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Abstract

The purpose of this paper is to describe prediction efficiencies of various suboptimal predic-
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containing spatial lags in both the dependent variable and the error term. Suboptimal predic-
tors have been suggested in the literature. One reason is that they are suggested on an intuitive
level; another is that they are computationally less tedious. We describe these relative efficien-
cies theoretically, as well as empirically. Among other things our results suggest that one of the
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1 Introduction

Linear spatial models have wide applications in economics, geography, and regional science, among
other areas of research.! As with many research efforts, prediction is one of the applications of
this modeling. Although the determination of an efficient predictor is fairly straight forward, 2
suboptimal predictors have been considered in the literature. One reason for this is that suboptimal
predictors are often suggested on an intuitive level; another is that they are typically computationally
simpler than efficient predictors.?

Essentially, the purpose of this paper is to give results which illustrate the extent of inefficiencies
of various predictors in a spatial model. Specifically, we consider prediction issues in the context
of a linear spatial model which contains exogenous variables, a spatially lagged dependent variable,
and a spatially lagged error term.? In the context of this model, we consider three nested informa-
tion sets which a researcher would have access to and might considered for purposes of prediction.
Corresponding to these information sets we consider three predictors defined as conditional means
based on these information sets. We refer to the predictor based on the largest information set as
the full information predictor, and to the other two predictors as limited information predictors.
For future reference we note that the smallest of these information sets only contains the exogenous
variables and the weighting matrix. As expected, predictors corresponding to the larger information
sets are more complex than those corresponding to smaller sets, and so there are trade-offs between
simplicity and prediction efficiency. We also consider a “user-friendly and intuitive” predictor which

is biased, namely, the right hand side of the regression model. The bias arises because of the cor-

I Classic references on spatial models are Cliff and Ord (1973, 1981), Anselin (1988), and Cressie (1993). For a
variety of recent studies which relate to spatial techniques see, e.g., Cohen and Morrison Paul (2004), Rey and Boarnet
(2004), Yuzefovich (2003), Kapoor (2003), Pinkse, Slade, and Brett (2002), Bell and Bockstael (2000), Kelejian and
Robinson (2000), Buettner (1999), LeSage (1999), Bollinger and Ihlanfeldt (1997), and Audretsch and Feldmann
(1996), Bernat (1996), and Besley and Case (1995).

2 An early study relating to best linear unbiased prediction (BLUP) in a GLS-type model is Goldberger (1962); see
also Cressie (1993, Chapter 3) who describes optimal prediction in a spatial frmework.

3Specific cases will be indicated below; at this point we note that Banerjee, Carlin, and Gelfand (2003) have
criticized the way researchers often use spatial models in an ad hoc way to form predictions.

4 Anselin (1988, pp. 87-88) gave results which have been interpreted as suggesting that such models are not
identified if the weighting matrix relating to the spatial lag of the dependent variable is the same as that relating to
the error term. This may be one reason that such models are typically not considered in practice, see e.g., Dubin
(2003, 2004). This is unfortunate because such models are rich in patterns of spatial correlations and are, under
reasonable conditions, clearly identified - see, e.g., Kelejian and Prucha (1998, 1999) and Lee (2003).



relation between the spatially lagged dependent variable and the error term.® Finally, we consider
an intuitive but biased predictor, as well as the full information predictor in the context of a spatial
error model as a special case of our general model.

For each of our considered predictors we give an estimate of its predictive efficiency relative to
the full information predictor. All of our results specialize to models in which one, or both of these
spatial lags are absent. In addition, qualitative extensions to space-time models will become evident.

