Hours &

Study
ium Wa,

Hour a

Ho5.

Hour and
Trade: A
Armend-

tandards]
pd Maxi-
eir Labor
Annually

Prince-
dustrial

es  and
an En-
carch,

imum
panded
{April

netrics
puston,
Rice

the Fai
on, D.C

arnings:
| Bust,”
Part 2

n in the
ter and
» Labor

piern Economic Journal, Vol. VI, No, 2, April 1981

‘ .

Frade: An
the 1961

1. Introduction

FMost economists would agree with Kuz-
s’ observation ([9], p. 286) that technolog-
hl change is the distinguishing feature of
fodern economic growth. However, there is
g agreement on the nature of that process.
pramovitz [1] views it as occurring through
ifts in the production function. In contrast,
wgenson and Griliches ([8], p. 272) claim
hat 96.7% of the changes in thc pattern of
roductivity activity can be explained by
povements along a given production function.
fheir treatment emphasizes the endogeneity
f advances in knowicdge and the costs of
oducing those advances ([8], p. 272).

F Mirrlees ([10], p. 95) has observed that
oy applicable growth model must incorpo-
pie technological change. However, attempts
p include technoiogical change in optimal
owth models have been highly stylized. The
ocus has been on shifts in production func-
jons (see [4], [10]),

It is useful 10 view optimal growth modcls
e generalizations of the one-sector model
e (6]). Uncertainty ({5]), a multi-sector
jechnology ([7] and [11])., and factor-
Jugmenting technological change ([4] and
J10)) have alt been added to the one-sector
model. In each case, the models have a unique
gstationary state. In contrast, it will be shown
acze that an economy modelled using the
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College Park, Md. 20742 U.S.A. This paper is a revised
wension of a chapier of my Ph.D. dissertation completed
it the University of Pennsylvania. I would like to thank
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Jorgenson-Gritiches framework, in which
technological change is represented by endog-
enous movements along the production func-
tion, has a multiplicity of stationary states.

2. The Madel

The model is a simple adaptation of the
one-good model. The one change is that
production potential increases because labor
is employed to discover how to use new
regions of the production function. A region is
usable onty if all regions with lower capital-
labor ratios are usable. Thus, production of
knowledge is cumulative and is represented
by changes in v, the highest capital-labor
ratio avazilable." Movement in v is given by:
¥ = G(L,}, where £, is labor used in the
knowledge secior. Assume that G'(Ly) = 0,
G"(L;) < 0and G'(0) = B where 0 < B < .
The finiteness of B impiies that finite amounts
of knowledge cannot be produced using infin-
itesimal amounts of labor.?

Society produces one tangible good which
is consumed or invested. X is the size of the
capital stock, ¢ is per capita consumption, L,
is labor used in the goods sector, and H is
capital used in goods production. Use of capi-
tal is constrained by two factors, First, there
is @ limited amount available: H = K. Second,

'"Most of the variables defined will be assumed to be
functions of 1ime, but the time argument will be omitted
for the sake of brevity; thus, for example v should be
undersiood as y(1}. A dot will be used to indicate a time
derivative.

*The above assumptions are completely consistent with
the usual assumptions on production functions made in
the neoclassical literature.
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1. Intreduction

Most economists would agrece with Kuz-
1ets’ observation ([9], p. 286) that technolog-
ical change is the distinguishing feature of
modern economic growth. Howcver, there is
 less agreement on the nature of that process.
Abramovitz [1] views it as occurring through
shifts in the production function. In contrast,
Jorgeason and Griliches ({8], p. 272) claim
[ that 96.7% of the changes in the pattern of
productivity activity can be explained by
movements along a given production function,
| Their treatment emphasizes the endogeneity
'of advances in knowledge and the costs of
producing those advances ([8], p. 272).
| Mirrlees ([10], p. 95) has observed that
iny applicable growth model must incorpo-
rate technological change. However, attempts
to include technological change in optimal
gowth models have been highly stylized. The
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Jorgenson-Griliches framework, in which
technological change is represented by endog-
enous movements along the production func-
tion, has a multiplicity of stationary states.

2. The Model

The model is a simple adaptation of the
one-good model. The one change is that
production potential increases because labor
is employed to discover how 1o use new
regions of the production function. A region is
usable only if all regions with lower capital-
tabor ratios arc usable. Thus, production of
knowledge is cumulative and is represented
by changes in v, the highest capital-labor
ratio available.! Movement in v is given by:
¥ = G(L,), where L, is labor used in the
knowledge sector. Assume that G'(L,) = 0,
G"(Ly) < 0and G'(0) = Bwhere 0 < B < .
The finiteness of B implies that finite amounts
of knowledge cannot be produced using infin-
itesimal amounts of labor.?

