cross-validation as an estimate

of model expected error. In this exercise, the set of individual data {(Bi, xi)}50
i=1

is partitioned into ten equally sized, mutually exclusive subsets Z1, . . . , Z10. Each

partition Zk is then used for out-of-sample prediction, where the complement of the

partition Z−k is used to estimate f ∗Θ as f̂−k = arg minfθ∈FΘ

1
45

∑
i 6∈Zk `(fθ(B

i), xi). The

estimate f̂−k is then used to generate an estimated out-of-sample prediction error over

Zk, êk = 1
5

∑
i∈Zk `(f̂

−k(Bi), xi). The estimate of EP (f ∗Θ), denoted ÊΘ, is the average

of the partition-level error estimates:

ÊΘ =
1

10

10∑
k=1

êk
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The estimate of completeness is thus

κ̂Θ =
Ên − ÊΘ

Ên − EP (f ∗)
=
Ên − ÊΘ

Ên

Fudenberg et al. (2022) show that each individual estimate Ê is consistent, and

thus κ̂Θ is also consistent. Fudenberg et al. (2023) further extend this - assuming

that Ên > 0 and regularity conditions, the asymptotic difference between κ̂Θ and κΘ

is normal.

3.2.2 Restrictiveness

Restrictiveness is a model-level distance concept which measures the model’s flexi-

bility by evaluating the distance of the model to synthetic data. For high completeness

models, restrictiveness distinguishes between flexible models that can conform to

most mappings f and between models that accurately describe subject behavior.

Analyzed together, desirable models are more complete at the individual level and

more restrictive at the model level – they explain individual behaviors well, and

explain only those behaviors. Let FM denote “permissible mappings” – mappings

that are ex ante feasible for a decision-maker to have – and let µFM denote the

uniform distribution over mappings from FM. For any two mappings f and f ′, define

the distance between the two functions as

d(f, f ′) = EPB
[`(f(Bi), f ′(Bi)]

where PB is the marginal distribution over B, and similarly

d(FΘ, f
′) = inf

f∈FΘ

d(f, f ′)

is the distance between f ′ and the closest mapping from FΘ. Similar to completeness,

restrictiveness is normalized using a naive mapping fn. Hence, the restrictiveness of

a family of mappings FΘ, denoted by rΘ, is defined by

rΘ =
EµFM [d(FΘ, f)]

EµFM [d(fn, f)]
.
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Like completeness, we use the uniformly random naive benchmark. We let the

permissible mappings FM be the set of aggregated agents, where a response to a

budget line corresponds to a response of a real subject. To generate the distribution

µFM , real subject responses from all 956 subjects are pooled together and partitioned

by decile of the price ratio between the cheaper and more expensive good. For

each observed budget line, a relative token allocation for the cheaper good is drawn

uniformly randomly from that line’s decile. The selected allocation may either be

x = x1/(x1 + x2) or 1− x depending on which good is cheaper. We group the budget

lines by subject, resulting in a set of 956 “representative agents” with synthetic data.

Each model is evaluated at the agent level, and the resulting within-sample errors are

used to calculate restrictiveness.

3.3 Economic Models

The most basic question to ask about choice data is whether it is consistent

with individual utility maximization. If budget sets are linear (as in our preliminary

experiment), classical revealed preference theory (Afriat, 1967; Varian, 1982, 1983)

provides a direct test: choices in a finite collection of budget sets are consistent

with maximizing a well-behaved (that is, piecewise linear, continuous, increasing, and

concave) utility function if and only if they satisfy GARP. Hence, in order to decide

whether our data are consistent with utility-maximizing behavior we only need to

check whether our data satisfies GARP.9

However, since GARP offers an exact test—either the data satisfy GARP or they

do not—and choice data almost always contain at least some violations, we assess

how nearly the data complies with GARP by calculating Afriat (1972) Critical Cost

Efficiency Index (CCEI), denoted by e∗. This measures the amount by which each

budget constraint must be relaxed in order to remove all violations of GARP. The

CCEI is bounded between zero and one, 0 ≤ e∗ ≤ 1. The closer it is to one, the

smaller the perturbation of budget sets required to remove all violations and thus the

closer the data are to satisfying GARP.