As a preview, it turns out that in our general model the worst predictor, by far, is the conditional
mean which is based only on the exogenous variables and the weighting matrix. For example, in the
numerical experiments we considered, its predictive efficiency relative to that of the full information
predictor is, on average, only between 4% and 12.2%. Although the biased predictor is a considerable
improvement, it is still significantly worse than the full information predictor, as well as the other
conditional mean predictor considered which recognizes spatial lags in both the dependent variable
and in the error term. Interestingly, in the context of a spatial error model, the intuitive but biased
predictor performs reasonably well in that its prediction efficiency relative to the full information
predictor is, on average, between, roughly, 91.7% and 97.7%. Again, in this model the predictor
determined as the conditional mean on the exogenous variables and weighting matrix is substantially
worse than the other considered preditors.

We also find that the prediction inefficiencies involved for all of our considered predictors relative
to the corresponding full information predictor generally increase as the sparseness of the weighting
matrix increases. The suggestion, therefore, is to avoid simpler but inefficient predictors when the
weighting matrix is relatively sparse. Finally, the inefficiencies involved in the simpler predictors
increase dramatically at certain extreme values of the autoregressive parameters.

In Section 2 we specify the model. Section 3 describes the predictors considered, and their mean
squared errors of prediction. The experimental design and corresponding numerical results relating
to the relative prediction efficiencies are given in Section 4. Concluding comments are given in

Section 5.

5 Among others, such a predictor was considered by Dubin (2004); Kelejian and Yuzefovich (2004) considered the
conditional mean predictor based only on the exogenous variables and the weighting matrix.



2 Model Specification

Consider the model

y = My+ XS+ u, (1)

u = pWu+e,

where y is the n x 1 vector of values of the dependent variable, W is an n x n nonstochastic weighting
matrix, X is an n x k nonstochastic matrix of observations on k exogenous variables (i.e., our analysis
is conditional on the exogenous variables), u is an n x 1 vector of disturbances, € is an n x 1 vector
of innovations, A and p are scalar autoregressive parameters, and g is a k x 1 vector of parameters.
The above model has been referred to as a SARAR(1,1) model in the literature - see, e.g., Kelejian
and Prucha (1998). It is a variant of the spatial model introduced by Cliff and Ord (1973, 1981). ¢

Our discussion of prediction based on (1) considers the case in which the dependent vector is
observed except for its i-th (1 < i < n) element, and all elements of W and X are observed. We
refer to this case as the full information case.

We make the following assumptions.
Assumption 1: The diagonal elements of W are all zero.
Assumption 2: |A\| <1, |p| < 1, and (I — aW¥) is non-singular for all |a| < 1.

Assumption 3: ¢ ~ N(0,021).

6We note that the model in (1) can also be thought of in a panel data framework. As one example, suppose there
are data on R cross sectional units for each of T' time periods. In this case n = RT. In order to avoid notational
confusion with material below, let Y denote n x 1 dependent in vector in (1). Then one would have

Y = (Y], ..., Y})

where Y: is the R X 1 vector of observations on the dependent variable at time ¢ = 1,..., 7. The matrix X and the
vector u would be defined in a similar fashion. Note, in this case, that time dynamics involving the dependent variable
would correspond to the case in which the RT x RT weighting matrix is a lower block diagonal matrix.Clearly this
discussion can be extended to the case in which the number of cross sectional units are not the same in all of the time
periods.



Given W and X are matrices of known constants, Assumptions 2 and 3 imply

u = (I-pW)le (2)
y = (I=AW)'XB+ (I —AW) I —pW) e,
and so
u ~ N(0,025%), (3)
y ~ N(p,o%Y),
with

py = (I=AW)'XB,
D= (I pW) NI = pW) T
Yo= (I- W) (I - Aw))~ L

Let S_; be the n — 1 x n selector matrix which is identical to the n x n identity matrix I except that
the i-th row of I is deleted. Let y_; be the available n — 1 observations on the dependent variable.

Then

Y-i = S—iyv

and, given (3)
Y—i ~ N(S,ip,y, O'?S,ZEySLz) (4)

For future reference note that the distribution in (4) involves all of the model parameters.