Socicty produces one tangible good which
is consumed or invested. K is the size of the
capital stock, ¢ is per capita consumption, L
is labor used in the goods sector, and H is
capital used in goods production. Use of capi-
ta] is constrained by two factors. First, there
is a limited amount available: # = K. Sccond,

'"Most of the variables defined will be assumed to be
functions of time, but the time argument will be omitted
for 1he sake of brevity; thus, for example « should be
underslood as y{z}. A dot will be used to indicate a time
derivative.

*The above assumptions are completely consistent with
the usual assumptions on production functions made in
the neoclassical literature.
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knowledge of how 10 use some capital-labor

ratios is unavailable: HiL =~

The remaining assumptions are usual in the
optimal growth literature. Output of goods is
given by a neoclassical production function:
Y + Lc = F(H, L)), where Y is gross invest-
ment and L is population (= labor force).
Investment is irreversible: ¥ = 0. With 5
signifying the depreciation rate, change in
capital stock is K = ¥ — 3K, Finaily, the
use of labor is subject to its availability:
L+ L, =L,

The object is to maximize [ Lu(c)e "4y,
where p is the rate of pure time preference,
and u(c) is the instantaneous utility function
with i'(¢} > 0, u"(c) < 0, and #'(0) = w,

In order to anticipate potential criticism, 1
will comment on some inadequacies of the
model and indicate whether or not these are
important.

(i) Population is assumed constant. For a
developed country, this may be reasonable
and is certainly as plausible as the usual
assumption of constant exponential growth.

(i) Perhaps one¢ should assume that
knowledge production requires capital. In
such a case, that capital would be qualita-
tively different from capital used to produce
tangible goods. The model would then have
three sectors, with attendant difficulties of
analysis.

(iii) The model does not differentiate
between labor in the two sectors, Such a
differentiation would cntail a description of
how higher quality workers are produced
from “raw” labor.

(iv) Capital used at higher capital-labor
ratios might differ from that used at lower
ratios. The present model's description tends
to highlight this expectation. The non-recog-
nition of variation in capital quality would be
a criticism of all one-good models.

(v) 1t has been assumed that the produc-
tion function is known over the entire range of
capital-labor ratios, labor being used only to
implement the processes. To incorporate
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discovery of the production function itself
would take us far from an optimal growth
framework.

3. The Necessary Conditions

To simplify the analysis, I will present the
maodel in per capita terms. Define y =Y/
k—K/L h=H/L v~L/L 8- BL and
gl — o) = G([1 - 2]L) = G(L;). Then
g -v) = G'([1 ~ »]L) . L and thus g'0) =
8. As F(-} is neoclassical it exhibits constant
returns to scale and one can define f (H/L,) =

F(H/L,, 1). Thus, previous equations be-
come;

y4+c= z,f(%) {1 :

k=y— ok (2 3
h=k (3)
hiv =~y (4)
¥y =1 (5)

¥ =g(l — ) (6} 3
yzo (7

The maximization criterion is then

fo " u(c)e"di @®)

To find necessary conditions formulate a
Hamtiltonian, I(r), using auxiliary variables a
and gy Hn)e” = u(c) + g.(y — 8k} +
¢:8(1 — ¢). Use of the Maximum Principle
gives static (i) and dynamic (ii} conditions.

(i) For fixed &, v, g, and ¢, maximize

(1) subject to (1), (3), — (5), and (7). For
this maximization, use the Kuhn-Tucker
theorem by introducing auxiliary variables i
p.r,ry, S, and S, and formulating:

e 1we s pfor(t) -y

+rlk =)+ r(yo — k)
+ Sly + Sz(l “U). 4

The s

(ii)

z(‘he

Atas
=00
{10}, (13
=g, =0,

From (1

*One is .
Obviously,
optimat. Tt
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The static necessary conditions are then:

wicy=p {9

@+ S =p {10}

+rY =5 - g1 —v) =0 (11)
(kR
of (;)—’l—"2=0 (12)
' h
P(Vf(*)—y—6)=0,p20 (13)
. !
r{k—hy=0,r,20 (14)
rye ~ k) =0,r,20 (15
Sy=0,8 =0 (16)
S;(1 —)=0,8,z0 (7
(i) The dynamic conditions are:
d —aJ(1)
—(ge Py - W
PR
d —aJ(1)
— Y = . Theref
and py (g.e ™) P Therefore
¢ =(p + dq — r, (18)
9= pg; — vry (19)