Beyond consistency, choices can be consistent with GARP and yet fail to be

reconciled with any utility function that is normatively appealing given the decision

9We refer the interested reader to Choi et al. (2007b) for further details on the testing for
consistency with GARP. Choi et al. (2007a) also show that because our subjects make choices in a
wide range of budget sets, our data provides a stringent test of utility maximization.
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problem at hand. Given the two states in our experiment are equally likely, allocating

fewer tokens to the cheaper account (xs < xs′ when ps < ps′) is a violation of

monotonicity with respect to FOSD. Violations of FOSD may reasonably be regarded

as errors, regardless of risk attitudes—that is, as a failure to recognize that some

allocations yield payoff distributions with unambiguously lower returns.10

To test whether individual choice behavior satisfies GARP and FOSD, we combine

the actual data from the experiment and the mirror-image data and compute the

CCEI for this combined dataset.11 Clearly, always allocating all tokens to one of

the accounts generates severe violations of GARP in the combined data set, but the

subset of actual data is perfectly consistent. Similarly, any decision to allocate fewer

tokens to the cheaper asset will necessarily generate a simple violation of the weak

axiom of revealed preference (WARP) involving its mirror-image decision. Polisson

et al. (2020) show that when the two states are equally likely (as in our experiment),

the CCEI score for the combined dataset—denoted by e∗∗ ≤ e∗ ≤ 1—is a measure of

consistency with GARP and FOSD.

What types of risk preferences could give rise to choices consistent with GARP

and FOSD? One formulation that encompasses a number of non-EUT models and

reduces to EUT would be preferences generated by the RDU (Quiggin, 1982) utility

function:

U(x̃) = βLu(xL) + βHu(xH),

where βL, βH are the decision weights, x̃ = (xL, xH) is the rank-ordered allocation

with payoffs xL ≤ xH , and and u(·) is the Bernoulli index. EUT is a special case

of RDU when βL = βH (since each state is equiprobable). For any βL > βH the

RDU formulation takes the familiar (inverted) s-shaped, interpreted as pessimism—

the indifference curves then have a ‘kink’ at safe allocations where x1 = x2 (on the

45-degree line). Such allocations will be chosen for a nonnegligible set of price ratios

around p1 = p2, which is inconsistent with EUT (as prices are randomly generated,

smooth preferences should give rise to allocations satisfying x1 = x2 with probability

zero).

10As noted by Quiggin (1990) and Wakker and Tversky (1993), theories of choice under uncertainty
that violated monotonicity with respect to FOSD have been amended to avoid such violations.

11The data generated by an individual’s choices are
{(

x̄i,xi
)}50

i=1
, where x̄ = (x̄i1, x̄

i
2) are the

endpoints of the budget line. The mirror-image data are obtained by reversing the prices and the

associated allocation for each observation
{(
x̄i2, x̄

i
1, x

i
2, x

i
1

)}50
i=1

.
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The RDU formula for the rank-ordered allocation x̃ can be expressed in terms of

the probability weighting function w as follows:

βL = 1− w
(

1
2

)
and βH = w

(
1
2

)
.

That is, the cumulative distribution function of the induced lottery assigns to each

monetary payoff the probability of receiving that payoff or anything less. Note that

the weighting function w—which is increasing and satisfies w(0) = 0 and w(1) = 1—

transforms the distribution function into decision weights. By definition, the decision

weight βH is equal to w
(

1
2

)
in the case of two states.

