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Abstract

Cross sectional spatial models frequently contain a spatial lag of the depen-
dent variable as a regressor, or a disturbance term which is spatially autore-
gressive. In this paper we describe a computationally simple procedure for
estimating cross sectional models which contain both of these characteristics.
We also give formal large sample results.



1 Introduction

Cross sectional spatial regression models are often formulated such that they
permit interdependence between spatial units. This interdependence compli-
cates the estimation of such models. One form of interdependence arises when
the value of the dependent variable corresponding to each cross sectional unit
is assumed, in part, to depend upon a weighted average of that dependent
variable corresponding to neighboring cross sectional units. This weighted
average is often described in the literature as a spatial lag of the dependent
variable, and the model is then referred to as a spatially autoregressive model
— see, e.g., Blommestein (1983) and Anselin (1988, p. 35).1 The spatially
lagged dependent variable is typically correlated with the disturbance term —
see, e.g., Ord(1975) and Anselin(1988, p. 58) — and hence the ordinary least
squares estimator is typically not consistent in such situations. Another form
of interdependence that arises in such models is that the disturbance term is
often assumed to be spatially autoregressive. Consistent procedures, other
than maximum likelihood, have been suggested in the literature for models
which contain one of these interdependencies.2 Unfortunately, such proce-
dures are not available for models which have both of these characteristics.
This shortcoming is of consequence because maximum likelihood procedures
are often “computationally very challenging” when the sample size is large.3

1As an example, in a spatial model explaining property values, the property value at
each location could relate to, among other things, the property values of neighboring loca-
tions. For empirical studies in which spatial lags of the dependent variable are considered
see, e.g., Case (1991,1992), Case, Hines and Rosen (1993), and Kelejian and Robinson
(1993).

2An early procedure which is partially based on maximum likelihood principles and
which relates to models which have a spatially autoregressive disturbance term was sug-
gested by Ord(1975); a more recent procedure for such models which is partially based on
a generalized moments approach was suggested by Kelejian and Prucha (1995). An instru-
mental variable estimator for models which contain a spatially lagged dependent variable
is described in Anselin(1982). See also Anselin (1990), and Anselin, Bera, Florax, and
Yoon (1996) for a wide variety of tests relating to models which contain either a spatially
autoregressive error term, a spatially lagged dependent variable, or both.

3These “computationally challenging issues” can be moderated by using Ord’s (1975)
eigenvalue approach to the evaluation of the likelihood function. Further simplifications
can be realized by the use of sparse matrix routines if the weighting matrix involved is
indeed sparse — see, e.g., Pace and Barry (1996). Our experience is that the computation
of eigenvalues for general nonsymmetric matrices by standard subroutines in the IMSL
program library may be inaccurate for matrices as small as 400 × 400. The accuracy
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Furthermore, the maximum likelihood procedure requires distributional as-
sumptions which the researcher may not wish to specify.4

The purpose of this paper is to suggest an estimation procedure for cross
sectional spatial models which contain a spatially lagged dependent variable
as well as a spatially autocorrelated error term. Our procedure is computa-
tionally simple, even in large samples. In addition, our procedure is conceptu-
ally simple in that its rational is obvious. We give formal large sample results
with modest assumptions regarding the distribution of the disturbances.

The model is specified in Section 2. That section also contains a discus-
sion of the assumptions involved. Our procedure is described in Section 3.
Concluding remarks are given in Section 4. Technical details are relegated
to the appendix.

2 The Model

In this section we first specify the regression model and all of its assumptions;
we then provide a discussion and interpretation of these assumptions. It
proves helpful to introduce the following notation: Let An with n ∈ N be
some matrix; we then denote the (i, j)-th element of An as aij,n. Similarly,
if vn with n ∈ N is a vector, then vi,n denotes the i-th element of vn. An
analogous convention is adopted for matrices and vectors that do not depend
on the index n, in which case the index n is suppressed on the elements. If
An is a square matrix, then A−1

n denotes the inverse of An. If An is singular,
then A−1

n should be interpreted as the generalized inverse of An. Further,
let (Bn)n∈N be some sequence of n × n matrices. Then we say the row and
column sums of the (sequence of) matrices Bn are bounded uniformly in
absolute value if there exists a constant cB <∞ (that does not dependent of

improves if the matrix involved is symmetric and that information is used. Bell and
Bockstael (1997) report accuracy problems in determining eigenvalues for matrices of,
roughly, order 2000×2000, even though sparse matrix routines in MATLAB were used. On
the other hand, Pace and Barry (1996) were able to work with matrices of, approximately,
order 20, 000× 20, 000.

4Given appropriate conditions the maximum likelihood estimator should be consistent
and asymptotically normally distributed. However, to the best of our knowledge, formal
results establishing these properties for spatial models of the sort considered here under
a specific set of low level assumptions do not seem to be available in the literature; cp.
Kelejian and Prucha (1995) on this point.
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n) such that

max
1≤i≤n

n∑
j=1

|bij,n| ≤ cB and max
1≤j≤n

n∑
i=1

|bij,n| ≤ cB for all n ∈ N

holds. As a point of interest, we note that the above condition is identical to
the condition that the sequences of the maximum column sum matrix norms
and maximum row sum matrix norms of Bn are bounded; cp. Horn and
Johnson (1985, pp.294-5).

2.1 Model Specification

Consider the following cross sectional (first order) autoregressive spatial model
with (first order) autoregressive disturbances (n ∈ N):

yn = Xnβ + λWnyn + un, |λ| < 1 (1)

un = ρMnun + εn, |ρ| < 1

where yn is the n× 1 vector of observations on the dependent variable, Xn is
the n × k matrix of observations on k exogenous variables, Wn and Mn are
n × n spatial weighting matrices of known constants, β is the k × 1 vector
of regression parameters, λ and ρ are scalar autoregressive parameters, un
is the n × 1 vector of regression disturbances, and εn is an n × 1 vector
of innovations. The variables Wnyn and Mnun are typically referred to as
spatial lags of yn and un, respectively. For reasons of generality we permit
the elements of Xn, Wn, Mn and εn to depend on n, i.e., to form triangular
arrays. We condition our analysis on the realized values of the exogenous
variables and so, henceforth, the matrices Xn will be viewed as a matrices of
constants.

In scalar notation the spatial model (1) can be rewritten as

yi,n =
k∑

j=1

xij,nβj + λ
n∑

j=1

wij,nyj,n + ui,n, i = 1, ..., n, (2)

ui,n = ρ
n∑

j=1

mij,nuj,n + εi,n.

The spatial weights wij,n and mij,n will typically be specified to be nonzero
if cross sectional unit j relates to i in a meaningful way. In such cases, units
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i and j are said to be neighbors. Usually neighboring units are taken to be
those units which are close in some dimension — e.g., geographic, technolog-
ical, etc. We allow for the possibility that Wn = Mn.