4. Stationary Points

Al a stationary point, ¥ — O and & = 0. If
=00 L.ITk-0,y=bk Thus, from (9),

300}, (13), and (15): w'(¢c) — w( f(k) - 8k)

=¢ > 0, and therefore ¢, = 0. Thus:

(p +8)g, =r, (209
From (12) and (18):
ry=q(f(k) —p - 8). (21)

One is only interested in optimal stationary points,
Obviously, a stationary point with & = & = ¥ will not be
wtimal. Therefore, one can take & = .

——
—
——

v = 1implies S, 2 0, therefore (1 1) is:

QS (k) — k1K) + ryy — g.8 2 0.
From (21):

(S (k) — kf'(Kk))
t Y (S k) —p—8) —q,820 (22)

For those stationary points for which v = £,
(22} becomes

9 fk) ~ Ko +8) z g,8.  (23)

In order for (22) to hold at a stationary point
4> must be non-positive. Therefore pg, = r,,
which from (21) implies:

P =g, (f(k) —p - B).

Let us now find the optimal stattonary
points. Denote by k* the point defined by
S*) = p + 8 Let v* = k*. A stationary
capital stock greater than &* would imply,
from (21), r, < 0 which contradicts (15) and
is therefore non-optimal. In Result 1 (see
appendix for all formal proofs), it is shown
that a stationary point (k°, v%) with &° < +°
and k& < k* is not optimal. Define k* im-
plicitly by: p[f(k*) — (p+ a)k*] -
BLA(k*) - g — 8]. Result 2 shows that a
stationary point with & < X* is not optimal.
k" has a further interpretation. Ifg;,z0ina
stationary state, then ¢, = 0, which implies,
from (19), (21), and (23), that £ = k*. To
require ¢, = 0 is reasonable since g, < 0
implies that a costless reduction in ¥ would
improve welfare. Yet reducing v can never be
beneficial. Thus ¢, will henceforth be
assumed to be non-negative.

Thus, {(k, v): either (v = k) and k* < & =
k* orvy>kand k = k*}is the set of optimal
stationary points. One can show that optimal
paths tend to a stationary state. As ¥z0, ¥
will either tend to a finite value or become
infinite. If 4 becomes infinite, either &
becomes infinite or there is a time beyond
which v > k. A path with k infinite is non-
optimal. If v = & after a time T, then paths

(24)

I
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with ¥(2) > 0 at some ¢ - T will not be
optimal. Hence, no o

_ k is defined implicitly by: elf & -§
infinite. Thus, v will

ptimal path will have y ks B =81 LK) - p — 8]. Let k = 3. The

tend to a finite value: let significance of k will be evident in the ensuing

us call this value ~°, analysis. The following sections correspond tp
In the limit the production structure is the equivalently labelled area in Diagram |,

exactly equivalent to that of the one-sector

model. The production function becomes;

Y+ ce=f(k) fork =+°and

As (2
S, w
earlic
paths
i Howe
5.4 {(k, ThEYzZ vk k= k*} g paths

. which
As ¥ = 0, paths from 4 80 to stationary

States with ¥ = 4* apd hence with & = 4*
YHesf(y") fork >0 First, examine movement from points whers |f Co
This is then a one-sector model, albeit withan ¥ > k. The present model is equivalent to the
unusual production function. Optimal paths one-good modet with
in the one-sector model tend to a stationary Therefore,

state. Therefore, so will optimal paths in the feasible in
present model.

constraints added, § :eigh:
if the one-good optimal path of kis ; and (
the present model, that path will § and 8
also be optimal. In region 4 when vy = k, the % fore,
one-good optimal path of k is feasible. There- @ /(3
fore, an economy starting at (k°, %) with tl;e i
5. The Movement to Stationary Points kY > k* and Y* 2 k° will move towards (k" .

o ; I )
¥ ). but will not reach that point in finite contra
¥ state will depend on  time.