For each subject, we estimated the EUT and RDU models using a constant relative

risk aversion (CRRA) specification and a constant absolute risk aversion (CARA)

specification. For CRRA, we assume u(·) takes the power form u(xs) = x1−ρ
s /(1− ρ)

(with u(xs) = log(xs) if ρ = 1), where ρ ≥ 0 is the Arrow-Pratt measure of relative

risk aversion. For CARA, we assume u(·) takes the exponential form u(xs) = −e−γxs

where γ ≥ 0 is the coefficient of absolute risk aversion. The economic parameter

vector is thus θ = (w, ρ) for CRRA and θ = (w, γ) for CARA. For each subject, we

use the specification—CRRA or CARA—that makes more accurate predictions and

compare the performance of this specification to the performances of a variety of ML

models.

3.4 Machine Learning Models

We consider seven models across three main families of ML models – regularized

regressions, tree-based, and neural networks. Each class is commonly used in the

ML, and increasingly economics, literatures. We include multiple approaches because

there is no declared ‘winning’ method.12 For each subject, we consider both the most

complete (accurate) ML model within each class, and then additionally the most

complete of all eight models considered. We describe our application of the models

below, and refer readers to textbooks such as Hastie et al. (2009) and Daumé (2017)

for an in-depth treatment that the reader may wish to consult.

12As Athey and Imbens (2019) state “[t]here are no formal results that show that, for supervised
learning problems, deep learning or neural net methods are uniformly superior to regression trees
or random forests, and it appears unlikely that general results for such comparisons will soon be
available, if ever[,]”
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Regularized regressions Regularized regression, in its simplest form, assumes a

linear relationship between outcomes and covariates, whose coefficient is estimated

using ordinary least squares with a penalty term. Roughly, the penalty term lets the

model “learn” which variables are important, and which to ignore. While including

a penalty biases the coefficients, doing so also reduces the chance of overfitting, or

“chasing noise.” We consider two popular models of regularized regression that add

the norm of the coefficient vector as the penalty. The two differ in which norm

is implemented as the penalty. First, we consider Lasso (Tibshirani, 1996), which

penalizes using the L1 norm. Formally, estimating relative demand using Lasso

generates a mapping f̂Lasso:

f̂Lasso(B) = β̂TB,

where β̂ solves

β̂ = argminβ

50∑
i=1

(xi − βTBi)2 + λ || β ||1

Second, we consider ridge regression (Hoerl and Kennard, 1970), which penalizes

using the L2 norm. Formally, estimating relative demand using Ridge generates a

mapping f̂Ridge:

f̂Ridge(B) = β̂TB,

β̂ = argminβ

50∑
i=1

(xi − βTBi)2 + λ(|| β ||2)1/2

The parameter λ affects the degree to which the size of β affects the objective function.

If λ = 0, then the optimization is OLS. We use leave-one-out cross-validation to

determine the parameter λ ∈ [0, 0.2, 0.4, 0.6, 0.8, 1]. The budget set Bi is encoded as

an intercept 1/p1 and the price ratio p2/p1. The parameter vector θ for regularized

regressions models is a linear coefficient vector.

Tree-based Let t denote one of the possible variables associated with a budget set.

Unlike the linear relationship assumed in regularized regression, tree-based models

divide the set of budget sets B into subsets (based on the prices and the endowment)
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and estimate a model on each of the subsets. This division is done recursively.

That is, given some index of observations Z corresponding to data {(Bi,xi)}i∈Z ,

the the algorithm considers all further binary partitions that can be represented

as separating data based on a variable x being above or below a given threshold

k: {(Bi,xi)}i∈Z and ti≤k and {(Bi,xi)}i∈Z and ti>k. Of these partitions, the selected

partition is the (t, k) pair that minimizes error when applying optimal models to each

partition.

(t∗, k∗) ∈ argmin(t,k)

 ∑
i:i∈Z,ti≤k

`
[
f≤θ (Bi),xi

]
+

∑
i:i∈Z,ti>k

`
[
f>θ (Bi),xi

] ,

where

f≤θ = argminf∈FΘ

∑
i:i∈Z,ti≤k

`(f(Bi,xi))

and

f>θ = argminf∈FΘ

∑
i:i∈Z,ti>k

`(f(Bi,xi)).