We maintain the following assumptions concerning the spatial model (1).

Assumption 1 All diagonal elements of the spatial weighting matrices Wn

and Mn are zero.

Assumption 2 The matrices (I −λWn) and (I − ρMn) are nonsingular for
all |λ| < 1 and |ρ| < 1.

Assumption 3 The row and column sums of the matrices Wn, Mn, (I −
λWn)

−1, and (I − ρMn)
−1 are bounded uniformly in absolute value.

Assumption 4 The regressor matrices Xn have full column rank (for n
large enough). Furthermore, the elements of the matrices Xn are uniformly
bounded in absolute value.

Assumption 5 The innovations {εi,n : 1 ≤ i ≤ n, n ≥ 1} are distributed
identically. Further, the innovations {εi,n : 1 ≤ i ≤ n} are for each n
distributed (jointly) independently with E(εi,n) = 0, E(ε2i,n) = σ2ε, where
0 < σ2ε < b with b <∞. Additionally the innovations are assumed to possess
finite fourth moments.

In estimating the spatial model (1) we will utilize a set of instruments. Let
Hn denote the n × p matrix of those instruments, and let Zn = (Xn,Wnyn)
denote the matrix of regressors in the first equation of (1). We maintain the
following assumptions concerning the instrument matrices Hn.

Assumption 6 5The instrument matrices Hn have full column rank p ≥
k + 1 (for all n large enough). They are composed of a subset of the lin-
early independent columns of (Xn, WnXn, W

2
nXn, . . ., MnXn, MnWnXn,

MnW
2
nXn, . . .), where the subset contains at least the linearly independent

columns of (Xn,MnXn).

5In principle we could have different instrument matrices for the first and third step of
the estimation procedure discussed below, but this would further complicate our notation
without expanding the results in an essential way.
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Assumption 7 The instruments Hn satisfy furthermore:
(a)

QHH = lim
n→∞

n−1H ′
nHn

where QHH is finite, and nonsingular.
(b)

QHZ = plim
n→∞

n−1H ′
nZn

and
QHMZ = plim

n→∞
n−1H ′

nMnZn

where QHZ and QHMZ are finite, and have full column rank. Furthermore

QHZ − ρQHMZ = plim
n→∞

n−1H ′
n(I − ρMn)Zn

has full column rank for all |ρ| < 1.
(c)

Φ = lim
n→∞

n−1H ′
n(I − ρMn)

−1(I − ρM ′
n)

−1Hn

is finite, and nonsingular for all |ρ| < 1.

The following assumption ensures that the autoregressive parameter ρ is
“identifiably unique”, cp. Kelejian and Prucha (1995).

Assumption 8 The smallest eigenvalue of Γ
′

nΓn is bounded away from zero,
i.e., λmin(Γ

′

nΓn) ≥ λ∗ > 0, where

Γn =
1

n




2E(u′nun) −E(u′nun) 1
2E(u′nun) −E(u′nun) tr(M ′

nMn)
E(u′nun + u

′
nun) −E(u′nun) 0


 (3)

and un =Mnun and un =Mnun =M2
nun.

2.2 Some Implications of the Model Specification

The specifications in (1) and Assumption 2 imply that6

yn = (I − λWn)
−1Xnβ + (I − λWn)

−1un (4)

un = (I − ρMn)
−1εn.

6We note that, in general, the elements of (I−λWn)
−1 and (I−ρMn)

−1 will depend on
the sample size n, even if the elements of Wn and Mn do not depend on n. Consequently,
in general, the elements of yn and un will also depend on n, and thus form a triangular
array, even in the case where the innovations εi,n do not depend on n.
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Assumption 5 implies further thatE(un) = 0, and that the variance-covariance
matrix of un is

Ωun = E(unu
′
n) = σ

2

ε(I − ρMn)
−1(I − ρM ′

n)
−1. (5)

Thus the disturbance terms are generally both spatially correlated and het-
eroskedastic. It follows from (4) and (5) that E(yn) = (I −λWn)

−1Xnβ, and
that the variance-covariance matrix of yn is

Ωyn = σ2ε(I − λWn)
−1(I − ρMn)

−1(I − ρM ′
n)

−1(I − λW ′
n)

−1. (6)

Furthermore

E[(Wnyn)u
′
n] = Wn(I − λWn)

−1Ωun (7)

= σ2εWn(I − λWn)
−1(I − ρMn)

−1(I − ρM ′
n)

−1


= 0.

Thus, in general, the elements of the spatially lagged dependent vector,Wnyn,
are correlated with those of the disturbance vector. One implication of this
is, of course, that the parameters of (1) can not be consistently estimated by
ordinary least squares.

2.3 Further Interpretations of the Model Specification

Assumption 1 is a normalization of the model; it also implies that no unit
is viewed as its own neighbor. Assumption 2 indicates that the model is
complete in that it determines yn and un. Next consider Assumption 3.
In practice, weighting matrices are often specified to be row normalized in
that

∑n
j=1wij,n =

∑n
j=1mij,n = 1 — see, e.g., Kelejian and Robinson (1993),

and Anselin and Rey (1990). In many of these cases no unit is assumed
to be a neighbor to more than a given number, say q, of other units — i.e.,
for every j the number of mij,n 
= 0 is less than or equal to q. Clearly
in such cases Assumption 3 is satisfied for Wn and Mn. Also, often the
weights are formulated such that they decline as a function of some measure
of “distance” between neighbors. Again, in such cases Assumption 3 will
typically be satisfied for Wn and Mn. Assumption 3 also maintains that the
row and column sums of (I−ρMn)

−1 and (I−λWn)
−1 are uniformly bounded

in absolute value. In light of (5) and (6) this assumption is reasonable in that
it implies that the row and column sums of the covariance matrices Ωun and
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Ωyn are uniformly bounded in absolute value, thus limiting the degree of
correlation between, respectively, the elements of un and yn.

7 Our results
relate to the large sample; the extent of correlation is limited in virtually
all large sample analysis — see, e.g., Amemiya (1985, ch. 3,4) and Pötscher
and Prucha (1997, ch. 5,6). Assumptions 4 and 5 regarding the regressor
matrices Xn and the innovations εn seem in line with typical specifications —
see, e.g., Schmidt (1976, p.2, 56).