. , ¥ =0
nding optimal paths, it i _ When v > £, 4, = 0 and 92 statior
useful to demarcate areas of {4, v} space and '_f 492 = 0. Therefore, when a path crosses the In F
describe paths starting from cach area. The  liney = k, ¢, = 0. In the part of 4 where k >

: path t
description of paths starting from an area is Y72 =pf'(h/v), r; = 0 and (11) becomes:  § increa:
immediately refevant to paths passing
through that area, Diagra

h Sectio:
m I shows the areas pf(j) — 480 —2) -8, =0, (25) may |
of (k,+) space referred to in the ensuing ¢

analysis,

Hence
~will h
stock v
bounds
will re:

The behavior of the economy over time and
the optimal stationar )
the initial state. In f; = Oif and only §

When a path crosses Y=kS5,>0andv=1.

The
Oone-go
that pa
cally to
time pe

5

The
path in
will ha
L showst

state v
Diagram [ 3 4= 0
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|
f As (25) shows, earlier in time on such a path,
§; would be smaller. Therefore at some
eatlier time, §, = 0, v <= 1, and 4 = (. Thas,
% paths in 4 with k = v could start with 4 > 0.
| However, 4 becomes zero before v = k. The
@ raths described are depicted in Diagram It
f which appears at the end of Section 5.

5Bk yrkzy,y" =y <%

W Consider a path moving from B to the line
'y=k. In B, r, = 0. Suppose ¥ > 0 in a
{§ reighborhood of that line. Then (from (11)
and (17)): pf (v) = q22'(1 — ). As p 2 g,
.md f 2 g'(-), then ¢, > g, f(v)/8. There-
i fore, as g,, ¢, and v are continuous, g, =
[ 9./ (v)/8 at the stationary point. Hence, at
J the stationary point (using (24)) B (y) —
A 0-38) =z pf (). Hence, 'y < y*, which is a
I§ tontradiction since v > +' in B. Thus, in B,
#7-0and &k > 0 in a neighborhood of the
stationary state.
In Results 3 and 4, it is shown that on the
g rth to the stationary state, k is negative and
increasing. Using the same method as in
Section 5.A, one can show that paths in B
may have an early segment with 4 > 0.
Hence, paths can pass from B to 4. Paths in B
will have a continuously declining capital
stock until they reach the v = k axis. As ¢, is
4 bounded away from zero in B, the economy
8 #ill reach the stationary point in finite time.

5.C {(k, )2y z v%, k = k*}
The path of & which is optimal in the
j one-good model is feasible in C. Therefore,
| that path is optimal. Thus, k rises monotoni-

ally to £* but does not reach k* in any finite
time period.

5Dk, v:k =7,y <v5 k= k

The significance of & can now be shown. A
path in D moving towards a stationary state
wiil have k > 0 and p — '(C) = g,. Result §

 shows that in a neighborhood of the stationary
state ¥ = k/v = hfv if ¥ > 0. Therefore, if
3 ¥ > 0:

alf =) +ry - 800 —0) -0

From the Maximum Principle, ¢,, g, and ¥
are continuous. Result 5 shows that o is
continuous. Thus, at the stationary state:

/() - =q8  (26)
Combining (26) and (24):
BLf () —p — 9]
zplf(¥) ~vf'()] (27)

which implies that ¥y = %. Thus, the only
stationary point in D which could be
approached with % > 0 close 1o the stationary
state is the point where v — ¥, _

Let us examine the movement to (k, ).
(26) will be a strict inequality if, and only if,
r, > 0 as the path reaches (&, ¥). Similarly
{27) will be a strict inequality if 7, > 0 when
the path reaches (k, 7). Thus, if one can show
that a path which has 4 = 0 close to (k,¥)and

= 0 at the instant path reaches (k, ¥) is
impossible, then one can conclude that 4 = 0
within a neighborhood of (k, ).

Inregions D, £, or F when 4 > (:

=y =[Sy — )] - qg'(1 - o).

At the instant the path reaches (%, 3), ¥ = 0.
As v is continueus:

d: =q[f(v) — (M}

—§:8'(1 — v} + 4,87 (1 — v)i,

If r, — O at the instant the path arrives, then
g <0and ¢, > 0, and so dr,/dt > 0. Thus r,
< 0 before the path arrives, violating optimal-
ity conditions. Thus, (26) and (27) are strict
inequalities. Therefore, every path in region D
has + 0 close to the stationary point.