The process is then reapplied for the two subsets of the resulting partition, and so

on. This partitioning process generates both the (locally) best partition of budget sets

and the (locally) best model estimate for the partition. In aggregate, the algorithm

returns a piecewise demand function. To predict the relative demand of some budget

set Bi, first the subset containing Bi determines which model to use. Then, evaluating

that model determines the demand.

This partitioning process, if allowed to continue without restraint, would end

with each data point in its own partition, with perfect within-sample prediction. To

prevent such overfitting, we limit the decision trees in two simple ways. First, we

set a minimum number of observations per partition. This prevents the algorithm

from splitting a partition if doing so would result in an insufficiently large sample

size. Second, we limit the “depth”, or number of partitions away from B, of a

tree. These limits are determined endogenously for each subject by performing 3-fold

cross validation. In this procedure, data is randomly split into three equally sized

subsamples. We choose the maximum depth to search over 2, 4, 6, and 8; we choose

the minimum observations per partition to search over 2, 4, 6, 8, and 10.
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The standard decision tree model, denoted Mean, takes the sample mean token

share x of each subset. We use Mean as well as three extensions. The first extension,

known more broadly as model trees (Quinlan et al., 1992), changes the estimated

model from a sample mean to a linear regression (Linear). Mean is nested in Linear.

The second extension, support vector regression trees, instead uses a support vector

regression of each subset. Support vector regression attempts to find the flattest

demand mapping possible such that the token share predictions are accurate up to

some ε ≥ 0 (see Smola and Schölkopf, 2004). The last tree-based model, the random

forest model (RF), averages the decision rules of multiple standard decision trees.

Each tree is given a bootstrapped data set, and is generally seen as an improvement

over singular decision trees (Breiman, 2001). In addition to limits on depth and

minimum sample size, RF regulates the number of trees, which we choose to be 10,

50, and 100 trees. Because each tree not trained on the original data set, there is no

nesting and thus no restrictiveness or completeness guarantees between RF and the

other tree-based models. Additionally, since trees are inherently nonparametric, they

cannot be easily described by a parameter vector θ.

Neural networks Neural networks, specifically a multilayer perceptron, transform

budget sets into relative demand predictions by nonlinear regression, whose functional

form assumes a series of nested transformations. In our setup, the transformation

takes two parts. First, a budget set B undergoes an affine transformation W (0)B+b(0),

where W (0) and b(0) are a matrix and vector of size n0×2 and n0×1, respectively. The

dimension n0 is prespecified by the analyst. Second, the affine transformation is again

transformed by a function σ(0) : Rn0 → Rn0 to obtain a new vector B(1) = σ(0)(W (0)B+

b(0)). The function σ is also prespecified by the analyst. The resulting vector, B(1),

is referred to as a “hidden layer”. It is then used as the input to generate another

hidden layer, B(2) = σ(1)(W (1)B + b(1)), using a new affine transformation defined

by W (1)

n1×n0

and b(1)

n1×1
as well as transformation by σ(1). This process continues for the

number of hidden layers prespecified by the analyst. The final affine transformation

results in a scalar value that can be interpreted as the estimated relative demand.

For a multilayer perceptron, the parameter values W (i) and b(i) are estimated,

while the analyst has the freedom to choose the number of layers, the dimensions

of each layer, the σ(i) functions, and a number of parameters associated with the

estimation of W (i) and b(i).
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We use the layer count, layer dimension, and σ(i) values from Hsieh et al. (2023).

σ(i) are all chosen to be the same component-wise maximum function σ(x) = max(0, x).

This function, the rectified linear unit (“ReLU”) function, keeps all positive compo-

nents of a vector, and sets all negative components to zero. We use 3-fold cross-

validation to simultaneously determine the individual-best layer count and layer

dimension. We search over all combinations of {1, 2, 3} hidden layers, as well as all

combinations of {15, 20, 25} for the size of each layer, for a total of 39 “architectures”

investigated.

We use the L-BFGS algorithm (Liu and Nocedal, 1989) to estimate W (i) and b(i).