The instrument matrices Hn will be used to instrument Zn = (Xn,Wnyn)
and MnZn = (MnXn,MnWnyn) in terms of their predicted values from a
least squares regression onHn, i.e., Ẑn = PHn

Zn and M̂nZn = PHn
MnZn with

PHn
= Hn(H

′
nHn)

−1H ′
n. The ideal instruments are E(Zn) = (Xn,WnE(yn))

and E(MnZn) = (MnXn,MnWnE(yn)) where E(yn) = (I − λWn)
−1Xnβ. In

principle we would like Ẑn and M̂nZn to approximate E(Zn) and E(MnZn)
as closely as possible. Assumption 6 assumes that Hn contains, at least,
the linearly independent columns of Xn and MnXn, which ensures that
Ẑn = (Xn, Ŵnyn) and M̂nZn = (MnXn, ̂MnWnyn)with Ŵnyn = PHn

Wnyn
and ̂MnWnyn = PHn

MnWnyn. Furthermore, suppose all eigenvalues of Wn

are less than or equal to one in absolute value — which is, e.g., the case if Wn

is row normalized. Then, observing that |λ| < 1, it is readily seen that8

E(yn) = (I − λWn)
−1Xnβ (8)

=

[
∞∑
i=0

λiW i
n

]
Xnβ, W 0

n = I.

Consequently, in this case, WnE(yn) and MnWnE(yn) are seen to be formed
as a linear combination of the columns of the matrices Xn, WnXn, W

2
nXn,

. . ., MnXn, MnWnXn, MnW
2
nXn, . . . It is for this reason that we postulate

in Assumption 6 that Hn is composed of a subset of the linearly independent
columns of those matrices. In practice that subset might be the linearly

7This follows from the following fact: Let An and Bn be matrices which are conformable
for multiplication and whose row and column sums are uniformly bounded in absolute
value. Then the row and column sums of AnBn are also uniformly bounded in absolute
value - see, e.g., Kelejian and Prucha (1995).

8If all eigenvalues of Wn are less than or equal to one in absolute value, then |λ| < 1
implies that all eigenvalues of λWn are less than one in absolute value. This in turn ensures
that (I − λWn)

−1 =
∑
∞

i=0
λiW i

n
— see, e.g., Horn and Johnson (1985, pp. 296-301). The

claim that all eigenvalues of Wn are less than or equal to one in absolute value, given Wn

is row normalized, follows from Geršgorin’s theorem — see, e.g., Horn and Johnson (1985,
p. 344).
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independent columns of [Xn, WnXn, W
2
nXn, MnXn, MnWnXn, MnW

2
nXn],

or if the number of regressors is large, just those of [Xn, WnXn, MnXn,
MnWnXn].

9 We also note that the assumption that the matrices Hn have
full column rank could be relaxed at the expense of working with generalized
inverses, since the orthogonal projection of any vector onto the space spanned
by the columns of Hn is unique even if Hn does not have full column rank.
Finally, for future reference we note that the elements of Hn are in light of
Assumptions 3 and 4 bounded in absolute value.

Consider now Assumption 7. This assumption will ensure that the esti-
mators defined below remain well defined asymptotically. Assumption 7(a)
is standard. Assumption 6 and Assumption 7(a) imply that n−1H ′

nXn con-
verges to a full column rank matrix. Because of this and since n−1H ′

nZn =
(n−1H ′

nXn, n
−1H ′

nWnyn) the force of the first part of Assumption 7(b) relates
to the probability limit of n−1H ′

nWnyn and its linear independence from the
limit of n−1H ′

nXn. In the appendix we show that

plim
n→∞

n−1H ′
nWnyn = lim

n→∞
n−1H ′

nWn(I − λWn)
−1Xnβ. (9)

Two points should be noted. First, Assumption 7(b) clearly rules out models
in which β = 0. That is, Assumption 7(b) rules out models in which all of
the parameters corresponding to the exogenous regressors — including the
intercept parameter, if an intercept is present — are zero. We note that in
this case the mean of yn is zero and hence this case may be of limited interest
in practice. Second, as shown in more detail below, if Wn is row normalized
the first part of Assumption 7(b) will also fail if the only nonzero element
of β corresponds to the constant term. Thus, in this case, Assumption 7(b)
requires that the generation of yn involve at least one nonconstant regressor.
One implication of this is that if the weighting matrix in the regression model
is row normalized the hypothesis that all slopes are zero can not be tested in
terms of the results provided in this paper.

We now give more detail concerning the case in which Wn is row normal-
ized, and its relation to Assumption 7(b). Let en be the n× 1 vector of unit
elements. Also, suppose that the first column of Xn is en and the remaining
columns are denoted by the n × (k−1) matrix X1,n so that Xn = (en, X1,n).
Partition β correspondingly as β = (β0, β

′
1)

′. Then the first equation in (1)

9While we believe that our suggestion for selecting instruments is reasonable, permitting
other instruments would not affect the subsequent analysis in any essential way.
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can be expressed as

yn = enβ0 +X1,nβ1 + λWnyn + un. (10)

If Wn is row normalized it follows that Wnen = en. Now, if β1 = 0, then it
follows from (8) that

E(Wnyn) =Wn

∞∑
i=0

λiW i
nenβ0 = enκ, κ = β0/(1− λ). (11)

Thus, the mean of Wnyn is not linearly independent of en. In the appendix,
we demonstrate that

plim
n→∞

n−1H ′
n(en,Wnyn) = lim

n→∞
n−1H ′

n(en, enκ). (12)

Clearly this matrix does not have full column rank, and thus the first part
of Assumption 7(b) is violated. In a similar fashion it is not difficult to show
that analogous statements hold for the second and third part of Assumption
7(b).

In a sense, our Assumptions 7(b) are similar to the rank condition for iden-
tification in linear simultaneous equation systems. Among other things, that
condition implies that a certain number of predetermined variables which are
excluded from a given equation appear elsewhere in the system with nonzero
coefficients. However, there is an important difference between our Assump-
tion 7(b) and the rank condition for identification in linear simultaneous
systems. Specifically, suppose our Assumption 7(b) does not hold because
Wn is row weighted and β1 = 0. Then, the estimation procedure we suggest
in Section 3 is not consistent. However, the model’s coefficients may still be
identified and there may exist another procedure which, although perhaps
more complex, is consistent — see, e.g., Kelejian and Prucha (1995) and note
that the parameters of their autoregressive model can be consistently esti-
mated but yet a condition corresponding to Assumption 7(b) would clearly
not hold. We note that if Wn is not row normalized, then in general Wnen

will be linearly independent of en and the development in (12) no longer
holds. Thus in this case Assumption 7(b) does not require the existence of a
nonconstant regressor in the generation of yn.