Using the foregoing analysis, Result 6
shows that all optimal paths have ¥ = 0 in D.
Therefore, they also have & > 0. In D, except
at stationary points, §, = q,[p + & — f'(k)].
Hence, ¢, is bounded away from zero at all
times along all paths except the one along the




102

line y — % Thus, all stationary
(k*, ¥*) are reached in finite time,

SER vy y <%k < Kk}

From the previous discussiqn, we know
paths leaving £ have Y=0and & >0, thereby

Do\l fk)y — kfky] — B8 = S, > 0.
Therefore, to find behavior in £, one must
extend the above equation backwards in time,
However, the specific behavior of that equa-
tion can only be found by specifying more
concretely the nature of the production and
utility functions. Resuit 7 shows that in some
cases, paths will not move from F to E, but
this is not a general result, Therefore, paths in
E may contain an initial segment in which
Y=0andk = 0, passing into P,

SF Ak vk =,y < T, k* =k}

Result 8§
point, 4 = 0
Y= kju.

In examining Tovement to a stationary
point (£°, v°), let r? be the stationary value of
7> and r; be the value of ry at the instant the
economy reaches (k° +%). As 4> = 0 at (k°
VY=g [ £y —p L 8] — pq,. Using the
fact that », v, 91, 92 and & are continuous (see
Result 5), the stationary state values obey:

QLI — K (%] +

Therefore:

shows_. that close to stationary
and k > 0. Result 5 shows thai

’57‘0 — §.8-=0.

2 =)y = g, ([f(k") — (o + 8)4°%)

- g{f'(k") ~p - 6]1 20 (28)

Thus, (*3 -+ = ¢ except when (k° 4% -
k¥, %), ry must “jump” at all stationary
points except the lowest one. In the instant
before r, jumps: gi=(ry —rY = — 4, where
(3 ~ r}) is given in (28). Thus, ¢, and q, are
bounded away from zero in the neighborhood
of all stationary poinis in except (K-, v*),

EASTERN ECONOMIC JOUR NAL

points except

The economy reaches al]

F’s stationary

points, except (k*, v*), in finite time.
Close to stationary points in F, ¥ =

The set of necessary conditions can then he

kfv.

reduced to four differentjaf €quations; one for
each of £, Y. ¢+, and §,. These equations are
such that each rate of change is an explicit
function of £, v, 41, and q,. Paths going to 2
Stationary point (k°,
in finite time. Thus, applying a well known
theorem, one can say that an optimaj path
which satisfies the four €quations and which
Boes to (k° +°) will exist and be unique.*

One cannot apply the same theorem when
(kus TO) =
point only in the limit. Thus, except for (k*,
'), each stationary point in Region F has one
and only one path reaching it. On the fingl
section of optimal paths in F, v - kfv,
Preceding that final section either r, — 0 (and
Y > k/v) or r,
Thus, one must €xamine the behavior of ry o
understand the economy’s behavior,

Paths which become Stationary near (%, ¥)
have r, close to zero at the instant they arrive
at the stationary point. At that instant, as »
and & are continuous, Y=0,k0,and s = 0,

¥%) with k° > % arrive »

(K", ¥*) because paths reach this r

= P(kj) (@nd 5 <kfy), )

Diffcrentiating (11),
instant: ¢, f (k) — kf'(k)] + Fry — a8 =
0.

Therefore 7, > 0. With ry near zere and -

cne finds, at that;

]

A . . [
#y, = 0, a small distance backwards in time

r2 = 0 and hence v = kiv, Stationary points |
with lower capital-labor

leading to them with higher values of ra/q
and lower values of F:/¢: at the instant the
paths become stationary (see Result 9).

ratios have paths |

t

Hence, the lower the stationary capital-labor :

ratio, the lower is 72/ry at the instant the path
becomes stationary. Thus, paths with higher
stationary state valyes of 4 are more likely to
have a phase in which ry = 0.

i

‘See Boyce and DiPrima, p. 254, A assumption not

stated in the text which is fecessary for the theorem js

that u{+), £(), and £{-) should have conbinuous first
and second derivatives,

«43
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One can make tentative predictions on the
, nature of optimal paths. Paths becoming
stationary near (k, %) have a phase with y =
kfv preceded by one with ¥ > k /2. For paths
¥ith lower stationary values of &, the switch
between these two phases occurs farther from
the stationary point. One path in F will have
¥ = k/v for all its length. Paths below this
path will have the phase when vy = k[
preceded by a phase with v < k/¢.

in Section 5.D, it is shown that there is a
segment of line vy = %, beginning at £ and
ending at a lower value of &, which is not
4 “Tossed or joined by any optimal path from F.
Result 7 showed that this segment could be
bnger than {(k, ¥): v = %, &° = k = k).
Therefore, in some cases of the model, no
optimal path will leave region F. However,
this is not a general result and there may be
paths which lcave G passing through F on
their way 10 E.