This is a standard optimization algorithm that uses first and second order information

to iteratively update estimates of parameter values. This algorithm is generally not

feasible to compute for larger models and larger data sets, but is applicable in our

setting with 50 observations per subject. For a full treatment, see Bottou et al.

(2018) and Sun et al. (2019). The estimation objective function to be minimized is

mean squared error, which is the same objective function used to evaluate all models

(through completeness and restrictiveness). For example, given a network of 2 hidden

layers each with dimension 15, the objective function is:

min
W (0)

15×2
,W (1)

15×15
,W (2)

1×15
, b(0)

15×1
, b(1)

15×1
,b(2)

1×1

50∑
i=1

`(f(W, b), xi) =

=
[
xi −W (2)σ

(
W (1)σ

(
W (0)Bi + b(0)

)
+ b(1)

)
− b(2)

]2
4 Results

Table 1 provides a population-level summary of our results, complementing the

information provided in Figure 1 above. The left column of Table 1 reports the

average completeness of each model, as well the 95% confidence interval for average

completeness, and the next column reports the win rate of EUT against each model

(that is, the fraction of subjects for whom EUT is more complete). The next two

blocks of four columns report the win rate of EUT against each model and its absolute

completeness difference by quartiles of the consistency score with GARP and FOSD.

The right column reports the restrictiveness of each model. Panel A of Table 1 reports

the results for the three families of ML models—regularized regressions, tree-based,
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and neural networks. For regularized regressions and tree-based models, we report

restrictiveness as weighted averages of the most complete model in the class for each

subject. Panels B and C of Table 1 report the results for each regularized regression

and tree-based model, respectively.

[Table 1 here]

Three main insights arise from Panel A of Table 1 about the prediction accuracy

(completeness) and model flexibility (restrictiveness) of EUT as compared to that

of the families of ML models. Similar insights arise from Panels B and C when

comparing the economic model to each regularized regression and tree-based model:

• First, the completeness of EUT is comparable to the completeness of the tree-

based models (achieving 89.3% and 89.1% of the feasible reduction in prediction

error, respectively), but it is significantly more complete than regularized re-

gression models and neural networks (achieving completeness of only 79.5% and

71.6%, respectively). Furthermore, EUT’s completeness win rate increases from

69.7% against tree-based models to 88.5% against regularized regression models

and to 94.2% against neural networks.

• Second, the win rate of EUT almost always increases by consistency quartiles

against all three families of ML models, as well as its relative improvement over

regularized regression models and neural networks. Perhaps as expected, the

predictive accuracy of EUT is improved compared to the accuracy of ML models

when individual choices more closely satisfy the axioms on which the economic

model is based.

• Third, while EUT does not achieve a large improvement in completeness com-

pared to tree-based models, it is substantially more restrictive (18.6% compared

to only 10.6%). Moreover, the restrictiveness of EUT is comparable to the re-

strictiveness of the regularized regression models and neural networks (achieving

restrictiveness of 20.7% and 14.4%, respectively), but these ML models are

significantly less complete than EUT.

We can see the comparison of completeness between EUT and the most complete

ML model in greater detail in the four panels of Figure 2 below corresponding to the
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quartiles of the consistency of the individual-level data with GARP and FOSD. For

each subject, the horizontal axis in each panel shows the completeness of EUT and

the vertical horizontal axis shows the completeness of the best ML model. Each axis

also provides a marginal kernel density estimate of completeness scores approximated

using a Gaussian kernel.

[Figure 2 here]

We first observe that there are relatively few extreme differences in completeness,

as indicated by the absence of observations in the upper left and lower right corners

of each panel. However, there are a few observations high above the diagonal in the

bottom consistency quartile. Additionally, we note a monotonic shift towards the

upper right corner by consistency quartiles, indicating greater completeness of both

models as individual choices become more consistent. The fraction of observations

below the diagonal (subjects for which EUT is the most complete model) weakly

increases by consistency quartile, and the distribution of completeness is higher for

EUT in all panels. Finally, we note a complementarity between ML models—of the

334 subjects for whom the most complete ML model is more complete than EUT, 245

(73.3%) have EUT as the second most complete model, above the other two classes

of ML models.