Our exact theoretical results below relate to the limits of relative prediction efficiencies of the
considered predictors because those results are conditional on the parameters )\, p, and 3. Of course,
in practice the model parameters will not be known and therefore must be estimated prior to

prediction. In such cases relative prediction efficiencies would clearly depend upon just how well



the model parameters are estimated; this, in turn, would depend upon a number of factors, such
as the particular exogenous variables considered, the sample size, etc.” Given the model in (1),
Assumptions 1-3, data on X, W, and y_;, and further reasonable conditions these parameters can,
e.g., be consistently estimated by the maximum likelihood procedure based on (4), or by a variant

of the Kelejian and Prucha (1998) S2SLS procedure which requires less data. 8

3 Predictors and their Mean Squared Errors
3.1 Predictors

Given the structure of the model in (1), Assumptions 1-3, data on X, W, and y_,;, and A\, 3, p
the objective is to predict the i-th element of y, say y;. In the following we discuss the efficient
predictor corresponding to this so-called full information set. We also discuss less efficient but
simpler predictors that are based on smaller information sets. The considered predictors and their
motivations are described below. At this point, for the convenience of the reader, we note that the
minimum mean squared error predictor based on a given information set is the conditional mean
corresponding to that information set.’

Given (1), y; is determined as

Yi = Awpy+xi 8+ uy, (5)

i = pWiU &g,

"In a model such as (1) an analysis of prediction efficiencies in this case would clearly be numerical, e.g. via Monte
Carlo methods.

8Further details relating to such an estimation can be obtained by writing to the authors.

9For the convenience of the reader, we note the following. Using evident notation, let (Z1, Z2) ~ N(u, V) where

p o= (py,pe); V={Vij},i,j =1,2.

Then the minimum mean squared error predictor of Z; given Za, and the corresponding predictor variance-covariance
matrix are

E(Z1 | Za=2)=py+ ViaVy' (22 — o)
VC(Z1 | Za=2z2)=Vi1— V12V251V21,
see, e.g. Greene (2003, p. 872).



where w;. and x;. are, respectively, the i-th rows of W and X, u; and &; are the i-th elements of u
and ¢, and w; vy and w; u denote the i-th elements of the spatial lags Wy and Wwu. Note that w; y
does not include y; in light of Assumption 1.

We consider three information sets, namely

A = {X, W}, (6)
AZ = {X7 M/a wly} ’
Az = {X, Wy},

Clearly A; and As are subsets of the full information set Az, and A; is a subset of Ay. The
information set A3 includes all available n — 1 observations on the dependent vector. In contrast Ao
only contains information on a linear combination of them, while no information on the dependent
vector is contained in A;. As will become evident below, the use of A; corresponds to predictions
motivated by the reduced form in (2), and was considered in Kelejian and Yuzefovich (2004); the
use of Ag corresponds to predictions motivated by (5).

We consider five predictors of y;, which will be denoted as ygp ), p=1,...,5. The first three are
the conditional means corresponding to the information sets A,, p =1,2,3, in (6). By construction

these predictors are unbiased (conditional on the corresponding information set) and given by :

vV = E(ylAy) (7)
= (I-2W);'Xp

y? = BlylAs) 8)
= M y+x;6+ % [w; y — E(w; )],

yfs) = E(y;|As) 9)

= Awiy+ 2.8+ cov(ui,y—;) [VC(y—i)] " [y—i — E(y—:)],



where

Ewiy) = wi(I-\W)1X3, (10)
var(w;y) = o2w; SVw)
cov(us,wiy) = orof(I— W) ],
E(y—) = S_i(I—-AW)"'Xp,

VC(y_y) = 02825,

2o (I = A\W)7Ls ..

cov(u;, Y—;)

In the above expressions (I — AW); ! and ¢% denote the i-th rows respectively, of (I — AW)~! and
DI

The fourth predictor we consider is given by

y£4) = dw;.y + z; 8. (11)