5.G ik vk <v, vy <V, k<k'

Paths in G are backward constructions of
paths already discussed. Some paths in G go
to £ before becoming stationary in £, Others
g through F to stationary points. Starting
values of k and vy are not necessarily monoton-
ically related to stationary values of these
variables. (Note at this juncture, that Result
4shows that no path feaves G, going through
flto a stationary point in B).

B S.H kv vy =k oy < vt}

Moving backwards from (k', y*), a path
will lie along v — v' until the path drops
Gown into /4. This path will form a dividing
line in H between paths which leave H by
going into G and paths which go inte B. Paths

which begin underneath this dividing line
T_move into G and thence into F or E. Paths
which begin above the dividing line go to
stationary points in B. Diagram Il completes
Section 5. This diagram summarizes Section
3 by showing a typical set of optimal paths as
T described in the foregoing analysis.
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6. Discussion

The most striking feature of the results of
Sections 4 and 5 is the multiplicity of station-
ary states. Multiple stationary states usually
appedar in optimal growth models which do
not use the simple objective function (8), {sce
[12] and [13], for example). A single station-
ary point is the usual conclusion for one and
two sector models which use objective func-
tions of type (8). Hence it is important to ask;
are the present results due to the introduction
of endogenous technological change? In order
to answer that question, the difference
between technological knowledge and tangi-
ble goods must be identified.

Technological knowledge is produced with
economic resources, as is tangibte capital. Yet
tangible capital depreciates because of aging
and use. In contrast, knowledge does not
decay. Hence, onc must analyze the effect of
the ‘no decay’ feature of technological knowl-
edge. Let us therefore contrast the foregoing
results with the results from a second model.
The second medel is identical to the first
except that the former incorporates the
(unrealistic) fealure that knowledge decays.
By comparing these two models, the signifi-
cance of the distinguishing feature of techno-
logical knowledge, no decay, can be ascer-
tained.

Introduce an exponential depreciation rate,
fl, on knowledge. The one change in the model
is that equation {6) becomes:

¥ =50 - v) - 8y, (29)

The only necessary condition which changes
is (19):

G2=(p + 8)q, — ory. (30)
Knowledge must be continually produced in
order to remain stationary. Therefore at a
stationary point v < 1 and v = &/v. Using the
results of sector 3, let us analyze the charac-
teristics of the stationary state. Using (29), at
the stationary state: fy - g(1 — »). Since
g(-) ts monotonic and has an inverse function,

LI
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One can write solutions of ¥ = 0 as y — e(¥),
where ©(0) — 1 and v'(¥) < 0. Using the
necessary conditions of section 3 with (29)
and (30) replacing (6) and (19), one obtains
at a stationary state:

QL) = D]+ v [ f(9) ~ p — 3]

_v(Me'll - vyl
{p +8)

S -p-81-0 1)
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Let
M) = f(v) ~ (o + 5)

_v(gl — o(y)]
(e + )

Then, because ¢, > 0, equation (31) can be
written as: M(y) = 0. Using the fact that
2(0) = 1and g'[1 — #(0)] = 8, one can show
that M{0) ~ — . Also, M(y*) = 0 and:

[f(y) —p -3

- —

The foreg
that =(y*) =
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d_g_{_y_) -M=-fly)-p-3
y
L) e — v (g [E — vy

(o +0)

g [1 — oM (NS (Y) — p ~ 8]
_I_
(p+10)
_ vl - eI

(p+ 8

Thus, M‘(v) = O for 0 = v = v*. Therefore,
there is a unique value of v between 0 and +*
which satisfies M{~) = 0. This valuc¢ i3 the
stationary value of 4. Equation (29) shows
that the stationary value of v, and hence %,
will be unique.’

The model with decaying knowledge there-
fore produces very different results from the
medel with the more realistic assumption of
non-decaying knowledge. The former model
has a single stationary point, the latter a
multiplicity. As the introduction of the non-
decay featurc is due to the introduction of
technological change, one can expect that
multiple stationary points will be a feature of
optimal growth models which incorporate
endogenous technological change of the
Jorgenson-Griliches type.