Recall that the RDU model reduces to EUT when βL = βH . RDU is therefore less

restrictive than EUT (18.6% compared to 16.6%) and it is also only moderately less

restrictive than the regularized regression models (16.6% compared to 20.7%). Table

2 below provides a population-level summary of our results comparing the economic

models, EUT and RDU, in the same format as Table 1. Panel A of Table 2 reports

the results taking a weighted average of the most complete u(·) specification for each

subject, CRRA or CARA. Panels B and C of Table 2 report the results assuming

u(·) takes the CRRA and CARA specifications, respectively. The main insights that

arise from Table 2 are that the average completeness of EUT is the same as the

completeness of RDU but it is more restrictive. The absolute improvement of RDU

over EUT is essentially zero under both CARA and CRRA in all consistency quartiles.

In Online Appendix, we present near-identical results for Figure 1, Table 1, and Figure

2 with RDU instead of EUT.

[Table 2 here]
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Finally, although the number of individual decisions in our experiments is much

higher than typically seen in the experimental literature—providing us with a rich

dataset of individual decisions across a wide range of budget lines for a robust

test—we would still want to compare the completeness of EUT versus ML if the

number of individual decisions is significantly larger than what a human subject

can handle in a single experimental session. To this end, we generate a random

sample of hypothetical subjects who implement EUT with the power Bernoulli utility

function u(xs) = x1−ρ
s /(1−ρ) with an idiosyncratic preference shock that has a logistic

distribution (so the likelihood of error is a decreasing function of the utility cost of

an error):

Pr(x) =
eξ·U(x∗)∫

x:p·x=1

eξ·U(x)
,

where the precision parameter ξ reflects sensitivity to differences in utility. The choice

of portfolio becomes purely random as ξ → 0, whereas the probability of the portfolio

yielding the highest expected utility approaches one as ξ →∞.

We generated samples of hypothetical subjects with ρ = 1/2, which is in the range

of our human subjects estimated risk aversion, and four levels of ξ = 0, 0.25, 1, 10.

Each of the hypothetical subject makes 1,000 choices from randomly generated budget

sets in the same way as the human subjects do. We compare the completeness of EUT

and the most complete ML model for the hypothetical subjects in the four panels of

Figure 3 below—corresponding to the four levels of ξ. For each subject, the horizontal

axis in each panel shows the completeness of EUT and the vertical horizontal axis

shows the completeness of the best ML model. Each axis also provides a marginal

kernel density estimate of completeness scores approximated using a Gaussian kernel.

The scatterplots clearly show that ML does not outperform EUT, even when the

number of individual decisions is very large, across all levels of error.

[Figure 3 here]

5 Conclusion

We use graphical representations of budget lines over bundles of state-contingent

commodities, enabling us to collect a rich individual-level dataset. Our analysis

starts with applying revealed preference tests to check if the observed choices align
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with the axioms of economic theory—ordering (completeness and transitivity) and

monotonicity (with respect to FOSD). We then compare the completeness of EUT

versus non-EUT and various ML models at the individual level. Our main finding is

that both the standard EUT model and the RDU model outperform all ML models,

with a wider margin as individual choices become more consistent with an underlying

(monotonic) preference ordering. We view this as a ‘victory’ for the economic models,

particularly EUT, as it is nested within RDU and thus more restrictive.

The experimental and analytical techniques developed in this paper lay the ground-

work for studying decision-making under risk and uncertainty in more complex scenar-

ios. In a concurrent paper by Ellis et al. (2024), we analyze similar experimental data

involving choices under risk with three states and three associated securities, where

the probabilities of all states are objectively known and equal. For three states, both

EUT and prominent non-EUT models impose specific and quite stringent restrictions

on the utility function’s structure, leading to empirically testable predictions about

observed behavior. Additionally, Ellis et al. (2024) examine the completeness of

models of choice under ambiguity and compare them to the completeness of ML

models. To differentiate the effects of risk (known probabilities) and ambiguity

(unknown probabilities), one state has an objectively known probability, while the

probabilities of the other two states are unknown. The analysis with three states is

not a straightforward extension of the two-state case and is computationally intensive

for large datasets like ours.