Finally, consider Assumption 8. This assumption was made in Kelejian
and Prucha (1995) in proving consistency of their estimator for ρ, which
is used in the second step of the estimation procedure proposed below. Our
development in the next section will indicate the role of Γn in that procedure.
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3 A Generalized Spatial Two Stage Least

Squares Procedure

Consider again the model in (1). Essentially, we propose a three step proce-
dure. In the first step the regression model in (1) is estimated by two stage
least squares (2SLS) using the instruments Hn. In the second step the au-
toregressive parameter, ρ, is estimated in terms of the residuals obtained via
the first step and the generalized moments procedure suggested in Kelejian
and Prucha (1995). We note that ρ can be consistently estimated in this
manner whether or not Wn and Mn are equal. Finally, in the third step,
the regression model in (1) is re-estimated by 2SLS after transforming the
model via a Cochrane-Orcutt type transformation to account for the spatial
correlation. In analogy to the generalized least squares estimator we refer
to this estimation procedure as a generalized spatial two stage least squares
(GS2SLS) procedure.10

For the following discussion it proves helpful to rewrite (1) more com-
pactly as

yn = Znδ + un, (13)

un = ρMnun + εn,

where Zn = (Xn,Wnyn) and δ = (β′, λ)′. Applying a Cochorane-Orcutt type
transformation to this model yields furthermore

yn∗ = Zn∗δ + εn, (14)

where yn∗ = yn − ρMnyn and Zn∗ = Zn − ρMnZn. In the following we may
also express yn∗ and Zn∗ as yn∗(ρ) and Zn∗(ρ) to indicate the dependence of
the transformed variables on ρ.

3.1 The First Step of the Procedure

We have previously indicated in (7) thatE[(Wnyn)u
′
n] �= 0 and so δ in (13) can

not be consistently estimated by ordinary least squares. Therefore consider
the following 2SLS estimator:

δ̃n = (Ẑ ′
nẐn)

−1Ẑ ′
nyn, (15)

10Of course, if no spatially lagged dependent variable is present in (1) we can estimate
the model in the first and third steps by ordinary least squares; in this case the estimator
computed in the third step would be the feasible generalized least squares estimator.
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where Ẑn = PHn
Zn = (Xn, Ŵnyn), where Ŵnyn = PHn

Wnyn and PHn
=

Hn(H
′
nHn)

−1H ′
n. The proof of the following theorem is given in the appendix.

Theorem 1 Suppose the setup and the assumptions of Section 2 hold. Then
δ̃n = δ +Op(n

−1/2) and hence δ̃n is consistent for δ, i.e., plimn→∞δ̃n = δ.

Remark 1: The essence of Theorem 1 is that the 2SLS estimator which is
formulated in terms of the instruments Hn is consistent. For purposes which
are related to our second step, however, it is also important to note that the
rate of convergence is n−1/2.

Although δ̃n is consistent, it does not utilize information relating to the
spatial correlation of the error term. We therefore turn to the second step of
our procedure.

3.2 The Second Step of the Procedure

Let ui,n, ui,n, and ui,n be, respectively, the i-th elements of un, un = Mnun,
and un = M2

nun. Similarly, let εi,n and εi,n be the i-th elements of εn and
εn =Mnεn. Then, the spatial correlation model implies

ui,n − ρui,n = εi,n, i = 1, ..., n (16)

and
ui,n − ρui,n = εi,n, i = 1, ..., n. (17)

The following three equation system is obtained by squaring (16) and then
summing, squaring (17) and summing, multiplying (16) by (17) and sum-
ming, and finally by dividing all terms by the sample size n.11

2ρn−1
∑
ui,nui,n − ρ2n−1

∑
u2i,n + n

−1
∑
ε2i,n = n−1

∑
u2i,n

2ρn−1
∑
ui,nui,n − ρ2n−1

∑
u2i,n + n

−1
∑
ε2i,n = n−1

∑
u2i,n

ρn−1
∑

[ui,nui,n + u
2

i,n]− ρ2n−1
∑
ui,nui,n + n

−1
∑
εi,nεi,n = n−1

∑
ui,nui,n

(18)

Assumption 5 implies E(n−1
∑
ε2i,n) = σ

2
ε. Noting that

∑
ε2i,n = ε′nM

′
nMnεn,

Assumption 5 also implies that

E(n−1
∑
ε2i,n) = n−1E[Tr(ε′nM

′
nMnεn)] = n

−1Tr(Eεnε
′
nM

′
nMn)

= σ2εn
−1Tr(M ′

nMn)
11All sums are taken over i = 1, . . . , n.
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where Tr(.) denotes the trace operator. Finally, using similar manipulations,
it is not difficult to show that Assumptions 1 and 5 imply E( n−1

∑
εi,nεi,n) =

0. Now let α = (ρ, ρ2, σ2ε)
′ and γn = n−1 (E(u′nun), E(u

′
nun), E(u

′
nun))

′.
Then, if expectations are taken across (18), the resulting system of three
equations can be expressed as

Γn α = γn (19)

where Γn is defined in Assumption 8. If Γn and γn were known, Assumption
8 implies that (19) determines α as α = Γ−1

n γn.
Kelejian and Prucha (1995) suggested two estimators of ρ and σ2ε. Essen-

tially, these estimators are based on estimated values of Γn and γn. To define
those estimators for ρ and σ2ε within the present context, let ũn = yn−Znδ̃n,

ũn =Mnũn, and ũn =M2
nũn, where δ̃n is the 2SLS estimator obtained in the

first step, and denote their i-th elements, respectively, as ũi,n, ũi,n, and ũi,n.
Now consider the following estimators for Γn and γn:

Gn =
1

n


2
∑
ũi,nũi,n −∑

ũ
2

i,n 1

2
∑
ũi,nũi,n −∑

ũ
2

i,n Tr(M ′
nMn)∑

[ũi,nũi,n + ũ
2

i,n] −∑
ũi,nũi,n 0

 , gn =
1

n


∑
ũ2i,n∑
ũ
2

i,n∑
ũi,nũi,n

 .
(20)

Then, the empirical form of the relationship γn = Γn α in (19) is

gn = Gnα+ vn (21)

where vn can be viewed as a vector of regression residuals. The simplest of the
two estimators of ρ and σ2ε considered by Kelejian and Prucha (1995) is given
by the first and the third element of the ordinary least squares estimator α̃n

for α obtained from regressing gn against Gn. Since Gn is a square matrix

α̃n = G−1

n gn. (22)

Clearly, α̃n is based on an overparameterization in that it does not utilize the
information that the second element of α is the square of the first. We will
henceforth denote the estimators of ρ and σ2ε which are based on α̃n as ρ̃n and

σ̃2ε,n. The second set of estimators of ρ and σ2ε, say
˜̃ρn and ˜̃σ2ε,n, considered

by Kelejian and Prucha (1995) — and which turned out to be more efficient -
are defined as the nonlinear least squares estimators based on (21). That is
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˜̃ρn and ˜̃σ2ε,n are defined as the minimizers ofgn −Gn

 ρ
ρ2

σ2ε



′ gn −Gn

 ρ
ρ2

σ2ε


 . (23)

The basic results corresponding to the second step of our procedure are con-
tained in the following theorem. The proof of the theorem is given in the
appendix.

Theorem 2 Suppose the setup and the assumptions of Section 2 hold. Then

(ρ̃n, σ̃
2

ε,n) and (˜̃ρn, ˜̃σ2ε,n) are consistent estimators of (ρ, σ2ε).

Remark 2: The essence of Theorem 2 is that a consistent estimator of ρ can
be obtained by a relatively simple procedure. The third step of our procedure
can be based upon either ρ̃n or ˜̃ρn. The large sample properties of the 2SLS
estimator in the third step are the same whether it is based on ρ̃n or ˜̃ρn.
However, ˜̃ρn is more efficient than ρ̃n as an estimator for ρ, and hence its use
in the third step may be preferred due to small sample considerations.

3.3 The Third Step of the Procedure

If ρ were known we could estimate the vector of regression parameters δ
by 2SLS based on (14). As remarked above, in analogy to the generalized
least squares estimator, we refer to this estimator, say δ̂n, as the generalized
spatial 2SLS estimator, or for short as the GS2SLS estimator. This estimator
is given by

δ̂n = [Ẑn∗(ρ)
′Ẑn∗(ρ)]

−1Ẑn∗(ρ)
′yn∗(ρ) (24)

where Ẑn∗(ρ) = PHn
Zn∗(ρ). (Recall that Zn∗(ρ) = Zn − ρMnZn, yn∗(ρ) =

yn − ρMnyn, Zn = (Xn,Wnyn) and PHn
= Hn(H

′
nHn)

−1H ′
n.) Because Hn

includes the linearly independent columns of both Xn and MnXn it should
be clear that Ẑn∗(ρ) = (Xn − ρMnXn, ̂Wnyn − ρMnWnyn) where

̂Wnyn − ρMnWnyn = PHn
(Wnyn − ρMnWnyn)

are the predicted values of (Wnyn − ρMnWnyn) in terms of the least squares
regression on the instruments Hn.

Of course, in practical applications ρ is typically not known. In this case
we may replace ρ in the above expressions by some estimator, say ρ̂n. The

13



resulting estimator may be termed the feasible GS2SLS estimator and is
given by

δ̂F,n = [Ẑn∗(ρ̂n)
′Ẑn∗(ρ̂n)]

−1Ẑn∗(ρ̂n)
′yn∗(ρ̂n), (25)

with Ẑn∗(ρ̂n) = PHn
Zn∗(ρ̂n), Zn∗(ρ̂n) = Zn−ρ̂nMnZn, yn∗(ρ̂n) = yn−ρ̂nMnyn.

By the same argument as above Ẑn∗(ρ̂n) = (Xn−ρ̂nMnXn, ̂Wnyn − ρ̂nMnWnyn)
with ̂Wnyn − ρ̂nMnWnyn = PHn

(Wnyn − ρ̂nMnWnyn).

The proof of the following theorem is given in the appendix.

Theorem 3 Suppose the setup and the assumptions of Section 2 hold, and
ρ̂n is a consistent estimator for ρ. (Thus, in particular ρ̂n may be taken to
be equal to ρ̃n or ˜̃ρn which are defined in the second step of the procedure.)
Furthermore, let ε̂n = yn∗(ρ̂n)− Zn∗(ρ̂n)δ̂F,n, and σ̂

2
ε,n = ε̂′nε̂n/n. Then

(a)
√
n(δ̂F,n − δ) D→ N(0,Φ) with

Φ = σ2ε [ plim
n→∞

n−1Ẑn∗(ρ̂n)
′Ẑn∗(ρ̂n)]

−1 (26)

= σ2ε [ plim
n→∞

n−1Ẑn∗(ρ)
′Ẑn∗(ρ)]

−1.

(b) plim
n→∞

σ̂2ε,n = σ2ε.

Remark 3: Among other things, Theorem 3 implies that δ̂F,n is consistent.
In addition, it suggests that small sample inferences concerning δ can be
based on the small sample approximation

δ̂F,n
.∼ N

[
δ, σ̂2ε,n[Ẑn∗(ρ̂n)

′Ẑn∗(ρ̂n)]
−1

]
. (27)

4 Concluding Remarks

In this paper we propose a feasible GS2LSL (generalized spatial two stage
least squares) procedure to estimate the parameters of a linear regression
model which has a spatially lagged dependent variable as well as a spatially
autoregressive disturbance term. We demonstrate that our estimator is con-
sistent and asymptotically normal, and we give its large sample distribution.
We also demonstrate that the autoregressive parameter in the disturbance
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process, ρ, is a nuisance parameter in the sense that the large sample distri-
bution of our feasible GS2LSL estimator, which is based upon a consistent
estimator of ρ, is the same as that of the GS2LSL estimator which is based
upon the true value of ρ. We note that our results are not based upon the
assumption that the disturbance terms are normally distributed.

Our feasible GS2LSL estimator is conceptually simple in the sense that
its rational is obvious. It is also computationally feasible even in large sam-
ples. This is important to note because, at present, the only alternative to
our estimator is the maximum likelihood estimator which may not be feasi-
ble in large samples unless the weighting matrices involved have simplifying
features, such as spareness, symmetry, etc.

The analysis of the feasible GS2SLS estimator given in this paper focuses
on its large sample distribution. An obvious suggestions for further research,
therefore, relates to corresponding small sample issues. In this regard, a
Monte Carlo study focusing on both our suggested GS2SLS procedure as
well as the maximum likelihood estimator should be of interest. Such a
study could also shed light on how well the large sample distribution given in
this paper approximates the actual small sample distribution under various
conditions.
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A Appendix

Proof of (9) and (12): Let ψn = n−1H ′
nWnyn. Then from (4)

ψn = n−1H ′
nWn(I − λWn)

−1(Xnβ + un). (A.1)

Because Hn, Wn and Xn are nonstochastic matrices, Assumption 5 implies
that the mean vector and variance covariance matrix of ψn are

E(ψn) = n−1H ′
nWn(I − λWn)

−1Xnβ (A.2)

E(ψn − Eψn)(ψn − Eψn)
′ = n−2H ′

nWn(I − λWn)
−1Ωun(I − λW ′

n)
−1W ′

nHn

= n−2H ′
nAnHn

where An = Wn(I − λWn)
−1Ωun(I − λW ′

n)
−1W ′

n and were Ωun is given in
(5). Assumption 3 and footnote 7 imply that the row and column sums
of An are uniformly bounded in absolute value. That is there exists some
finite constant ca such that

∑n
r=1 |ars,n| ≤ ca and

∑n
s=1 |ars,n| ≤ ca. Observe

also that in light of Assumptions 3 and 4 the elements of Hn are uniformly
bounded in absolute value by some finite constant, say ch. Now let the (i, j)-
th element of E(ψn − Eψn)(ψn − Eψn)

′ be ∆ij,n. Then

|∆ij,n| ≤ n−2

n∑
s=1

n∑
r=1

|hri,n| |ars,n| |hsj,n| (A.3)

≤ n−2ch
n∑

s=1

|hsj,n|
n∑

r=1

|ars,n|

≤ n−1c2h ca → 0.

The result in (9) follows from (A.2), (A.3), and Chebyshev’s inequality. Since
E(Wnyn) =Wn(I − λWn)

−1Xnβ the result in (9) can also be stated as

plim
n→∞

n−1H ′
nWnyn = lim

n→∞
n−1H ′

nE(Wnyn).

The result in (12) follows as a special case.

The proof of Theorem 1 is based upon a central limit theorem for trian-
gular arrays. This theorem is, e.g., given in Kelejian and Prucha (1995), and
is described here for the convenience of the reader.
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Theorem A.1 Let {vi,n, 1 ≤ i ≤ n, n ≥ 1} be a triangular array of identi-
cally distributed random variables. Assume that the random variables {vi,n, 1 ≤
i ≤ n} are (jointly) independently distributed for each n with E(vi,n) = 0 and
E(v2i,n) = σ

2 <∞. Let {aij,n, 1 ≤ i ≤ n, n ≥ 1}, j = 1, . . . , k, be triangular
arrays of real numbers that are bounded in absolute value. Further, let

vn =


v1,n
...
vn,n

 , An =


a11,n . . . a1k,n
...

...
an1,n . . . ank,n

 .
Assume that limn→∞ n

−1A′
nAn = QAA is a finite and nonsingular matrix.

Then n−1/2A′
nvn

D→ N(0, σ2QAA).

Proof of Theorem 1: Recall that Ẑn = PHn
Zn with PHn

= Hn(H
′
nHn)

−1H ′
n.

Hence clearly Ẑ ′
nẐn = Ẑ ′

nZn. In light of this we have from (13) and (15) that

δ̃n = (Ẑ ′
nẐn)

−1Ẑ ′
nyn (A.4)

= δ + (Ẑ ′
nẐn)

−1Ẑ ′
nun

= δ + (Ẑ ′
nẐn)

−1Ẑ ′
n(I − ρMn)

−1εn

= δ + [Z ′
nHn(H

′
nHn)

−1H ′
nZn]

−1Z ′
nHn(H

′
nHn)

−1H ′
n(I − ρMn)

−1εn.

Let QHH,n = n−1H ′
nHn, QHZ,n = n−1H ′

nZn, F
′
n = H ′

n(I − ρMn)
−1, then

√
n(δ̃n − δ) = [Q′

HZ,nQ
−1

HH,nQHZ,n]
−1Q′

HZ,nQ
−1

HH,nn
−1/2F ′

nεn. (A.5)

Observe that, as remarked in the text, in light of Assumptions 3, 4 and 6
the elements of Hn are bounded in absolute value. Observe further that
by Assumption 3 the row and column sums of (I − ρMn)

−1 are uniformly
bounded in absolute value. Consequently the elements of Fn are bounded
in absolute value. Since limn→∞ n

−1F ′
nFn = Φ is finite and nonsingular by

Assumption 7(c) it follows from Theorem A.1 that n−1/2F ′
nεn

D→ N(0, σ2Φ).
Given Assumptions 7(a),(b) it then follows from (A.5) that

√
n(δ̃n − δ) D→ N(0,∆) (A.6)

where

∆ = σ2[Q′
HZQ

−1

HHQHZ ]
−1Q′

HZQ
−1

HHΦQ
−1

HHQHZ [Q
′
HZQ

−1

HHQHZ ]
−1.
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The claims in Theorem 1 now follow trivially from (A.6).

In proving Theorem 2 we will use the following notation: Let A be some
matrix or vector. Then the Euclidean or l2 norm of A is ||A|| = [Tr(A′A)]1/2.
This norm is sub-multiplicative, i.e., if B is a conformable matrix, then
||AB|| ≤ ||A|| ||B||. We will utilize the following simple lemma, which is
proven here for the convenience of the reader.

Lemma A.2 Let {ξi,n : 1 ≤ i ≤ n, n ≥ 1} with ξi,n = (ξi1,n, . . . , ξim,n) be a
triangular array of 1×m random vectors. Then a sufficient condition for

n−1

n∑
i=1

||ξi,n||s = Op(1), s > 0, (A.7)

is that the s-th absolute moments E
∣∣∣ξij,n∣∣∣s are uniformly bounded, i.e., that

there exists a finite nonnegative constant cξ such that for all 1 ≤ i ≤ n,
n ≥ 1, and j = 1, . . . ,m

E
∣∣∣ξij,n∣∣∣s ≤ cξ <∞. (A.8)

Proof: First observe that a sufficient condition for (A.7) is that there exists
some finite nonnegative constant c1 such that

E

(
n−1

n∑
i=1

||ξi,n||s
)
≤ c1 (A.9)

for all n ≥ 1. To see this consider some arbitrary η > 0 and define the
constant c2 = c1/η. Then

P

(
n−1

n∑
i=1

||ξi,n||s ≥ c2
)
≤
E

(
n−1

∑n
i=1 ||ξi,n||s

)
c2

≤ c1
c2

= η,

which satisfies the requirements of the definition of Op(1). The first of the
above inequalities follows from Markov’s inequality. Of course a sufficient
condition for (A.9) is that for all 1 ≤ i ≤ n and n ≥ 1

E||ξi,n||s ≤ c1. (A.10)
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Given the definition of ||.|| we have

E||ξi,n||s = E
 m∑
j=1

ξ2ij,n

s/2

≤ ms/2
m∑
j=1

E
∣∣∣ξij,n∣∣∣s , (A.11)

where the last step is based on an inequality given, e.g., in Bierens (1981, p.
16). Hence clearly, if (A.8) holds, then we can find a constant c1 such that
(A.10) and hence (A.7) holds.

Proof of Theorem 2: We prove the theorem by demonstrating that all of
the conditions assumed by Kelejian and Prucha (1995), i.e., their Assump-
tions 1-5, are satisfied here. Theorem 2 then follows as a direct consequence
of Theorem 1 in Kelejian and Prucha (1995). Assumptions 1-3 and 5 in Kele-
jian and Prucha (1995) are readily seen to hold by comparing them with the
assumptions maintained here. We now show that Assumption 4 in Kelejian
and Prucha (1995) also holds.

Recall Zn = (Xn, yn) with yn =Wnyn, and let zi.,n = (xi1,n, . . . , xik,n, yi,n)

be the i-th row of Zn. Then via (13) in the text, ũn = yn − Znδ̃n = un +
Zn(δ − δ̃n) and so

|ui,n − ũi,n| ≤ ||zi.,n|| ||δ − δ̃n||. (A.12)

Assumption 4 in Kelejian and Prucha (1995) now holds if we can demonstrate
that (δ − δ̃n) = Op(n

−1/2), and that for some ζ > 0

n−1

n∑
i=1

||zi.,n||2+ζ = Op(1). (A.13)

The former condition was established by Theorem 1. We now establish that
(A.13) holds in particular for ζ = 1. By Lemma A.2 a sufficient condition for
this is that there exists some finite constant cz such that for all 1 ≤ i ≤ n,
n ≥ 1 and j = 1, . . . , k + 1

E |zij,n|3 ≤ cz. (A.14)

For j = 1, . . . , k we have zij,n = xij,n. Since the xij,n’s are assumed to be
uniformly bounded in absolute value (A.14) is trivially satisfied for those
zij,n’s. For j = k + 1 we have zij,n = yi,n. To complete the proof we now
establish that

E
∣∣∣yi,n∣∣∣3 ≤ cz (A.15)
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for some finite constant cz. From (1) or (4) we have

yn =Wnyn =Wn(I −λWn)
−1Xnβ+Wn(I −λWn)

−1(I − ρMn)
−1εn. (A.16)

Assumptions 3 and 4 imply that the elements of dn =Wn(I−λWn)
−1Xnβ are

bounded in absolute value and that the row and column sums ofDn =Wn(I−
λWn)

−1(I − ρMn)
−1 are bounded uniformly in absolute value — compare

footnote 7. Let cd denote the common upper bound. From (A.16) we have

yi,n = di,n +
n∑

j=1

dij,nεj,n (A.17)

and hence

y3i,n = d3i,n + 3d2i,n

n∑
j=1

dij,nεj,n + 3di,n
n∑

j=1

n∑
l=1

dij,ndil,nεj,nεl,n (A.18)

+
n∑

j=1

n∑
l=1

n∑
m=1

dij,ndil,ndim,nεj,nεl,nεm,n.

By Assumption 5 the εi,n’s are distributed identically, and for each n (jointly)
independently, with finite fourth moments. Hence there exists some finite
constant cε such that for all indices i, j, l,m, and all n ≥ 1: E |εi,n| ≤ cε,
E |εj,nεl,n| ≤ cε, E |εj,nεl,nεm,n| ≤ cε. It now follows from (A.18) and the
triangle inequality that

E
∣∣∣yi,n∣∣∣3 ≤ |di,n|3 + 3 |di,n|2

n∑
j=1

|dij,n|E |εj,n|

+3 |di,n|
n∑

j=1

n∑
l=1

|dij,n| |dil,n|E |εj,nεl,n|

+
n∑

j=1

n∑
l=1

n∑
m=1

|dij,n| |dil,n| |dim,n|E |εj,nεl,nεm,n|

≤ c3d + 3c2dcε
n∑

j=1

|dij,n|+ 3cdcε
n∑

j=1

n∑
l=1

|dij,n| |dil,n|

+cε
n∑

j=1

n∑
l=1

n∑
m=1

|dij,n| |dil,n| |dim,n|

≤ c3d(1 + 7cε),
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observing that |di,n| ≤ cd and
∑n

j=1 |dij,n| ≤ cd. This establishes (A.15),
which completes the proof.

Proof of Theorem 3: Proof of part (a). Recall that Ẑn∗(ρ̂n) = PHn
(Zn−

ρ̂nMnZn) and Ẑn∗(ρ) = PHn
(Zn − ρMnZn) with PHn

= Hn(H
′
nHn)

−1H ′
n. We

first establish the following preliminary results:

plim
n→∞

n−1Ẑn∗(ρ̂n)
′Ẑn∗(ρ̂n) = plim

n→∞
n−1Ẑn∗(ρ)

′Ẑn∗(ρ) = Q (A.19)

n−1/2Ẑn∗(ρ̂n)
′εn

D→ N(0, σ2εQ) (A.20)

plim
n→∞

(ρ̂n − ρ)n−1/2Ẑn∗(ρ̂n)
′Mnun = 0 (A.21)

where
Q = [QHZ − ρQHMZ ]

′Q−1

HH [QHZ − ρQHMZ ] (A.22)

is finite and nonsingular.
The result (A.19) follows immediately from Assumption 7 and the con-

sistency of ρ̂n observing that

n−1Ẑn∗(ρ̂n)
′Ẑn∗(ρ̂n) = n−1(Zn − ρ̂nMnZn)

′PHn
(Zn − ρ̂nMnZn) (A.23)

= (n−1Z ′
nHn − ρ̂nn−1Z ′

nM
′
nHn)

(n−1H ′
nHn)

−1(n−1H ′
nZn − ρ̂nn−1H ′

nMnZn).

To prove result (A.20) observe that

n−1/2Ẑn∗(ρ̂n)
′εn = n−1/2(Zn − ρ̂nMnZn)

′PHn
εn (A.24)

= (n−1Z ′
nHn − ρ̂nn−1Z ′

nM
′
nHn)(n

−1H ′
nHn)

−1n−1/2H ′
nεn.

In light of Assumptions 3, 4 and 6 the elements ofHn are bounded in absolute
value. Given this and Assumptions 5 and 7 we have from Theorem A.1 that

n−1/2H ′
nεn

D→ N(0, σ2εQHH). (A.25)

The result (A.20) now follows from (A.24) and (A.25), Assumption 7 and the
consistency of ρ̂n.
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To prove result (A.21) observe that

(ρ̂n − ρ)n−1/2Ẑn∗(ρ̂n)
′Mnun = (ρ̂n − ρ)n−1/2(Zn − ρ̂nMnZn)

′ (A.26)

PHn
Mnun

= (ρ̂n − ρ)(n−1Z ′
nHn − ρ̂nn−1Z ′

nM
′
nHn)

(n−1H ′
nHn)

−1n−1/2H ′
nMnun.

Note that E(n−1/2H ′
nMnun) = 0 and E(n−1H ′

nMnunu
′
nM

′
nHn) =

n−1H ′
nMnΩunM

′
nHn, where Ωun is given in (5). Assumptions 3, 4, and 6 imply

that the elements of n−1H ′
nMnΩunM

′
nHn are bounded in absolute value and

hence n−1/2H ′
nMnun = Op(1). Given this the result (A.21) now follows from

(A.26), Assumption 7 and the consistency of ρ̂n.
To prove part (a) of the theorem observe that Ẑn∗(ρ̂n)

′Ẑn∗(ρ̂n) =
Ẑn∗(ρ̂n)

′Zn∗(ρ̂n) and hence

δ̂F,n = [Ẑn∗(ρ̂n)
′Ẑn∗(ρ̂n)]

−1Ẑn∗(ρ̂n)
′yn∗(ρ̂n) (A.27)

= δ + [Ẑn∗(ρ̂n)
′Ẑn∗(ρ̂n)]

−1Ẑn∗(ρ̂n)
′un∗(ρ̂n)

where

un∗(ρ̂n) = yn∗(ρ̂n)− Zn∗(ρ̂n)δ = εn − (ρ̂n − ρ)Mnun. (A.28)

Consequently
√
n(δ̂F,n − δ) = [n−1Ẑn∗(ρ̂n)

′Ẑn∗(ρ̂n)]
−1n−1/2Ẑn∗(ρ̂n)

′εn (A.29)

−[n−1Ẑn∗(ρ̂n)
′Ẑn∗(ρ̂n)]

−1(ρ̂n − ρ)n−1/2Ẑn∗(ρ̂n)
′Mnun.

The second term on the r.h.s. of (A.29) converges to zero in probability in
light of (A.19) and (A.21). Applying (A.19) and (A.20) to the first part on

the r.h.s. of (A.29) yields
√
n(δ̂F,n − δ) D→ N(0,Φ) with Φ = σ2εQ

−1
, which

establishes part (a) of the theorem.
Proof of part (b). To prove part (b) of the theorem observe that

ε̂n = yn∗(ρ̂n)− Zn∗(ρ̂n)δ̂F,n (A.30)

= yn∗(ρ̂n)− Zn∗(ρ̂n)δ − Zn∗(ρ̂n)(δ̂F,n − δ)
= εn − (ρ̂n − ρ)Mnun − Zn∗(ρ̂n)(δ̂F,n − δ).

Consequently

σ̂2ε = n
−1ε̂′nε̂n = n−1ε′nεn +∆1

n +∆2

n +∆3

n +∆4

n +∆5

n (A.31)
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where

∆1

n = −2(δ̂F,n − δ)′[n−1Zn∗(ρ̂n)
′εn], (A.32)

∆2

n = (δ̂F,n − δ)′[n−1Zn∗(ρ̂n)
′Zn∗(ρ̂n)](δ̂F,n − δ),

∆3

n = 2(δ̂F,n − δ)′[n−1Zn∗(ρ̂n)
′Mnun](ρ̂n − ρ),

∆4

n = −2(ρ̂n − ρ)[n−1ε′nMnun],

∆5

n = (ρ̂n − ρ)2[n−1u′nM
′
nMnun].

Assumption 5 and Chebyshev’s inequality imply plim
n→∞

n−1ε′nεn = σ2ε. To

prove that plim
n→∞

σ̂2ε,n = σ2ε we now demonstrate that plim
n→∞

∆j
n = 0 for j =

1, . . . , 5. Since plim
n→∞

δ̂F,n = δ by part (a) of the theorem, and plim
n→∞

ρ̂n = ρ

by assumption, it suffices to show that each of the terms in square brackets
on the r.h.s. of (A.32) is Op(1). By definition Zn∗(ρ̂n) = [Zn − ρ̂nMnZn] =
[Xn,Wnyn]− ρ̂n[MnXn,MnWnyn] and thus it suffices to demonstrate that

n−1Z ′
nεn =

[
n−1X ′

nεn
n−1y′nW

′
nεn

]
= Op(1), (A.33)

n−1Z ′
nM

′
nεn =

[
n−1X ′

nM
′
nεn

n−1y′nW
′
nM

′
nεn

]
= Op(1),

n−1Z ′
nZn =

[
n−1X ′

nXn n−1X ′
nWnyn

n−1y′nW
′
nXn n−1y′nW

′
nWnyn

]
= Op(1),

n−1Z ′
nM

′
nMnZn =

[
n−1X ′

nM
′
nMnXn n−1X ′

nM
′
nMnWnyn

n−1y′nW
′
nM

′
nMnXn n−1y′nW

′
nM

′
nMnWnyn

]
= Op(1),

n−1Z ′
nMnZn =

[
n−1X ′

nMnXn n−1X ′
nMnWnyn

n−1y′nW
′
nMnXn n−1y′nW

′
nMnWnyn

]
= Op(1),

n−1Z ′
nun =

[
n−1X ′

nun
n−1y′nW

′
nun

]
= Op(1),

n−1Z ′
nM

′
nun =

[
n−1X ′

nM
′
nun

n−1y′nW
′
nM

′
nun

]
= Op(1),

n−1ε′nMnun = Op(1),

n−1u′nM
′
nMnun = Op(1).
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Recall from (4) that yn = (I − λWn)
−1Xnβ + (I − λWn)

−1(I − ρMn)
−1εn

and un = (I − ρMn)
−1εn. Upon substitution of those expressions for yn and

un in (A.33) we see that the respective components are composed of three
types of expressions. Those expressions are of the form, n−1An, n

−1Bnεn or
n−1ε′nCnεn, where An is a vector or matrix of nonstochastic elements, and
Bn and Cn are matrices of nonstochastic elements. Given Assumptions 3
and 4 it is readily seen that the elements of expressions of the form n−1An

are bounded in absolute value, i.e., n−1An = O(1). Furthermore it is seen
that for expressions of the form n−1Bnεn and n−1ε′nCnεn the elements of
the matrices Bn are bounded uniformly in absolute value, and the row and
column sums of the matrices Cn are bounded uniformly in absolute value
- compare footnote 7. Now let cb < ∞ denote the bound for the absolute
values of the elements of Bn, then we have

E
∣∣∣n−1Bnεn

∣∣∣ = E

∣∣∣∣∣∣∣∣∣


...

n−1
∑n

i=1 bji,nεi,n
...


∣∣∣∣∣∣∣∣∣ (A.34)

≤


...

n−1
∑n

i=1 |bji,n|E |εi,n|
...

 ≤


...

cbE |ε1,n|
...

 <∞.

Similarly, let cc < ∞ be the bound for the row and column sums of the
absolute elements of Cn, then

E
∣∣∣n−1ε′nCnεn

∣∣∣ = E

∣∣∣∣∣∣n−1

n∑
i=1

n∑
j=1

cij,nεi,nεj,n

∣∣∣∣∣∣ (A.35)

≤ n−1

n∑
i=1

n∑
j=1

|cij,n|E |εi,n| |εj,n| ≤ σ2εcc <∞

where we have also used the Cauchy-Schwartz inequality. Using Markov’s
inequality it now follows from (A.34) and (A.35) that n−1Bnεn = Op(1) and
n−1ε′nCnεn = Op(1). We have thus established that all expression in (A.33)
are Op(1), which complete the proof of part (b) of the theorem.
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