7. Conclusion

In the present paper, a model of optimal
economic growth incorporating endogenous
technological change has been presented. The
view of technological change used is that
advanced by Jorgenson and Griliches [8]
which is predicated on the ¢ndogeneity of
research and development and represents
changes in productive potential by mevements
along a production functien. In this paper, a
single parameter is used to represent knowl-
edge accumulation. That parameter, which is

"The luregoing analysis makes the implicit assumption
that r:(y*) = O
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raised by using labor, represents the highest
level of sophistication of production processes
available for use.

Analysis of the necessary conditions for
optimality revealed that the model has a
multiplicity of stationary states. Optimal
paths were found for all possible starting
points by the method of backward construc-
tion from stationary points. The initial point
of a path determines both the stationary point
and whether the path reaches that point in
finite time. The set of stationary points
reached in finite time is the set: {(k, ¥): & = v,
k* = k = k*|. The points (k*, v*) and (k*,
~*) are reached in finite time by some paths
but only in the limit by others.

It is interesting to ask to what particular
phenomenon the distinctive characteristics of
the present results can be attributed. Thus, in
section six, one change in the model is made:
the distinctive feature of technological change
is removed. This removal results in a model
which only has one stationary state. Thus, the
multiplicity of stationary points is due to the
introduction of endogenocus technological
change.

One feature of the present model not
previcusly remarked upon is that stationary
states are truly stationary: output per capita is
constant. Other models have produced
optimal paths on which productivity is always
rising ([4] and [10]). However such paths are
the result of the assumption that technologi-
cal change is costless. When technological
change requires resources, present consump-
tion may be a more attractive alternative. In
such a case, as described in sections 4 and 3,
society chooses to stop producing knowledge.

The results of a simple optimal growth
medel cannot hope to give precise policy
prescriptions to be applied immediately in a
practical setting. One presents such models in
the hope that they provide tentative, qualita-
tive guides to policy. The results of this paper
suggest that prescriptions from optimal

)l
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growth models must be used with extreme
caution. For one conclusion from the present
model is that a small and perfectly reasonable
change in assumptions may sharply change
the qualitative nature of the results,

Appendix

Result 1. If the economy is in a stationary
state (k°, %) at some time 1°, where k° < 30
and k° < k*, then it will not be optimal to
remain in this position.

Proof. Compare remaining at (&°, 4" with
moving to a stationary state (& 4+ Ak, ¥9
where Ak is small and £° + Ak < +° Lete® =
Sk — 6k° Suppose that Ak of capital is
accumulated at time ¢°. The welfare cost of
this accumulation is {u' (e Akl (One
should note that the assumption that Ak is
small allows one to ignore second-order
effects. To be absolutely rigorous one should
formulate the second-order effects and show
that they become negligible in relation to the
first order effects as Ak tends to zero. | have
not deemed it necessary to pursue such rigor
in the proofs in this Appendix.) The accumu-
lation of Ak will allow extra stationary state

production measuring {[ f/(k%) — 3)Ak}. The
value of the extra production

= [ e @6y - o akds

_p.-o

- W) = (U~ 9k

The meove increases welfare if:

e

u' (%) . (S K%)= DAk > w'()e *"Ak
that is, if [ f'(k% —§ — #] = 0. Hence, (£°
¥°) is not an optimal stationary state.

Result 2. Define k by p[f (k™) — (p +
Ok ] = Bl F(k*) - p — 48], If the economy
is stationary at (k% 4°) at time 1°, where 4° _
k" < k*, then it is optimal to move,

Proof. Let ¢ = £(k°% = &°. To move toa
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stationary state with higher &, both & and v
must be raised. Consider the following path to
a higher stationary state: ?

(i) 4 drops instantancously by Ak, there-
fore at this instant consumption increases by
Ak, |

(i) Let ¥°(1 — Av) = &° - Ak. Raise |
by reducing » by Az for a time Ar.

(i) Raise k by Ak plus the amount by
which « has risen, so that vy =k. :
Now the gains and losses in welfare of
maving along this path will be compared to '
staying at (&% v°). As the changes are all .
small, effects of higher order than (AvAr)or |
(AkAr) will be ignored. Along the path to the »

higher stationary state Ak of extra consump-
tion occurs at time 1° but Ak less occurs at i
time ¢° + Az, Thus, on the path to the higher !
stationary state a gain occurs equal to the
value of bringing forward k of consumption l
by Az -
The gain due to the advance of Ak of [

benefits |

|
i
-

Ll

= - ;%(u’(c“);ﬁke“”)&t .