An important advantage of the methods and analyses presented in this paper

is their adaptability to different decision domains. While the experiment reported

here focused on choices involving risk, in ongoing work we explore intertemporal

choice. The long-standing interest in intertemporal choice has been further fueled

by recent evidence of non-constant time discounting and a deeper understanding

of its theoretical implications. Additionally, in other ongoing work, we generate and

analyze new experimental data to understand preferences towards risk and time using

generally representative subject pools (as in Choi et al., 2014). This work aims to link

our high-quality experimental data to survey data about economic behavior in real-

world settings—using both economic models and ML models—to improve predictions

and evaluate alternative theories about important economic decisions.

We view this as the beginning of a much broader agenda that builds on the ex-

perimental methodology and analytical techniques developed in this paper. However,
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examining behavior in other, more complex settings will naturally require further

experimental data as well as new theoretical and analytical techniques.
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Figure 1: EUT win rate over ML by quartiles of consistency scores with GARP and
FOSD

The fraction of subjects for whom EUT is more complete than the best regularized
regression, tree-based, and neural network models, as well as the overall best ML
model (indicated by black horizontal lines). The x-axis groups subjects by quartiles
of consistency scores with GARP and FOSD, following the methods of Nishimura
et al. (2017) and Polisson et al. (2020). This score measures the amount by which
each budget constraint must be relaxed in order to remove all violations of GARP
and FOSD and it is bounded between 0 and 1. A score closer to 1 indicates stronger
consistency with GARP and FOSD. The quartile ranges are [0, 0.83), [0.83, 0.95),
[0.95, 0.99), and [0.99, 1].
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Table 1: The completeness and restrictiveness of EUT versus ML models

Absolute completeness
EUT’s win rate against difference between EUT

Average EUT’s win rate ML by e∗∗ quartiles and ML by e∗∗ quartiles

Panel A: Model Classes Completeness against ML 1st 2nd 3rd 4th 1st 2nd 3rd 4th Restrictiveness

EUT 89.3% - - - - - - - - - 18.6%
[88.4%, 90.0%]

Regularized Regressions 79.5% 88.5% 72.1% 91.6% 91.3% 99.2% 3.7% 7.8% 9.7% 17.8% 20.7%
[77.8%, 80.5%]

Tree-based Models 89.1% 69.7% 62.9% 71.5% 70.4% 73.8% -1.4% 0.9% 0.5% 0.6% 10.6%
[88.3%, 89.9%]

Neural Networks 71.6% 94.2% 84.6% 95.4% 97.9% 99.2% 9.3% 14.6% 16.6% 30.5% 14.4%
[68.8%, 73.7%]

Panel B: Regularized regressions

Lasso 75.9% 92.2% 80.0% 95.0% 94.2% 99.6% 7.0% 11.8% 13.8% 21.1% 20.7%
[74.2%, 76.9%]

OLS 70.2% 90.3% 75.8% 92.5% 93.8% 99.2% 11.2% 10.6% 15.8% 38.8% 20.7%
[57.7%, 74.6%]

Ridge 70.6% 90.3% 75.8% 92.5% 93.8% 99.2% 11.1% 10.4% 15.4% 37.9% 20.7%
[58.2%, 75.1%]

Panel C: Tree-based models

Mean 86.6% 84.8% 79.2% 89.1% 86.3% 84.8% 3.0% 3.7% 2.2% 1.9% 12.4%
[85.6%, 87.4%]

Linear 82.9% 87.1% 83.3% 87.4% 87.1% 90.7% 12.4% 6.1% 3.5% 3.4% 5.4%
[81.7%, 84.0%]

SVR 85.7% 89.1% 80.8% 88.7% 92.5% 94.5% 4.1% 4.1% 2.7% 3.3% 10.7%
[84.8%, 86.6%]

RF 88.0% 80.9% 73.3% 81.2% 82.9% 86.1% 0.5% 1.7% 1.2% 1.5% 11.9%
[87.2%, 88.8%]

The left column reports the average completeness of each model, as well the 95% confidence interval for average completeness, and the next
column reports the win rate of EUT against each model (that is, the fraction of subjects for whom EUT is more complete). The next two
blocks of four columns report the win rate of EUT against each model and its absolute completeness difference by quartiles of the consistency
score with GARP and FOSD. The right column reports the restrictiveness of each model. Panel A reports the results for EUT and the three
families of ML models—regularized regressions, tree-based, and neural networks. For regularized regressions and tree-based models, we report
restrictiveness as weighted averages of the most complete model in the class for each subject. Panels B and C report the results for each
regularized regression and tree-based model, respectively.
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Figure 2: The individual-level completeness of EUT versus the most complete ML
model by e∗∗ quartile.

(a) e∗∗ quartile 1 (b) e∗∗ quartile 2

(c) e∗∗ quartile 3 (d) e∗∗ quartile 4

The four panels plot the completeness scores of all subjects for EUT and the best
ML model. Panels refer to the quartile of consistency score; Panel (a) plots the
subjects in the lowest quartile of e∗∗, Panel (b) the second quartile of e∗∗, and so
on. The quartile ranges are [0, 0.83), [0.83, 0.95), [0.95, 0.99), and [0.99, 1]. Each
plotted point represents a subject. The horizontal axes are the completeness of EUT,
and the vertical axes show the completeness of the best ML model. Each axis also
provides a marginal kernel density estimate of completeness scores approximated
using a Gaussian kernel.
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Table 2: The completeness and restrictiveness of EUT versus RDU

Absolute completeness
EUT’s win rate against difference between EUT

Average EUT win rate RDU by e∗∗ quartiles and RDU by e∗∗ quartiles

Panel A: EUT and RDU completeness against RDU 1st 2nd 3rd 4th 1st 2nd 3rd 4th Restrictiveness

EUT 89.3% 18.6%
[88.4%, 90.0%]

RDU 89.2% 60.6% 68.3% 66.5% 53.8% 53.6% 0.6% 0.2% -0.2% -0.2% 16.6%
[88.3%, 89.9%]

Panel B: CRRA Only

EUT CRRA 88.8% 17.9%
[88.0%, 89.6%]

RDU CRRA 88.8% 53.0% 65.4% 59.0% 43.3% 44.3% 0.7% 0.2% -0.4% -0.3% 16.3%
[87.9%, 89.6%]

Panel C: CARA Only

EUT CARA 88.6% 19.3%
[87.8%, 89.4%]

RDU CARA 88.5% 58.3% 65.4% 64.9% 56.3% 46.4% 0.5% 0.2% -0.2% -0.2% 16.9%
[87.6%, 89.3%]

The left column reports the average completeness of each model, as well the 95% confidence interval for average completeness, and the next
column reports the win rate of EUT against RDU. The next two blocks of four columns report the win rate of EUT against RDU and its
absolute completeness difference by quartiles of the consistency score with GARP and FOSD. The right column reports the restrictiveness
of each model. Panel A of reports the results taking a weighted average of the most complete u(·) specification for each subject, CRRA or
CARA. Panels B and C report the results assuming u(·) takes the CRRA and CARA specifications, respectively.
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Figure 3: The individual-level completeness of EUT versus the most complete ML
model on noisy subjects with 1,000 choices.

(a) γ = 0 (b) γ = 0.25

(c) γ = 1 (d) γ = 10

The four panels plot the completeness scores of all subjects for EUT and the best
ML model. Panels refer to the simulated noise levels. Each plotted point represents
a simulation with 1,000 observations. The horizontal axes are the completeness of
EUT, and the vertical axes show the completeness of the best ML model. Each axis
also provides a marginal kernel density estimate of completeness scores approximated
using a Gaussian kernel.
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