The reason for including this predictor in our analysis is that, via (5), it has intuitive appeal and

has been considered in the literature, as was discussed in the introduction. It may be viewed as a
2

restricted version of the predictor y,”/, which implicitly assumes that cov(u;, w; y) = 0. Of course,

as seen from (10), in general cov(u;, w; y) # 0 unless both p and A are zero. Thus, conditional on

the information set As the predictor is biased, and the bias is given by

(4) 2 _ _COU(Uz’, wi.y)

as; =Y;  — iy — E(wiy)]. 12
bias; =y, —y; var(wiy) [wi.y — E(w;.y)] (12)



In passing we note, from (7) and (11), that if A =0, y§4) = yl(l).

Our fifth, and biased predictor, y(5) relates to a special case of model (1), namely the spatial

%

error model. In this model A = 0 and so, via (5),

i = it (13)
Uy = pwipu+E;
For this model, we take yi(s) to be
y? = @B+ puiu (14)

x4 pw;ly — X ]

(5)

Given our scenario y,; is a feasible predictor in that it does not involve y; because the i —th element

of w;. is zero. Clearly, y§5)

y§4)in (11). At this point note that the bias arises because the covariance between pw; u and ¢; is

would be suggested by arguments which are similar to those suggesting

not zero.
For future reference we also note that if p = 0 in the spatial error model, or if A = p = 0 in our

general model (5), then all five of our predictors are the same: yl@ = yl@, fori=1,2,3,4.

3.2 Mean Squared Errors

()

%

Let el(-j ) be the error in predicting y; when using the predictor y
el('j) =Yi _yl(j)uj =1,..,5 (15)

Then, the forecast variances corresponding to the first three minimum mean squared error predictors



in (7) - (9) are given, respectively, by:

var(e§1)|A1) = war(({ — )\W);_lu|A1) (16)

= o2(I - AW) 'S, (1 = W)Y,

var(e§2)|A2) = wvar(u;|Az) (17)

= 0?01—2 — [cov(ui,wi_y)]2[var(wi,y)]_1,

var(e§3)|A3) = war(u;|As) (18)

= olol — cov(ui,y—;)[VC(y—s)] cov(ui, y—;),

where o}, is the i-th diagonal element of ¥". As indicated, conditional on the corresponding infor-

mation set, the predictors yl(l)7 y£2), and ygg) are unbiased and so the forecast variances in (16) - (18)

are also mean squared errors. Because of this we will, at times, use the notation
var(egp)\Ap) = MSE(yz(p)), p=1,2,3. (19)

Now consider the biased predictor y(4). In light of (12) have y§4) = y(Q) + bias; and thus the mean

% %

squared error of y§4) conditional on As is given by

MSE@WP|Ay) = bias? + MSE(y®) (20)

> MSE(y®)
For future reference note from (12) that M SE(y§4)|A2) depends upon y_; via the bias term. Since

10



the first three mean squared error MSE(yl(p)), p = 1,2,3 do not depend upon y_; they can be
thought of as being averaged over the realizations of y_;. In order to obtain a comparable measure

4)

of predictive efficiency relating to y, ', we therefore average M SE(yZ-(4) |A2) over y_; by taking the

expected value of M SE (y§4) |A2) conditional only upon A; namely, via (20)

E[MSE@W"|As)] IM] = MSE(y") (21)

2
- (W) var(w;y) + MSE(y;”)
var(w;.y)

The last line in (21) should be evident because, given A\ and §, the prediction error is, via (5),
Yi — Awiy — xi B = u;.
Finally, consider the spatial error model and the intuitive but biased predictor yl(5) in (14). Given

the values of the model parameters 8 and p it should be clear that y; — y§5) = ¢;, and so an argument
similar to that explaining the last line of (21) implies that the mean square error of y§5) average over
the realizations of y_; is just

MSE(ygs)) =02 (22)

S

Our empirical results below relate to M SE(ygp )), p = 1,..,5. On a theoretical level, since

Ay C Ay C A3, and given the results in (18), (21) and (22), it follows that!®

MSE@YM) > MSE@y®)> MSEG®™), (23)
MSEW®™) > MSEy?),

MSE(y)

%

MSE(@yY),

10The result in the first line of (23) follows as a straight forward application of the result in Mood, Graybill, and
Boes (1974, p.159).

11



If A=0:MSE(y") = MSE(y").
If A=p=0:MSE@yY)=MSEGY), j=2,..5.

Note if A # 0, the relative magnitudes of M SE(yZ@) and M SE(yZ-(l)) are not certain. The reason
for this is that although y§4) is biased, it is based on a larger information set than that of ygl).
Therefore, the reduction in the variance due to that larger information set could compensate for the
bias. For the case of the spatial error model (A = 0) the magnitude of MSE(yZ@) is greater than
MSE (yz(s)) because y3 is the full information conditional mean predictor.!! On the other hand, in
general, the magnitude of MSE(yz@) relative to those of MSE(yfl)), MSE(yz@)), and MSE(yZ@))
is not certain. Of course if A = p = 0, all five predictors are equivalent and so their mean square

errors are the same.

4 Comparisons of Prediction Efficiencies

4.1 Design of the Experiments

In this section we give illustrative numerical results regarding the mean squared errors described in
(16) - (18), (21), and (22) in order to gain insights as to the quantitative importance of available
information and its proper use for prediction purposes in models such as (1). These results are based
on two weighting matrices which differ in their degree of sparseness. The first matrix is such that
each unit is directly related to the two units which are immediately after it and immediately before
it in the ordering. Specifically, nonzero elements in the i-th row of this matrix for i = 3,....;n — 2
are wj;+1 and w; ;42 (two ahead) and w;;—1 and w;;—» (two behind). This matrix is defined in a
circular world so that, e.g., in the first row the nonzero elements are w; o and w3 (two ahead) and
w1, and w1 ,—1 (two behind). Rows 2,n — 1, and n are defined in a corresponding circular fashion.

The matrix is row normalized, and all of its nonzero elements are equal to 1/4. Kelejian and Prucha

1T Also note that (9), (18) and (22) imply that

MSE(y®) = var(eily—i) < var(e;) = MSE(y\).

12



(1999) describe a matrix of this sort as “two ahead and two behind”. The second weighting matrix
is identical in structure to the first except that it is “eight ahead and eight behind” so that its
nonzero elements are all 1/16. These matrices were considered because they easily capture aspects
of sparseness. Of course, as is typical of numerical prediction results in spatial models, our numerical
results below depend upon the use of these weighting matrics. '2

In addition to the weighting matrix, the model parameters that enter into the mean squared
errors of the predictors are A, p and 2. For each weighting matrix we give results relating to 25

combinations of A and p, specifically, for all combinations of A\,p = —.9,—.4,0, .4,.9. For relative

2 cancels and so o2

comparisons of mean squared errors of the predictors, o :

is set arbitrarily equal

to one. Finally, all of our results are given for the case in which n = 100.

4.2 Results

Numerical results relating to the prediction efficiencies based on the weighting matrix “two ahead
and two behind” are given in Table 1; results relating to the weighting matrix “eight ahead and eight
behind” are given in Table 2. Specifically, we report sample averages over i = 1,...,n for MSE (yz(p ))
for p=1,...,5. The results for the spatial error model correspond to the case in which A = 0.
Consider first the results in Table 1 and note that those results are consistent with the theoretical
notions in (23). Note also that, by far, the largest mean squared errors, and therefore, the lowest

efficiencies correspond to ym, i.e., the predictor based on A; = {X, W}. Note also that the M SEs of

7

this predictor are “extreme” when A = p = .9. The only other predictor which has more moderated
but still “extreme” M SFE's is the biased predictor y§4). The “extreme” M SFE values of this predictor

always correspond to cases in which p = .9. There are no extreme M SFE values associated with the

use of either yl@), ygg), or yz@. Clearly the moral of the story is that the full information predictor,

y§3) , should be the one used for predictions when the available information set is Ag = {X, W, y_;}.

Correspondingly, if A3 is available the worst predictor, by far, would be the one based on the reduced
(1)

form, namely y,’ in (7). One case in which an information set such as A may be available relates

12 Clearly, it might be of interest to consider a larger numerical study of prediction efficiencies in which various other
characteristics of weighting matrices are considered.

13



to the price prediction of a housing unit in a sampled neighborhood. In such a case the available
data may relate to the values of the regressors, the weighting matrix, and the prices of neighboring
units.

Now consider the results in Table 1 which relate to the spatial error model, A = 0. Using evident
notation, the average of the mean square errors for the five predictors corresponding to the five cases
in Table 1 in which A = 0 are MSE(y{") = MSE(y") = 2.591; MSE(y®) = .931; MSE(y®) =
.917; and MS’E(y§5)) = 1.0. Clearly, as expected yz@) is the best predictor, which is followed closely
by yz@)‘ Both of these predictor are unbiased conditional mean predictors which utilize information

(5)

relating to y_;. The intuitively suggestive predictor, namely y,”’, while substantially better than

(3)

ygl) and y§4), is still roughly 8% less efficient than the efficient predictor, y;~’.

A glance at Table 2 suggests results which are again consistent with our theoretical notions in
(23), as well as with the numerical “extreme” values given in Table 1 in somewhat more moderated
form. For example, the extreme values of the M SFEs relating to ygl) and yi(4)are roughly a third of
their corresponding values in Table 1. We also note that the relative efficiencies of the other four
predictors are all significantly higher in Table 2 than their corresponding values in Table 1. Thus, in
our framework, as the extent of sparseness in the weighting matrix decreases, the relative predictive
efficiencies of the inefficient predictors increases.

Results relating to the spatial error model are also qualitatively similar to those in Table 1. For
instance, again using evident notation, the average of the mean square errors for the five predictors
corresponding to the five cases in Table 2 in which A = 0 are MtS’E(yZ(l)) = MtS‘E(yZ@)) = 1.471;
MtS’E(yZ@)) = .980; MSE(yEB)) = .977; MSE(y£5)) = 1.0. Clearly, y§3) remains the best predictor
but in this case it is quite closely followed by yi@) as well as by the intuitive but biased predictor
gl) and y§4)

ygs). Again, the predictors which do not utilize any information relating to y_;, namely y N

have a mean square error which is roughly 50% higher than those that do utilize such information,

even if in a biased manner!

14



5 Summary and Conclusions

In this paper we considered the prediction of the dependent variable in a spatial model containing
spatial lags in both the dependent variable and disturbance term. A special case of this model
is the spatial error model. Five predictors were considered, one of which is the full information
predictor; the other four predictors are simpler and are either based on limited information, or
an assumption that a certain covariance is zero when in fact it, in general, is not. Our empirical
results are consistent with theoretical notions in that predictors based on “properly used” larger
information sets are indeed more efficient than those based on less information. Our results also
suggest that a predictor suggested in the literature is considerably less efficient than other (biased)
predictors that one might consider in such models. That predictor is the mean of the dependent
variable conditional only on the exogenous variables and the weighting matrix. Finally, our results
suggest that the relative inefficiencies of predictors increase as the sparseness of the weighting matrix

increases.

15



Table 1: MSEs Based on the Weighting Matrix

Two Ahead and Two Behind

A p MSEs

R R R LS
-9 -9 4.35395 0.60998  0.38750  1.68204 N/R
-9 -4 2.31239 0.68523 0.58532 1.11021 N/R
-9 0.0 1.68204 0.85038  0.83160  1.00000 N/R
-9 04 1.40991 1.17256  1.15344  1.17308 N/R
-9 0.9 3.16929 1.67722  1.45504 7.98954 N/R
4 -9 2.31239 0.68523 0.58532 1.68204 N/R
4 -4 1.37494 0.81520 0.78889  1.11021 N/R
-4 0.0 1.11021 0.96250  0.96154  1.00000 N/R
-4 04 1.09287 1.08780 1.08272 1.17308 N/R
-4 09 4.60197 1.07524  1.07012 7.98954 N/R
0.0 -9 1.68204 0.85038  0.83160 1.68204 1.0
0.0 -4 1.11021 0.96250  0.96154 1.11021 1.0
0.0 0.0 1.00000 1.00000  1.00000  1.00000 1.0
0.0 04 1.17308 0.96273  0.96154 1.17308 1.0
0.0 0.9 7.98954 0.88041  0.83160 7.98954 1.0
04 -9 1.40991 1.17256  1.15344  1.68204 N/R
04 -4 1.09287 1.08780 1.08272 1.11021 N/R
04 0.0 1.17308 0.96273  0.96154  1.00000 N/R
04 04 1.77454 0.84597  0.81994 1.17308 N/R
04 0.9 19.7150 0.82555  0.65233  7.98954 N/R
09 -9 3.16929 1.67722 145504 1.68204 N/R
09 -4 4.60197 1.07524  1.07012  1.11021 N/R
0.9 0.0 7.98954 0.88041  0.83160  1.00000 N/R
0.9 0.4 19.71500  0.82555  0.65233  1.17308 N/R
0.9 0.9 469.81046  1.40530 0.49167 7.98954 N/R
Col. Ave. p=1,..,5 22.673 1.001 0.906 2.591 1.0
Column Averages 4 1) 4.0 90.5 100 35.0 91.7

Column Average,

16



Table 2: MSEs Based on the Weighting Matrix

Eight Ahead and Eight Behind

A p MSFEs

R T U
-9 -9 1.29624 0.79928  0.69037  1.09708 N/R
-1 1.16707 0.87272  0.83753  1.02295 N/R
-9 0.0 1.09708 0.95545  0.95181  1.00000 N/R
-9 04 1.06332 1.04432  1.04077 1.04906 N/R
-9 09 1.64018 1.09616  1.08237 3.18349 N/R
4 -9 1.16707 0.87272  0.83753  1.09708 N/R
4 -4 1.06935 0.94011  0.93329  1.02295 N/R
-4 0.0 1.02295 0.99027  0.99010  1.00000 N/R
-4 04 1.02357 1.02014  1.01939  1.04906 N/R
-4 09 2.12209 1.01097 1.00974 3.18349 N/R
0.0 -9 1.09708 0.95545  0.95181  1.09708 1.0
0.0 -4 1.02295 0.99027  0.99010  1.02295 1.0
0.0 0.0 1.00000 1.00000  1.00000  1.00000 1.0
0.0 0.4 1.04906 0.99033  0.99010  1.04906 1.0
0.0 0.9 3.18349 0.96447  0.95181 3.18349 1.0
04 -9 1.06332 1.04432  1.04077 1.09708 N/R
04 -4 1.02357 1.02014  1.01939  1.02295 N/R
0.4 0.0 1.04906 0.99033  0.99010  1.00000 N/R
04 04 1.22877 0.95749  0.95194  1.04906 N/R
04 09 6.86717 0.94325  0.89509 3.18349 N/R
09 -9 1.64018 1.09616 1.08237 1.09708 N/R
0.9 -4 2.12209 1.01097 1.00974 1.02295 N/R
0.9 0.0 3.18349 0.96447  0.95181  1.00000 N/R
0.9 04 6.86717 0.94325  0.89509  1.04906 N/R
0.9 0.9 150.65631  1.12765 0.82693 3.18349 N/R
Col. Ave,p=1,..5 7.829 0.984 0.958 1.471 1.0
Column Averages , 1) 12.2 98.4 100 65.1 97.7

Column Average,
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