(LT

= u'(cu)e_p’o'yOAafAtp.

Now for a time period of length AT there isa
loss of production, and thus consumption, for
two reasons. First, labor is taken away from
the tangible goods sector. Second, the level of
capital stock is lower. The total loss, in
welfare terms, due to these two effects is:

w(@)e "AlAu( £ (K°) - K £1(k0)) {
+ AK(S1(K) - 5) |
= u’(c“)e‘”‘°ArA;.'{f(k°) — 6kY). [

Along the path ~ rises by BAvAr. Hence,
there is a loss of consumption due to the fact
that & also has to rise. The loss equals, in i
welfare terms, w'(e%e *"8A0A T,

There is a gain due to the rise in stationary
state consumption equaling; y
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Adding together all gains and losses, the move
leads 1o increased welfare if:

» k4 {f’(ko)—6)€—>6+f(k°)—6k“

Hence, (k°, %) cannot be an optimal station-
ary point if k° < k*.

Result 3. On paths to stationary points
from B, k and hence ¢ are continuous.

Proof. When y > 0, ¢, = «’{¢). Since g, is
continuous ¢ will also be continuous. If o < 1,
then (11) and (12) combined show that « wil
be continuous (remember thal v, k, ¢, and ¢,
are continuous). Thus, if # = 1 (1) and (2)
show that & is continuous.

The result is less than trivial when one
looks at the case when y = 0. Suppose that
cnsumption jumps from ¢” to ¢' at a certain
moment of time. At that moment, ¢, = #'(c®)
md g, = u'(c') because g, is continuous.
When ¢® < ¢', then from (9) p falls. Hence,
from (11} and (12} v wil} either fall or remain
constant. Thus, from (1) and (13) y will fall,
t Henee, 2’ (c) = g, but as ¢® < ¢’ then u (eh)
< w'(e"), which implies that u (f) < g, a
{ wntradiction. Similarly, when ¢ = ¢, then
from (9), p rises. Hence, from (11} and (12) v
will cither rise or remain constant. Thus, from

{1y and (13) y will rise. Hence, u'(¢') = g1,
butas ¢ = ¢!, w'(c®) < w'(c') = g, whichisa
contradiction. Thus, consumption cannot

jump. ¢ is continuous, and from (11) and (12),
1 vis continuous. Hence, k is continuous.

Result 4. For paths in Region B, k = 0
always.

{ Proof. In discussing Region B, it has been

-

shown that k& = 0 in the neighborhood of the
stationary state. Suppose k > 0 at some time
and ° is the last instant of time at which k =
& Suppose t! is the time at which the station-

A:_____.
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ary state is reached; obviously ¢'> ¢’ In
chlon B, ¢, > 0 always, and therefore
g:{t') > q,(¢"). Now g% = u "(c(t%)) and
gt = wi(c(t)), so et < c(r%). In the
stationary state c(t') = f(v(1")) — 8k(t'). At
time ¢, c(f% = v(O) F(y (1)) — k(%) —
k(t°). Hence,

c(t') — c(t®) = [f (v (1)) — o() £ (¥ (D]

¥ 8[k(®) — k(] + k().

All three terms are non-negative. Hence,
(") = o(1%: a contradiction. Thus, k = 0 in
B.

Result 5. A path near a stationary point in
D, E,or Fwithy = 0hasy = k/u.

Proof. To reach a stationary state from D,
E, or F requires k = 0 so that g, — u'(¢) and
thercfore ¢ will be continuous. When o < ]
and v = kfv,ry = 0,r, = g f'(k/v), thus

¢, = pg, > O and

w-alprsr (8] <o

Also from (11),

) oro 5o

at all points except, possibly, the stationary
state. g,, k, and g, being continuous, v is
continuous in a ncighborhood of the station-
ary point, except possibly for a ‘jump’
upwards at the stationary point. Now ¢ =
of (k) — 6k — k, and in the neighborhood
of the stationary point v < 1 and & > 0.
Therefore, if either ¢ ‘jumps’ up to | or &
‘jumps’ down to 0, ¢ will be discontinuous,
which is not possible. Thus, both » and k will
be continuous in a neighborhood of the
stationary point, including at that point itself.
Thus, at the stationary point (before S, jumps
up at that point): S, — ¢ [ f (k) — &f (k)] —
g5 = 0. In the neighborhood of the stationary
point:




