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Sevcan Yeşiltaş¶ Muhammed A. Yıldırım||

First Draft: January 2021; Current Draft: November 2022

Abstract

We develop a multi-sector-country model with input-output linkages to study the
effects of sectoral demand and supply shocks within the global trade and production
network. Using the model, we quantify output losses of advanced economies (AEs)
stemming from lack of vaccinations in the emerging markets and developing economies
(EMDEs) during Covid-19. The sectoral shocks for 65 countries and 35 sectors are based
on changes in sectoral consumption demand and labor supply as a function of infec-
tions. Endogenous lockdowns triggered by lack of vaccinations in EMDEs hurt AEs via
a shortage of intermediate inputs, higher import prices, and weak demand for their ex-
ports. We provide upper and lower bound estimates for negative output effects of global
supply chain disruptions, depending on the degree of complementarity across factors
of production. Vaccinating EMDEs is a high return investment for AEs to smooth out
the economic impact of the pandemic in their home countries.

Keywords: Covid-19; Vaccination Policy Coordination; Sectoral Shocks; Production
Networks; International Linkages; Pandemic.
JEL Codes: C67, D57, F00, F16, F17, I18, P45.

*We are privileged to have received late Emmanuel Farhi’s feedback on earlier drafts. We thank David
Baqaee, Nitya Pandalai-Nayar and Alvaro Silva for their insightful comments. We thank Yasin Şimşek for
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†Koç University.
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No Man is an Island
“No man is an island entire of itself; every man is a piece of the continent, a part
of the main; if a clod be washed away by the sea, Europe is the less, as well as if a
promontory were, as well as any manner of thy friends or of thine own were; any
man’s death diminishes me, because I am involved in mankind. And therefore
never send to know for whom the bell tolls; it tolls for thee.”

– John Donne

1 Introduction

On January 28, 2021, Taiwan sought Germany’s help in securing Covid-19 vaccines, after
Berlin asked for the island’s assistance in easing a shortage of automobile semiconductor
chips.1 Taiwan’s move was a strategic attempt to swap two vital shortages at the time: The
shortage of vaccines and the shortage of chips. If Germany wanted chips for its automobile
industry, she needed to deliver enough vaccines to limit the spread of the pandemic in
Taiwan, so that the chips could be produced and delivered to Germany.

In a year, these shortages spread to other sectors, encompassing all factors of production
leading to the highest levels of global inflation in the last four decades (di Giovanni et
al., 2022). Our paper quantifies the output losses due to such shortages stemming from
imbalances in sectoral supply and demand, conditional on higher prices. We develop a
model in order to quantify the real GDP changes in a multi-country-multi-sector world,
where countries are hit by Covid-19 related sectoral supply and demand shocks. These
sectoral shocks can only be eliminated via global vaccinations in our model. Under unequal
pace of vaccinations across the world, the sectoral shocks travel via supply chains from
unvaccinated to vaccinated countries, allowing us to quantify the associated real output
losses. We estimate the global and localized output gains from a counterfactual—more
equal—vaccine distribution.2

Covid-19 is a “once in a life-time” shock for the global economy. It constitutes a se-
ries of disaggregated demand and supply shocks, affecting different countries at different
times. While all countries are impacted by the virus, the effects are not synchronized across
borders, unlike the 2008-09 Global Financial Crisis. The asynchronous effects of Covid-19
are due to the repeated nature of the health shock from different variants, and the unco-

1https://www.reuters.com/article/us-health-coronavirus-taiwan-idINKBN29X11P.
2As of August 2022, a third of the world is still not vaccinated, see, https://ourworldindata.org/covid-

vaccinations.
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ordinated health and economic policy responses across countries. The uneven vaccination
policies combined with different degrees of aggregate demand-stimulus in different coun-
tries created sectoral demand and supply imbalances, known as global supply chain bottle-
necks.3

The real GDP losses of the vaccinated advanced economies (AEs), relative to their pre-
pandemic levels, are estimated to be in the range of 0.1 to 1 percent. This range depends not
only on the heterogeneity of the vaccine roll-out, but also on the elasticity of substitution
between traded and domestic production inputs and consumption goods. In a scenario that
mimics real life vaccine roll-out and uses short-run elasticities estimated in the literature,
we show that vaccinated AEs lose around 0.6 percent of their pre-pandemic real GDP. This
real GDP loss implies a rate of return of 260 percent for AEs from investing in global ini-
tiative COVAX that was set up to deliver vaccines to the emerging markets and developing
economies (EMDEs).4

Our framework is based on Baqaee and Farhi (2022) which models disaggregated sec-
toral demand and supply shocks propagating through supply chains. As in Baqaee and
Farhi (2022), these sectoral shocks create distinct cyclical conditions in different sectors.
Our modeling contribution is to carry their structure to an open economy framework to
capture such imbalances through global supply chains. The key contribution of our paper
is empirical. Our multi-country model with full global input-output linkages allows us to
quantify the losses for vaccinated countries associated with lack of vaccinations in other
countries. Sectoral shocks associated with zero-Covid strategies of unvaccinated trading
partners act as ‘new’ sectoral shocks in vaccinated countries. This is reminiscent to Guer-
rieri et al. (2022), where supply shock in one sector shows up as demand shock in another
sector.

We measure the negative shocks to labor supply in a given sector-country pair with
infections in that sector and lockdowns in that country. We assume labor is sector specific
and not mobile across sectors.5 We allow for changes in labor demand as a result of changes

3At the time of our initial draft in January 2021, such disruptions were deemed to be temporary and pre-
dicted to be smoothed out before mid-2021 upon arrival of vaccines by the end of 2020. See, for example IMF
World Economic Outlook (IMF, 2020). Our initial draft as well as the current draft delivers endogenous per-
sistence of supply chain disruptions as long as the pandemic-related “sectoral” shocks keep hitting different
country-industry pairs at different times.

4We arrived at the 260 percent estimate by dividing our calculated losses of 460 billion USD to 190 billion
USD. The latter value is a rough estimate to manufacture enough vaccines to inoculate the world population.
This number is projected from COVAX’s estimated cost of 38 billion USD in early 2021 to manufacture enough
doses of vaccines to vaccinate the vulnerable population.

5As shown by Fernald and Li (2022), labor re-allocation across sectors did not happen in the U.S. during
the pandemic.
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in consumer demand, say from services to goods. Absent any nominal rigidity, sectoral
wages adjust to establish equilibrium in a given sector, where immobile labor keeps labor
market segmented across sectors.

Our two-period model is calibrated as follows. The first period is the pre-Covid-19 equi-
librium and the second period is the pandemic, where we feed the sectoral shocks into the
model. The length of the second period in the calibration determines when the economy
goes back to pre-Covid-19 equilibrium and thus the persistence of the supply chain bot-
tlenecks. To capture such granularity and heterogeneity across countries, we divide the
second period into 365 days and solve the model daily. We feed in daily sectoral shocks
as a function of daily disease dynamics, which are estimated based on the epidemiological
model with starting parameters at the onset of the vaccine discovery. Our model features
endogenous lockdowns. Labor supply in all non-essential sectors declines endogenously
when the number of sick people exceeds a level that would fill a country’s ICU bed ca-
pacity. We calibrate this threshold from the data. Lack of vaccinations in EMDEs make
lockdowns more likely. If a country is fully vaccinated by a given day, we stop feeding-in
the sectoral shocks and return to the equilibrium before Covid-19. Thus, the end of the
second period is dictated by the vaccination scenarios and endogenous lockdowns in our
calibrations.

Our novel identification of sector-level shocks depends on measuring sectoral infections
using an epidemiological framework that allows us to convert country-level infections into
sector-level. For this conversion, we start with pre-pandemic equilibrium values of employ-
ment in a given sector-country pair. We then shock each pair with infection-based demand
and supply shocks to quantify the deviation from the equilibrium employment. The labor
supply shock depends on the contact intensity of the sector, availability of remote work
and lockdowns. In order to capture the compositional change in consumption from goods
to services, we model a sectoral demand shifter. To calibrate the sectoral shifts, we use data
on sectoral personal consumption expenditures available for the U.S. economy. Using this
data, we fit the sectoral changes in consumption as a function of sectoral infections for the
U.S. economy. We then project them to the remaining 64 countries using parameters from
this exercise and country specific sectoral infections.

We use pre-pandemic global network data as the starting point of our calibration, be-
fore the sectoral shocks hit. The data comes from the OECD’s latest available Inter-Country
Input-Output (ICIO) tables from 2018 as shown in Figure 1a. Out of 65 countries, 39 coun-
tries are classified as AEs who have access to vaccines as early as January 2021. The remain-
ing countries (including a residual entity called the “Rest of the World”) belong to the set of
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EMDEs who are assumed to be unvaccinated at the onset. These international linkages are
comprised of sectoral links. Sectors use inputs from a variety of other sectors as shown in
Figure 1b.6 Once the sectoral shocks hit, each sector’s expenditure on other sectors change.
The model endogenously solves for these network changes via Domar weights and factor
shares. As of the time of this writing, OECD’s global network data is not updated to verify
how the global trade network changed during the pandemic. There is anecdotal evidence
on shipping delays and inventory adjustments during 2021. However, this is far from being
sufficient to calculate endogenous changes in global network’s expenditure shares, both at
intensive and extensive margins. The evidence is thus insufficient to determine whether
the firms changed their suppliers and/or how much they buy/sell to/from certain suppli-
ers. Therefore, we provide a range of estimates based on different elasticities of substitution
among the global network.

In the baseline calibration, we use low elasticities as estimated by Boehm et al. (2019,
forthcoming) to capture the “just-in-time” nature of the global value chains. For robust-
ness, we use higher elasticities as estimated by Caliendo and Parro (2015) that capture the
substitution in the medium run. When the countries cannot easily substitute away their im-
ported intermediate inputs from one country to another country in the short-run, the real
GDP losses increase, more so for EMDEs. The effect of the degree of integration into trade
and production network on the output losses is not trivial because there is a non-linear
interaction between openness and elasticises of substitution. An open economy might be
more integrated to global production network and hence has higher exposure to shocks.
But an open economy might also have many suppliers. Hence, an open economy can also
smooth the shocks she is exposed to if she can switch easily between the suppliers. There-
fore, conditional on being hit by the same shock, an open economy will do better than a less
open economy as the latter operates with few suppliers. This is why, under a low degree of
substitution, the real GDP losses increase more for unvaccinated EMDEs who operate with
less diversified supply chains (less open, few suppliers), a double whammy effect. Con-
sistently, vaccinated AEs bear a higher share of the total world output loss under a high
degree of substitution because losses of EMDEs are relatively lower than that of AEs.

6According to OECD (2020), the total value of world trade was 18 trillion USD. Within this total, interme-
diate products constituted 10.6 trillion USD, corresponding to 59 percent of world trade.
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Figure 1: Inter-country Inter-industry Trade Linkages

(a) International Trade Linkages
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(b) Inter-industry Trade Linkages
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NOTES: Panel (a) shows a summary of international linkages. Each node corresponds to a country, with the
node sizes proportional to the GDP of the country. The node color represents the openness of the country
where openness is defined as the ratio of imports and exports to GDP. Darker shades represent more
openness to trade (See Table C.1). Economies that have access to vaccines are denoted by black borders. The
line between nodes gets thicker as bilateral trade increases. In total, there are 65 nodes and 168 lines shown
on the network. Panel (b) shows aggregated inter-industry linkages. Each node corresponds to an industry.
The node size represents the total intermediate usage of the industry. The smallest node corresponds to 184
billion USD for Mining Support industry and the largest node corresponds to 5.9 trillion USD in
Construction industry. The node color represents the share of imported inputs in the industry. The lightest
shade represents 5.9% in Real Estate industry and the darkest shade represents 37% in the Coke & Refined
Petroleum industry. The thickness of the directed lines from supply to target industry show the strength of
the trade based on: (i) the intermediate input from the supply industry constitutes at least 10 percent of the
inputs of target industry; or (ii) the supply industry is among the top two suppliers of the target industry. In
total, there are 35 nodes and 72 lines shown on the network. Source: ICIO Tables OECD (2020).

The remainder of this paper is organized as follows. In Section 2, we present the model.
In Section 3, we describe the data and the parameters for calibration. In Section 4, we report
results of our quantitative analysis including robustness. Section 5 concludes.

2 The Model

Our model is set up to quantify real GDP changes in a multi-country-multi-sector world,
where countries are hit by sectoral supply and demand shocks. We refrain from aggregate
shocks and nominal rigidities on purpose. We capture the compositional changes in con-
sumption demand together with labor supply shocks, in the absence of aggregate demand
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and/or productivity shocks. Prices and wages adjust fully and endogenously in response to
sectoral shocks. The pandemic-related sectoral shocks can only be eliminated via vaccina-
tions in our model. Under inequitable pace of vaccinations across the world, these sectoral
shocks travel via supply chains from unvaccinated to vaccinated countries, allowing us to
quantify the associated real output losses.

Our modeling of dis-aggregated sectoral demand and supply shocks propagating through
supply chains and creating distinct cyclical conditions in different sectors is similar to Baqaee
and Farhi (2022). Our contribution is carrying their structure to open economy framework
to capture such imbalances through global supply chains. Our model shares the open econ-
omy focus with trade-network model of Baqaee and Farhi (2019), where the authors focus
on aggregate effects of trade cost shocks.7 Our multi-country model with inter-sectoral link-
ages also allows us to quantify the losses of rich countries associated with the zero-Covid
strategy of the Asian countries. Severe lockdowns in trading partners act as additional
sectoral supply shocks in vaccinated countries.

We solve the analytical model by small perturbations/shocks that deliver an exact hat-
algebra solution instead of solving the model by log-linearization around the steady state,
similar to Baqaee and Farhi (2019). By integrating the response to many successive small
shocks, the model can address relatively large shocks as well. Our computational imple-
mentation is fast and does not require extreme computational resources as in the case of
trade-network models focusing on exact solutions. Compared to Baqaee and Farhi (2019),
our solution is also faster, although the shocks we analyze are very different in nature.8

Our two period model has both an intratemporal and intertemporal dimension. Within
a given period, the intratemporal trade matters. Across the two periods, the consump-
tion adjusts to demand and supply shocks. Because there is no aggregate demand shock
(or discount factor shock), the intertemporal side becomes irrelevant in terms of shifting
consumption between two periods. The first period is the pre-pandemic year of 2019 and
the second period is the pandemic period (2020-2021), where all sectoral shocks take place.
Hence, all shocks are unanticipated and render consumers as hand-to-mouth agents con-
suming their current income in each period.

7We abstain from that as there were no significant tariff changes by sector during the last two years. De-
facto trade barriers observed were an endogenous outcome of pandemic related shocks and policies such as
lockdowns.

8Our difference from Baqaee and Farhi (2019) is that we hard code all different types of Allen-Uzawa
elasticities in our computations, reducing the time needed for full solution in each perturbation.
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2.1 Environment

Notation. Each country produces and consumes final and intermediate goods and ser-
vices. These goods and services are produced with factors present in each country, and
traded with each other. We denote the set of countries with C and we index countries with
c, v or m. The N denotes the set of industries or sectors (we use these terms interchange-
ably) which are indexed by i, j or k. A sector i in country c is denoted by ic and we denote
set of all such pairs with CN . Production in ic can use inputs from sector j in country m,
i.e., jm. For example automotive industry, i, in Germany, c, imports steel, j, from country
m, Turkey. For convenience, we also introduce the consumption as sector 0 /∈ N and con-
sumption in country c is indexed by 0c. The set of factors is represented by F and indexed
by f or g. Because we work with more than 2 countries, more than 2 sectors, and more
than 2 factors, this notation is essential. We denote the set of factors present and owned by
country c with Fc.

Prices, outputs and expenditures. Suppose the output of industry i in country c is de-
noted with yic and its price with pic. The country-sector pair ic uses inputs from other
sectors from different countries in addition to labor. We show the inputs used from sector j
in country m by sector i in country c with xic

jm and the price of this input is pjm.9

Recall that i = 0 denotes the consumption of households. We assume y0c = Cc is the
total consumption in country c and the price index of consumption is denoted by p0c. Let’s
denote the total nominal expenditure of country c with Ec = p0cy0c = p0cCc. The total
world expenditure is E ≡ ∑c Ec. We assume that the factors are country and sector specific.

For any factor f in country c, we denote the corresponding labor with L f c and its wage
with w f c. We refer to the specific factor used in country-sector pair ic with fic.10

Input-Output Matrix. We use expenditure shares as the building blocks of both consump-
tion and the production sides of the economy given the network linkages. These shares
constitute the input-output matrix. The input share of sector j of country m in sector i in

9We solve the changes in the log prices and quantities to implement hat algebra used in the trade literature
(Costinot and Rodrı́guez-Clare, 2014; Caliendo and Parro, 2015). We assume that the trade costs, specifically
tariffs, do not change during the pandemic. The increase in shipping costs enters into the model because
transportation sector is represented as a separate entry in the Input-Output matrix. In the model, we initialize
the price of each good to be 1 in each country. Hence, when we solve for log-changes, implying price changes
for a given variety is same in each country.

10We can extend our notation that we used for sectors above to factors with xic
f c ≡ L f c and p f c ≡ w f c. Since

there is a single factor (labor) , we also use Lic to denote the labor used in production of country-sector pair ic.
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country c is defined by:

Ωic
jm ≡

pjmxic
jm

picyic
. (1)

We express the expenditure share of industry jm in final good consumption as:

Ω0c
jm ≡

pjmx0c
jm

Ec
, (2)

where x0c
jm denotes the amount of industry jm’s output consumed by the households in

country c. Finally, the value-added (or factor share) in country-sector pair ic is defined as:

αic ≡ Ωic
fic
≡

w fic L fic

picyic
= 1− ∑

jm∈CN
Ωic

jm. (3)

Nominal Expenditure and Real GDP. In our open economy model, we assume that the
trade is balanced. With this assumption, nominal GDP and GNE are equal to each other.
Hence, we can write the expenditure of country c in terms of the total factor income of the
country:

Ec = ∑
f∈Fc

w f L f . (4)

The real GDP of country c is then denoted by GDPc and calculated as:

GDPc =
Ec

p0c
, (5)

which is the total expenditure divided by the consumption price index.

2.2 Production

Figure 2 summarizes our production side. Production in each sector i in country c is
achieved by combining sector-specific labor and a bundle of intermediate inputs. The as-
sumption of sector-specific labor implies that labor is not mobile between sectors but can
fluctuate within a sector over time. The empirical evidence during the pandemic supports
the presence of within sector reallocation and the absence of between sector reallocation
as shown by Fernald and Li (2022). The intermediate bundle for a sector-country pair ic
consists of all the inputs from different sector bundles. These sector bundles, in turn, are
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Figure 2: Production Structure
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NOTES: This figure presents the inputs used in the production for sector i in country c. All the aggregations
are done with functions exhibiting constant elasticity of substitution, albeit with different elasticities. Sector
varieties, sector bundles, intermediate bundles and labor are all country-sector specific. We show the
notation that we use for each input in the last line of each box..

formed by different sector-country varieties.

Let’s explain this production structure with an example from German automotive man-
ufacturing. German automobiles are produced by German workers and an intermediate
bundle. This intermediate bundle consists of sector bundles such as steel, plastic, textiles,
leather, and glass. These sector bundles are aggregates of sector varieties from different
countries. The steel bundle for German automotive manufacturing, for instance, is formed
by steel from Turkey, India, China, the U.S., etc. We assume that the production follows this
three-layer nested CES structure. Next, we formalize each of these steps shown in Figure 2
and highlight the key parameters.

The production in country-sector pair ic is achieved by combining the sector specific
labor and the intermediate bundle. We denote the price of this bundle with pic

M and its
quantity with Mic. We assume that in the production of the final good, the production
technology is constant elasticity of substitution (CES) with elasticity φ. The normalized
production function can be written as:

yic =
Aic

Āic

αic

(
Lic

L̄ic

) 1−φ
φ

+ (1− αic)

(
Mic

M̄ic

) 1−φ
φ


φ

1−φ

.

where the values with a bar on top denote the pre-pandemic 2019 equilibrium normaliza-

10



tion and Aic is the productivity.11 The corresponding price index is:

pic =

[
αic

(
w fic

)1−φ
+ (1− αic)

(
pic

M

)1−φ
] 1

1−φ

.

We assume 0 ≤ φ < 1, i.e., labor and intermediate inputs are complements. As we show
in the calibration section, this assumption is supported by the estimates we use from the
empirical literature.

The price of the intermediate bundle, pic
M, can be written as a function of the price of

the sector bundle of j to be used in industry ic, which we denote by pic
j . Assuming a CES

aggregator with elasticity of substitution of ε, we can write the price for the intermediate
bundle as:

pic
M =

∑
j∈N

Ωsic
j

1− αic

(
pic

j

)1−ε

 1
1−ε

,

with
Ωsic

j ≡ ∑
m∈C

Ωic
jm.

Ωsic
j captures the share of sector j in production of ic and is calculated by summing over

the country varieties. We assume that 0 ≤ ε < 1, i.e., all sectoral inputs for the intermediate
bundle are complements. This assumption says that the plastic and steel cannot be easily
substituted in the auto production, which is backed by the estimates from the empirical
literature as we show in our calibration section.

Sector bundles are aggregates of varieties coming from different countries, with a price
index:

pic
j =

∑
m∈C

Ωic
jm

Ωsic
j

(
pjm

)1−ξ j

 1
1−ξ j

using a CES aggregator with a sector-specific elasticity of substitution ξ j. These sector spe-
cific elasticities are calculated to create substitutions between varieties coming from differ-
ent countries in the long term (Costinot and Rodrı́guez-Clare, 2014; Caliendo and Parro,
2015) such that ξ j ≥ 1. But in the short term, we assume that it is hard to immediately sub-
stitute varieties from different countries to capture what happened during the pandemic.
The case of ξ j ≤ 1 is estimated by Boehm et al. (2019) under earthquake shocks and captures
the real-life supply chain bottlenecks associated with the pandemic. Our empirical exercise

11Here, for the model’s completeness, we include the sectoral productivity term. But in our calculations,
we do not introduce any productivity shocks.
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presents results for the cases of low and high substitution, for the range of ξ j ≤ 1 & ξ j ≥ 1.

2.3 Consumption

There is a representative agent in each country solving a two-period consumption optimiza-
tion problem. The first period corresponds to the pre-pandemic stage and the second period
corresponds to the pandemic stage. In each country c, there is a continuum of households.
These households collectively own all the primary factors and their source of income is the
wage from the factors. The pandemic comes as a total surprise and effectively makes all our
households live as hand-to-mouth households consuming what they earn in each period.
Hence, in each period, the national expenditure is equal to: Ec,t = ∑ f∈Fc L f ,tw f ,t. We nor-
malize the world expenditure to 1 in both periods. Therefore, we drop the time-subscript
below because we focus on the changes in the production and consumption patterns during
the pandemic period.

Next, we turn to the within-period problem. Similar to our multi-layer nested produc-
tion structure, we also assume a nested structure in consumption as depicted in Figure 3.
We assume that a representative consumer in country c enjoy goods and services at the

Figure 3: Consumption Structure
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NOTES: This figure presents the consumption choice in country c. All the aggregations are done with
functions exhibiting constant elasticity of substitution albeit with different elasticities. The consumption
bundles are country specific.

sectoral consumption bundle levels. This amounts to optimizing their consumption to:

Cc =

∑
j∈N

Ωs0c
j

(
x0c

j

) σ−1
σ

 σ
σ−1

,
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where x0c
j denotes the (normalized) sectoral consumption and

Ωs0c
j ≡ ∑

m∈C
Ω0c

jm

denotes the share of industry j in the final consumption of consumers in country c. We
assume σ to be equal to 1 to mimic a Cobb-Douglas preference structure. Similar to the pro-
duction side, consumption bundles that are comprised of varieties from different countries
are optimized by consumers among different country varieties with:

x0c
j =

∑
m∈C

Ω0c
jm

Ω0c
j

(
x0c

jm

) ξ′j−1

ξ′j


ξ′j

ξ′j−1

.

The corresponding consumption price index can be written as:

p0c =

∑
j∈N

Ωs0c
j

(
p0c

j

)1−σ

 1
1−σ

, (6)

where p0c
j denotes the price of the consumption bundle j in country c, σ = 1 corresponds

to the Cobb-Douglas case with constant expenditure shares, where the price index, in the
limit, becomes:

log p0c = ∑
j∈N

Ωs0c
j log p0c

j .

The price equation for consumption bundle i of country c is:

p0c
j =

∑
m∈C

Ω0c
jm

Ω0c
j

(
pjm

)1−ξ ′j

 1
1−ξ′j

.

As in the production side, ξ ′i is the trade elasticity (consumption side), usually taken from
Caliendo and Parro (2015) as greater than or equal to one. In our baseline analysis, we use
the same ξ ′i elasticity as sector bundles in the production side consistent with Boehm et
al. (forthcoming), but we also study the cases where the elasticities are markedly different
from each other.
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2.4 Equilibrium and Perturbation

Given the parameters, a general equilibrium consists of good prices, factor prices, outputs,
intermediate inputs, factor inputs, and consumption levels such that producers minimize
their costs, households maximize their utilities, and good and factor markets clear. The
equilibrium is stable in the absence of any shocks. We perturb this equilibrium with sectoral
demand and supply shocks. At each point in time, we assume that:

• Good markets clear such that for any industry ic:

yic = ∑
m∈C

∑
j∈N

xjm
ic + ∑

m∈C
x0m

ic . (7)

The first term corresponds to the intermediate input usage of ic in all country-industry
pairs, indexed by jm, and the second term corresponds to the final good usage of ic in
all countries, indexed by m.

• Labor markets clear: all “potential” sector-specific workers are employed.

Initially, we set all prices to 1 and all output of country-sector pairs to their respective
share in the total nominal world expenditure. The model is calibrated in such a way that this
is the equilibrium. After perturbing with shocks, the prices and outputs will re-equilibriate.
Next, we explain how we model pandemic related shocks.

2.5 Modeling Pandemic Related Shocks

2.5.1 Nature of the Shocks

Covid-19 pandemic affected supply and demand. Importantly, both supply and demand
shocks are sector-specific. To model pandemic related sectoral shocks, we start with shocks
to “potential” labor supply. People may not necessarily die, but they still cannot go to work
either because they are sick, or taking care of sick, or their workplace is not safe, or their
employers operate under other restrictions. All these factors will have negative effects on
labor supply, making the economy to operate inside the production possibilities frontier.

There is extensive survey-based evidence from the U.S. that Covid-19 is a key reason for
not going to work, during 2021, as shown in Figure 4a below. Correlation between Covid-
19 cases and the number of people not going to work due to self-reported pandemic related
reasons is 84 percent from July 2020 to July 2022 based on weekly data. Figure 4b shows
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that labor supply–linked to health–in the U.S. has not recovered to pre-pandemic levels.
As shown, the average number of people absent from work due to illness is significantly
higher during the pandemic compared to pre-pandemic period.

Figure 4: The Effects of Covid-19 on U.S. Labor Supply

(a) Not working due to Covid-19
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(b) Not working due to own illness over time
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NOTES: (a) This panel plots the co-movement of the weekly number of people who reported that they cannot
work due to “pandemic-related reasons” with the weekly number of Covid-19 cases. See Section A.1.1 for
the details on the construction of the series obtained from the U.S. Census Bureau Household Pulse Survey.
(b) This panel plots the number of employed people in the U.S. labor market who are absent in a given
month. The sample period is from January 2012 to July 2022. The U.S. Bureau of Labor Statistics conducts
Current Population Survey which provides a monthly measure that tracks the number of employed people
who are absent from work due to own illness, injury or medical problems. See Figure A.3 for details in
Appendix A.1.2.

Figure 5 illustrates how our model incorporates such labor supply shocks. We denote
the equilibrium labor with L f . As the pandemic progresses, sectoral labor supply initially
declines due to sickness, shown with L f with blue line. During lockdowns, for a non-
essential sector, only people in teleworkable jobs can work, so that labor supply is capped
with the dotted blue line. During the recovery phase, depending on vaccinations, sectoral
demand shifts, and the share of teleworkable jobs, labor can go up and down but never
reaches the pre-pandemic full employment level, because the initial shock to labor supply
never eases due to the absence of global vaccinations. Notice that the sectoral heterogeneity
and segmented labor markets are important here. There can be sectors where labor supply
can go back to the pre-pandemic level. However, as long as there are other sectors where
this does not happen, global labor supply will not recover. This is consistent with the co-
existence of a labor force participation rate that is below the pre-pandemic level and tight
labor markets in many countries.
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On the consumption side, it is well known that sectoral consumption shifted from ser-
vices to goods in the early phase of the pandemic and started shifting back slowly during
the recovery phase (e.g see Figure C.5a for the U.S.). di Giovanni et al. (2022) documented
different timing of such compositional changes in consumption across several countries.
Chetty et al. (2020) emphasize that the fear of contacting the disease as the main source of
the decline in spending at the initial stages of the pandemic in contact-intensive sectors.
Similarly, using cell phone data to track movements of individuals, Goolsbee and Syverson
(2021) show that even though the consumer traffic fell by 60%, only 7% could be explained
by the shutdown restrictions. The authors suggest that the changes in consumer behavior
are most likely driven by the fear of infection. We model this as a sectoral demand shifter.

Figure 5: Labor during Pandemic

L f = 1

Pre-Covid-19 Pandemic

Teleworkable
Share

L f

Lockdown

Vaccination

To connect the modeling of pandemic related sectoral consumption demand and labor
supply shocks to infections, we use an epidemiological framework. Figure 6 summarizes
how we combine our model with an epidemiological framework. The bottom half of the
figure describes the supply side and the top half depicts the demand side. On the sup-
ply side, the transmission dynamics of the virus would differ depending on whether the
workers are on-site or at a remote location like home. Among the professions that need
to be carried out on the work site, we assume that the viral transmission depends on the
physical proximity between the workers or between the workers and the customers. An
on-site worker could be exposed to infection either at work or outside work. Intermediate
inputs, including the imported ones, directly affect supply. Production of domestic inputs
are affected from domestic labor supply shocks linked to infections. Imported inputs are
affected from the evolution of the pandemic in the other countries. On the demand side,
both domestic and foreign demand for final and intermediate goods change with consumer
preferences depending on the infection levels at home and foreign countries.
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Figure 6: Modelling the effects of the Covid-19 shock in a multi-sector open economy
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2.5.2 The Epidemiological SIR Model

We use the workhorse framework in many epidemiological studies, the Susceptible-Infected-
Recovered (SIR) model.12 Let’s take a population of size N. At any given time t, we can
split the population into three classes of people: Susceptible (St), Infected (It) and Recov-
ered (Rt). We provide the model for a single country, suppressing the country index for
the ease of the demonstration.13 The susceptible group does not yet have immunity to the
disease, and the individuals in this group have the possibility of getting infected. The re-
covered group, on the other hand, consists of individuals who are immune to the disease.
Immunity can be developed either because the individual goes through the infection or
because they get vaccinated. The SIR model builds on the simple principle that a fraction
of the infected individuals in the population, It−1

N , can transmit the disease to susceptible
ones St−1 with an (structural) infection rate of β. Therefore, the number of newly infected
individuals in the current period is βSt−1

It−1
N . The newly infected individuals should be de-

ducted from the pool of susceptible individuals in the current period. Meanwhile, in each
period, a fraction γ of the infected people recover from the disease, which in turn reduces
the number of actively infected individuals. To track any changes in the number of indi-
viduals in the above-mentioned three groups, the following set of difference equations are
used:

∆St = −βSt−1
It−1

N
(8)

12See for example Allen (2017) among others.
13We do not model cross-country infections due to travel as a source of prolonged pandemics.
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∆Rt = γIt−1 (9)

∆It = βSt−1
It−1

N
− γIt−1. (10)

The law of motion for the number of infected individuals shows the trajectory of the pan-
demic at the aggregate level. Note that, ∆St + ∆Rt + ∆It = 0 holds at any given time,
assuming that the size of the population remains constant.14

We modify the canonical SIR model to allow for sectoral heterogeneity in terms of the
size and working conditions that can lead to distinct infection trajectories in each sector.
The transmission of the virus accelerates with close physical proximity. Hence, employees
working in the industries with higher physical proximity are infected with a higher proba-
bility. We assume that the economy is composed of K sectors. We denote the industries by
subscript i = 1, . . . , K. Each industry has Li workers (since factors are industry specific, we
can index them with industry index) and there is also the non-working population which
we denote by NNW . Each industry has two types of workers: (i) employees who can per-
form their jobs remotely (i.e., teleworkable) and (ii) employees who need to be on-site to
fulfill their tasks. In each industry, we denote the number of employees in the first group
with TWi and the second group with Ni. Hence:

Li = TWi + Ni.

For the disease propagation, we lump the non-working population and the employees in
the teleworkable jobs together, and call them the “at-home” group. We denote the at-home
group with index i = 0. The total number of individuals in this group is, therefore:

N0 = NNW +
K

∑
i=1

TWi.

Suppose that the infection rate in the at-home group is β0. In order to account for hetero-
geneous physical proximities across industries, we compute the rate of infection for each
industry i, denoted by βi, as:

βi = β0Proxi for i = 1, . . . , K (11)

14A small fraction of the resolved cases includes deaths due to disease, reducing the population size. In
our setting, we suppress the fraction of death cases in the recovery rate parameter γ, assuming that the pop-
ulation remains fixed for the SIR model to remain tractable. Therefore, throughout the text, we use the terms
”resolution rate” and the ”recovery rate” interchangeably for the parameter γ. See also Atkeson (2020), Ben-
david and Bhattacharya (2020), Dewatripont et al. (2020), Fauci et al. (2020), Li et al. (2020), and Vogel (2020)
on different estimates of recovery and death rates.
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where Proxi is the proximity index for industry i that captures the contact intensive nature
of the industry.

Here, Si,t, Ii,t and Ri,t denote the number of susceptible, infected and recovered individ-
uals, respectively, and Ni = Si,t + Ii,t + Ri,t denotes the total number of on-site individuals
in industry i and the at-home group (i = 0). Susceptible individuals in the at-home group
can get infected from the infected individuals in the entire society:

∆S0,t = −β0S0,t−1
It−1

N
,

where It = ∑K
i=1 Ii,t + I0,t captures the total number of infected individuals. An on-site

worker in sector i, however, could be exposed to infection either at work, at the rate of
βiSi,t−1

Ii,t−1
Ni

, or outside work, that involves all the remaining activities –including family

life, shopping and commuting– at the rate β0Si,t−1
It−1
N . Hence, the number of susceptible

individuals among the on-site workers in industry i changes as:

∆Si,t = −βiSi,t−1
Ii,t−1

Ni
− β0Si,t−1

It−1

N
.

The recovery rate is the same for all types of infected individuals:

∆Ri,t = γIi,t−1.

The number of infected individuals changes as the susceptible individuals get infected and
some infected individuals recover from the disease:

∆Ii,t = −
(
∆Ri,t + ∆Si,t

)
.

With industrial heterogeneity, we match the employment size weighted average βi’s of
the infected individuals to observed overall β in a country. For an on-site worker in industry
i, the implied β parameter can be approximated by (β0 + βi). For a non-working individual,
this parameter is only β0. Using equation (11), we impose:

β0
N0

N
+

K

∑
i=1

(β0 + βi)
Ni

N
= β0 + β0

K

∑
i=1

Proxi
Ni

N
= β
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Hence, we solve for β0 in terms of β, industry size, and the proximity levels as:

β0 = β

1 +
K

∑
i=1

ProxiNi

N

−1

. (12)

Once the parameters are computed, the evolution of infections in the extended multi-sector
SIR model can be written as:

∆It = FIt−1 − γ IK It−1,

where It = (I0,t, I1,t, . . . , Ii,t, . . . , IK,t)
′ and IK is the K dimensional identity matrix. F matrix

is defined as:

F =



β0
S0,t−1

N β0
S0,t−1

N . . . . . . β0
S0,t−1

N β0
S0,t−1

N

β0
S1,t−1

N β0
S1,t−1

N + β1
S1,t−1

N1
β0

S1,t−1
N . . . . . . β0

S1,t−1
N

β0
S2,t−1

N β0
S2,t−1

N β0
S2,t−1

N + β2
S2,t−1

N2
β0

S2,t−1
N . . . β0

S2,t−1
N

...
... . . . ...

...
... . . . ...

β0
SK,t−1

N β0
SK,t−1

N . . . . . . β0
SK,t−1

N + βK
SK,t−1

NK


Using these system matrices, R0 can be computed using the largest eigenvalue of the

matrix F−1ν. Given the initial size of the groups based on employment numbers, the eigen-
value would approximately correspond to the normalization present in equation (12).

2.5.3 Sectoral Infections and Production

Sectors are heterogeneous in terms of the share of teleworkable jobs and physical proximity
requirements, which results in differential sector specific labor supply shocks during the
pandemic. Once the virus hits and spreads among the workers, the total number of workers
in a given country-sector pair ic changes to Lic,t as a function of the infections and can be
written as:

Lic,t = (Nic − Iic,t) + TWic

(
1− I0c,t

N0c

)
= Lic − Iic,t − TWic

I0c,t

N0c

where Nic is the number of workers in the on-site group in industry-country pair ic, Iic,t is
the number of infected workers in the on-site group, and TWic is the number of workers in
the at-home group (i.e., those who can work remotely) in industry-country pair ic. The ratio
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I0c,t/N0c captures the fraction of infected individuals in the at-home group, which includes
the non-working population as well as all workers in the at-home group (i.e., teleworkers)
in country c.

The sector specific shock for industry ic is a function of the number of infected workers
in the on-site group, the share of teleworkable jobs in sector i and lockdowns in country c.
Let us denote the vector of all infections in the country with Ic,t.15 The sectoral labor shock
can be expressed as:

∆ic(Ic,t) =


Lic−Iic,t−TWic

I0c,t
N0c

Lic
if c is not under lockdown or i is essential,

TWic−TWic
I0c,t
N0c

Lic
if c is under lockdown and i is non-essential.

The lockdown decision is endogenous and triggered when the total active infected cases
passes a threshold, i.e., ∑i Iic,t ≤ ρ. The parameter ρ is calibrated to the ratio of infected
people to intensive care units (ICUs). Note that individuals employed in the essential sec-
tors continue to work even under lockdown. The production in the given country-sector
pair ic changes as a response to the labor supply shock specific to that pair. It can be ex-
pressed as follows:

yic,t =
Aic

Āic

αic

(
∆ic(Ic,t)Lic

L̄ic

) 1−φ
φ

+ (1− αic)

(
Mic

M̄ic

) 1−φ
φ


φ

1−φ

. (13)

2.5.4 Sectoral Infections and Consumption

As we relate the sectoral demand changes to infection levels, we obtain sectoral demand
shocks for each country. We show the details of our calculations in Section 3.2. In our
setting, we modify the pricing of the sectoral consumption bundle described in equation (6)
to allow for a sector specific demand shifter, denoted as δ0c

j . The demand shifter evolves
over time depending on the trajectory of the pandemic as a function of the country specific
active infected cases, that is, δ0c

j = δ0c
j (Ic,t). The resulting sector specific pricing equation

15The ith element of Ic,t corresponds to Iic,t. With a slight abuse of notation, we start indexing the vector
with 0.
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takes the following form:

p0c,t =

∑
j∈N

(
δ0c

j (Ic,t)
)σ

Ωs0c
j

(
p0c,t

j

)1−σ

 1
1−σ

. (14)

For each country c, the sector specific demand shifters are normalized to satisfy:

∑
j∈N

δ0c
j (Ic,t)Ωs0c

j = 1.

2.6 Solution

We solve our model in a similar way to Baqaee and Farhi (2019), where the higher order
terms are incorporated in the system via cross-factor and industry elasticities. By applying
small perturbations to the system, and following the trajectory of the prices and wages,
we arrive at a new equilibrium where the system re-optimizes around the old one. This
methodology is akin to the Euler integration method to calculate the solutions of differential
equations. Hence, we calculate differential exact hat-algebra to characterize the changes in
the system by iterative means.

To perform the exact-hat-algebra, we need to trace through the changes in prices and
expenditure shares after we introduce pandemic driven sectoral shocks. To feed these
sectoral shocks into the model, we make use of the epidemiological model, since sectoral
shocks evolve as a function of sectoral infections. Most infection dynamics models, includ-
ing Acemoğlu et al. (2021), Alvarez et al. (2021), Farboodi et al. (2021), and Eichenbaum et
al. (2021), do not use the sectoral heterogeneity in disease dynamics.

Our model relies on tracing the sectoral pandemic shocks to the supply term –∆ic(Ic,t) in
Equation (13)– and demand term –δ0c

j (Ic,t) in Equation (14)– through inter-country input-
output linkages. Let’s define the Domar weight of an industry or a factor jm to be: λjm ≡
pjmyjm

E .16 Starting from Equation (7), using the expenditures for each country (Ec defined in
Equation 4) we can write :

λjm ≡
pjmyjm

E
= ∑

c∈C

pjmx0c
jm

Ec

Ec

E
+ ∑

kc∈CN

pjmxkc
jm

E

= ∑
c∈C

Ω0c
jmχc + ∑

kc∈CN
Ωkc

jm
pkcykc

E
= ∑

c∈C
Ω0c

jmχc + ∑
kc∈CN

Ωkc
jmλkc, (15)

16For a factor f , y f = L f and p f = w f

22



where
χc ≡ Ec/E ≡ ∑

f∈Fc

λ f (16)

denotes the country c’s expenditure share in the world. Note that this equality holds for a
jm ∈ F because Ω0c

f = 0.

Suppose Ω0 corresponds the C × (C N + C F) matrix of consumption (with last C F
columns all zeroes) whose entries defined in Equation (2), and ΩNF corresponds to the
(C N + C F) × (C N + C F) matrix for the input output linkages between industries and
factors whose entries given in Equations (1) and (3). Then Equation (15) can be written as:

λ′ = χ′Ω0 + λ′ΩNF ,

where λ′ is the (C N +C F) dimensional column vector for the Domar weights of industries
and χ is the C dimensional column vector for country income shares. Solving this equation
gives us:

λ′ = χ′Ω0(I −ΩNF )−1 = χ′Ω0ΨNF ,

where ΨNF ≡ (I −ΩNF )−1 is the Leontief Inverse. Any small price perturbation for the
system, would result in changes in the Domar weights. In particular, we can write:17

dλ′ = dχ′Ω0ΨNF + χ′dΩ0ΨNF + χ′Ω0dΨNF

= (dχ′Ω0 + χ′dΩ0 + λ′ dΩNF )ΨNF . (17)

On the cost side, with Shepard’s Lemma, we can write all the price changes in terms of
wage changes. Using our underlying assumptions about the production and consumption
functions, we can write the changes in the Ωs in terms of changes in prices and wages,
which in turn could be written as function of wages of factors.

Focusing on the Domar weights of factors, we can also relate them to changes in prices

17The last equality comes from the fact that:

dΨNF = d(I −ΩNF )−1 = ΨNF dΩNF ΨNF .

To see this (dropping the superscripts):

d(Ψ Ψ−1) = 0 = dΨ Ψ−1 +Ψ dΨ−1 ⇒ dΨ Ψ−1 = −Ψ dΨ−1 ⇒ dΨ = −Ψ dΨ−1 Ψ = −Ψ d(I−Ω)Ψ = Ψ dΩ Ψ.
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and labor supply changes with:

dλ f = λ f (d log w f + d log L f ).

We can also write the changes in the country income level in terms of the changes in factor
income:

dχc = ∑
f∈Fc

dλ f .

Hence, we can write both sides of Equation (17) as a function of changes in wages and
labor supply. Consequently, we can pin down the changes in wages for any factor using the
following proposition:

Proposition 1 Given the supply shock d log L f , which is a small step towards the overall supply
shock ∆ f (Ic f ,t), where c f denotes the country that factor f belongs to, and the demand shock ω0c

j ,
which is also a small step toward the overall demand shock δ0c

j (Ic,t), the changes in the wages can be
calculated as:

d log w f = ∑
jm∈CN

∑
c∈C

χcΩ0c
jmσd log ω0c

j Ψjm
f /λ f

Line 2: + ∑
jm∈CN

∑
c∈C

∑
g∈Fc

λg[d log wg + d log Lg]Ω0c
jmΨjm

f /λ f

Line 3: + ∑
jm∈CN

∑
g∈F

∑
c∈C

χcΩ0c
jm(1− ξ ′j)Ψ

jm
g d log wgΨjm

f /λ f

Line 4: + ∑
jm∈CN

∑
c∈C

∑
v∈C

∑
g∈F

χcΩ0c
jm

ξ ′j − σ

Ωs0c
j

Ω0c
jv Ψjv

g d log wgΨjm
f /λ f

Line 5: + ∑
jm∈CN

∑
c∈C

∑
iv∈CN

∑
g∈F

χcΩ0c
jm(σ− 1)Ω0c

iv Ψiv
g d log wgΨjm

f /λ f

Line 6: + ∑
jm∈CN

∑
kc∈CN

∑
g∈F

λkcΩkc
jm(1− ξ j)Ψ

jm
g d log wgΨjm

f /λ f

Line 7: + ∑
jm∈CN

∑
v∈C

∑
kc∈CN

∑
g∈F

λkcΩkc
jm

ξ j − ε

Ωskc
j

Ωkc
jvΨjv

g d log wgΨjm
f /λ f

Line 8: + ∑
jm∈CN

∑
kc∈CN

∑
iv∈CN

∑
g∈F

λkcΩkc
jm

(
ε− φ

1− αkc

)
Ωkc

iv Ψiv
g d log wgΨjm

f /λ f

Line 9: + ∑
jm∈CN

∑
kc∈CN

∑
g∈F

λkcΩkc
jm(φ− 1)Ψkc

g d log wgΨjm
f /λ f
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Line 10: + (1− φ)d log w f + (φ− 1) ∑
g∈F

Ψ
i f
g d log wg − d log L f . (18)

The proof of this proposition is provided in the online Appendix and requires careful dif-
ferentiation at each step, combined with the Shepard’s Lemma. The intuition behind each
line is as follows:

Line 1: Direct effect of the sectoral demand shock on prices, which is further translated into a
factor price change via Leontief inverse.

Line 2: Consequence of changes in income shares of countries on the wages of other countries
from the demand side.

Line 3: Substitution between two factors that are used in the same industry in consumption.
Since our factors are sector-specific, only the term with g = f = f jm would survive
for every jm ∈ CN , where f jm is the factor used in industry jm.

Line 4: Substitution between two varieties coming from different countries in the same in-
dustry in the consumption bundles.

Line 5: Overall substitution between any two industries in consumption.

Line 6: Substitution between two factors that are used in the same industry in production.
Since our factors are sector-specific, only the term with g = f = f jm would survive
for every jm ∈ CN , where f jm is the factor used in industry jm.

Line 7: Substitution between two varieties coming from different countries in the same in-
dustry in industry bundles in production.

Line 8: Substitution between two industries in intermediate bundles.

Line 9: Substitution between two industries in overall production.

Line 10: First term captures the direct effect of wage changes. The second term comes from the
substitution between two factors in production. The last term captures the effect of
labor loss on the wages.

Given the supply and demand shocks, unknowns in this equation are d log w f terms. All
can be combined to form:

d log w = A d log w + B,

25



where A and B are matrices summarizing all linear relationships in Equation (18). However,
the equations are not all independent from each other. To solve the system, we impose a
normalization to the overall world expenditure such that:

E = 1⇒ dE = 0 = ∑
f∈F

dλ f = ∑
f∈F

λ f (d log w f + d log L f ).

Since λ f is known and d log L f is an exogenous shock, this equation only scales changes in
factor prices with a multiplicative factor but does not affect real output changes in sectors.
As we do not compare prices between pre-Covid-19 and Covid-19 epochs, this normal-
ization does not affect our results presented below. With the normalization, we can solve
for d log w f using this linear system. From the changes in log-wages, we can calculate all
other log-changes in Domar weights, prices, Ω matrix, Leontief-inverse matrix and real
GDP. From changes in factor prices and changes in labor supply changes, we can calculate
changes in factor Domar weights. From the changes in factor Domar weights, we can cal-
culate the changes in each country’s income share, χ vector. On the other hand, using the
Shepard’s Lemma, we can easily find the changes good prices:

d log pjm = ∑
f∈F

Ψjm
f d log w f .

From changes in good prices and changes in factor prices, we can calculate the changes in
consumption shares, input-output shares and value-added share for each industry using
the underlying elasticities in our nested production and consumption functions. Once we
have these changes as well, we can calculate the changes in Domar weights for goods using
Equation (17). Given the price change and the Domar weight change, we can calculate the
real production change in each industry as:

d log Yic = d log λic − d log pic.

Similarly, we can express the real GDP change of country c (defined in Equation 5) using
the model primitives χc (defined in Equation 16) and p0c (defined in Equation 6) as:

d log GDPc = d log χc − d log p0c, (19)

which is the total expenditure of country c divided by the consumption price index of coun-
try c, p0c. Hence, the real GDP change that we measure at the country level is endogenously
determined by the model. To compare the post-pandemic real GDPs with the pre-pandemic
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levels, we use Tönrqvist price index. This is a convenient tool to adapt for our framework
because we chain small shocks to obtain a solution as in Baqaee and Farhi (2019). We pro-
vide the detailed calculations in the Section D of the Online Appendix.

3 Data and Parameters

3.1 Network and Employment

We use OECD ICIO Tables as of 2018 for 65 countries and 35 sectors, as depicted in Figure 1
in the introduction.18 These tables report expenditure shares of each sector to/from other
sectors across countries. Hence they capture global input-output links or sectoral export-
s/imports. We obtain sectoral employment data from the OECD’s Trade in employment
(TiM) database (Horvàt et al., 2020).19

To calculate the industry level teleworkable share and the physical proximity measures,
we use the occupational composition of the industries. We use the list provided by Dingel
and Neiman (2020) for the occupations which can fulfill their tasks remotely. For the work-
ers that continue to perform their jobs on-site, we assume that the infection rate depends
on the physical proximity that is required in their workplace. To calculate the proxim-
ity requirements for the occupations, we use the self-reported Physical Proximity values
available in the Work Context section of the O*NET database. O*NET collects the physical
proximity information through surveys with following categories: (1) I don’t work near
other people (beyond 100 ft.); (2) I work with others but not closely (e.g., private office);
(3) Slightly close (e.g., shared office); (4) Moderately close (at arm’s length); (5) Very close
(near touching). We divide the category values by 3 to make category (3) our benchmark.
Specifically, a proximity value larger than 1 indicates a closer proximity than the ‘shared
office’ level and a value smaller than 1 corresponds to less-dense working conditions. We
calculate the proximity values after removing the teleworkable portion from the employees.
We create a single proximity value for each occupation by weighting the normalized score
with the percentage of the answers in each category.

18As the industrial classification, OECD uses an aggregation of 2-digit ISIC Rev 4 codes to 36 sectors. The
last sector, “Private households with employed persons,” does not have any linkages with other industries.
We drop that sector from our analysis when we measure international inter-industry linkages. This leaves us
with 35 sectors. Throughout our analysis, we will make use of this classification labeled as OECD ISIC Codes.

19For 14 countries that have missing data in the TiM database, we obtained the total employment data from
the World Development Indicators database of the World Bank. We then gathered the value added per em-
ployer data from the closest geographical aggregation and used this information to distribute the employment
to industries of these 14 countries.
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To obtain industry-level teleworkable share and proximity values, we calculate the weighted
average of the values corresponding to the occupations in each industry using the Occupa-
tional Employment Statistics (OES) provided by the U.S. Bureau of Labor Statistics (BLS).
OES data follows four-digit NAICS codes to classify industries. In order to convert prox-
imity data to OECD ISIC codes, we make use of the correspondence table between 2018
NAICS and ISIC Revision 4 Industry Codes, provided by the U.S. Census Bureau. We show
the teleworkable share and the proximity index for the industries in Table C.3 of the Ap-
pendix.

3.2 Consumption

OECD ICIO Tables provides us with input demand of industry i in country c from any
industry in any country. The final demand vector has 2340 entries indexed by ic, corre-
sponding to each country-industry combination. By dividing the rows of ICIO matrix with
the total output of industry ic, we obtain the direct requirements matrix Ω. This matrix
summarizes the usage of each intermediate input to generate $1 worth of output. Output
of each industry is either used as an intermediate input or consumed as final output.

For the changes in the composition of consumption, that is the sector specific demand
shifter, δ0c

j (Ic,t), in equation (14), we use sectoral personal consumption data for the U.S.
and predict the changes as a function of infections. The data is at the monthly frequency
and obtained from the Bureau of Economic Analysis (BEA) for the period from February
2020 until the end of 2020 (See Figure C.5a). We do not have the corresponding data for
the other countries. Therefore, we first run a non-parametric regression for the U.S. sectoral
personal consumption on the U.S. sectoral infections (a second order polynomial). Using
these estimates, we calculate the sector specific consumption changes in the other country-
sectors using their own sectoral infections.20

We performed two robustness checks on these estimated sectoral consumption data for
the other countries. The results are shown in the Appendix. First, we report the R2 to see
if more of the variation in consumption is explained by the infections in services sectors.
Indeed, this turns out to be the case as shown in Figure C.5b. Second, for Turkey where
we have detailed credit card spending data by sector, we compare our estimated sectoral
consumption changes based on infections, with the consumption changes based on credit

20We perform several robustness checks given the sensitivity of non-parametric estimation to functional
forms and extreme values in infections data, including higher-order polynomials to capture any remaining
nonlinear patterns in the consumption-infection relationship.
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card spending data. There is a high correlation between the two as shown in Figure C.5c.

3.3 Elasticities of Substitution: Consumption, Production and Trade

Figure 7 shows the nested CES structure of our model both on the production side and on
the consumption side, combining Figures 2 and 3. For the closed economy, we use the same
elasticities as in Baqaee and Farhi (2019). Producing ”Good (Varieties)” requires combining
labor and intermediate goods, which are complements. We set this elasticity to θ = 0.6.
The ”intermediate bundle” captures the aggregation of alternative inputs such as steel and
textiles, which are also complementary to each other. This elasticity is set to be ε = 0.2.
This value is consistent with the estimates in the literature (Atalay, 2017) who find strong
complementarities at this stage.

For an open economy, the “sector bundle” captures substitution of input varieties from
different countries, such as Turkish steel, Chinese steel and the U.S. steel from the per-
spective of the U.S.. We use industry-specific trade elasticities measured by Caliendo and
Parro (2015), in which all varieties are substitutes. We also use the elasticity estimates from
Boehm et al. (2019) that make the input varieties complements. Given our multiple layer
CES structure, with the use of these different elasticities we can capture both substitution
/complementarity between Turkish steel and Canada lumber imported by U.S. construc-
tion industry and also substitution/complementarity between Turkish and Chinese steel
for the U.S. construction sector (“sector bundle” in Figure 7). Similarly on the consumption
side, we can separate between consumption of Turkish cars vs German cars by the U.S.
consumers (“consumption bundle” in Figure 7).

Figure 7: Model Schematic with Nested Constant Elasticity of Substitution (CES)
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3.4 SIR Parameters

Each of the 65 countries in our sample have a distinct experience regarding the course of
the pandemic. In the SIR model, the two fundamental structural parameters, the resolution,
and the infection rates, define the pandemic’s trajectory. The resolution rate is a disease-
specific structural parameter that does not vary much across the countries. According to
the report by the WHO, the median recovery time for the mild cases is approximately two
weeks.21 The mean recovery time could be longer when we include severe cases. In this
paper, we err on the optimistic side and set γ = 1/14 ≈ 0.07 to establish a mean recovery
time of 14 days. However, the infection rate might vary across countries depending on
each country’s success in containing it. Furthermore, since the onset of the pandemic, the
infection rate exhibits a varying pattern over time. This time variation arises because of the
various lockdown measures adopted by the countries to reduce the transmission rate of the
virus.

For the calibration of β, we make use of publicly available data sets to trace this vari-
ation across countries and across time.22 For each country, we estimate a SIR model de-
scribed in equations (8)-(10) using official data to reproduce the variation in the trajectory
of the pandemic across countries. In order to capture the variation within each country
over time, we extend the SIR model to allow for time variation in the infection rate, i.e., βt.
Specifically, we employ the methodology proposed in Çakmaklı and Şimşek (2020) to cap-
ture the changes in the rate of infection throughout the pandemic for the countries in our
sample. This methodology involves estimating a SIR model with time-varying parameters
in a statistically coherent way to accommodate various non-pharmaceutical interventions,
including lockdowns.

There are abundant studies that estimate the SIR model using fixed parameters (See, for
example, Wu et al. (2020); Hortaçsu et al. (2021); Zhang et al. (2020)). In contrast, models
that allow for time variation in parameters are scarce. Kucharski et al. (2020) uses a variant
of the SIR model framework allowing the infection rate to follow a geometric random walk.
Similarly, Yang et al. (2020), and Fernández-Villaverde and Jones (2022) allow for time vari-
ation in the rate of infection. The advantages of the time-varying parameters SIR model
of Çakmaklı and Şimşek (2020) are twofold. First, the framework is statistically consistent
with the typical count data structure related to the pandemic. This contrasts with the mod-

21https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-
report.pdf

22The data is downloaded from GitHub, Covid-19 Data Repository by the Center for Systems Science and
Engineering (CSSE), at Johns Hopkins University.
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els that either employ least-squares or likelihood-based inference using normal distribu-
tion. Second, it is computationally easier, unlike the models that are statistically consistent
but computationally costly, such as the particle filter. Because we exploit a wide number of
countries with typically daily data, this computational efficiency is critical in our estimation
process. For each country, the data spans the period from the day the number of active in-
fections exceeds 1000 until the end of December 2020. Consequently, we use the parameter
values, country-specific βt, and γ estimated as of the end of December 2020. These values
reflect the stance of the pandemic for each country when the vaccines were discovered in
December 2020. Using these values, we simulate the pandemic’s evolution in each country
over the next year. R0 values that we use are reported in Table C.1 of the Appendix.

Our model allows for endogenous lockdown when the number of cases are over a
threshold, We calibrate this threshold based on the ICU capacity of the country. The data
for ICU capacities are obtained from various sources including the WHO, the JHU data
repository and the health ministries of the countries. In the case of full lockdowns, the in-
fection rate declines to zero during the lockdown, reflecting the containment of the virus.
Each lockdown is imposed for 14 days. This implies that during this time, the number of
Covid-19 patients decline to 36% of the value before the lockdown was imposed. Once the
lockdown is removed, we assume that it takes 90 days for the infections to reach the re-
production number prior to the lockdown. Under full lockdown, only a few industries are
active. We use the list of industries that are closed during lockdowns based on international
examples of government decrees (see Table C.3). From these industries and using the em-
ployment data at 4 digits, we calculate the share of each OECD ISIC industry that would
remain active during the lockdown. Finally, we calculate the share of public employees that
are not affected by the lockdown using the publicly available information.

4 Quantitative Results

4.1 Reduced Form Evidence on Supply Shocks

Before showing results from the calibration of our model, we present two types of re-
duced form evidence that support the measurement of our shocks. First, we compare our
infections-based sectoral supply shocks against actual data on workers who do not go to
work due to pandemic related reasons. The red line in Figure 8 shows the number of these
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workers.23 Specifically, the share of the U.S. households who reported “pandemic-related”
reasons for not working is 47 percent. The blue line shows our labor supply shocks for the
U.S. economy. Not surprisingly, the correlation between the two series is 0.82.

Figure 8: Labor Supply Shock
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NOTES: This figure plots the co-movement of the weekly number of people who reported that they cannot
work due to “pandemic-related reasons” with our labor supply shocks for the U.S. derived from the sectoral
epidemiological model over the period from April 23, 2020 to May 9, 2022. See Section A.1.1 for the details
on the construction of the series obtained from the U.S. Census Bureau Household Pulse Survey.

As a second robustness check, we investigate how our labor shocks co-move with sup-
ply chain disruptions observed in real-time data. For this purpose, we use the Suppliers’
Delivery Time Index–a sub-index of the Purchasing Managers’ Index (PMI)– and correlate
it with our model-based labor shock, which is calculated by aggregating over the man-
ufacturing industries of 26 PMI countries using trade shares as weights. We obtain a high
correlation of 0.78. In Appendix Section A, we show additional evidence from other surveys
on the shortage of labor and intermediate inputs for the U.S. and the Euro area countries.

23In June 2022, the Census Bureau added four questions about the current status and the duration of
Covid-19 symptoms to its Household Pulse Survey, giving researchers a better understanding of the preva-
lence of Covid-19 symptoms. A recent Brookings Report develops a back-of-the envelope estimation to
assess the impact of long Covid on the U.S. labor market, using the responses obtained from Health Ta-
ble 11. According to their findings, around 16 million working-age Americans (those aged between 18
to 65) have long Covid as of August 2022. Of those, 2 to 4 million people are out of work due to long
Covid. Please see https://www.brookings.edu/research/new-data-shows-long-covid-is-keeping-as-many-
as-4-million-people-out-of-work/ for details of the report.
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4.2 Vaccination Scenarios

To calibrate the model we have to assume a vaccination scenario first, which determines
the sectoral shocks that we feed into the model.Under full vaccination, there are no sectoral
shocks. For any other scenario, there are sectoral shocks. After feeding in the sectoral
shocks, we calculate the relative reduction in GDP of each country using Equation (19) as
explained in detail in Section 2.6. In order to aggregate country level losses to the country-
group-level (i.e., AEs vs EMDEs), we weight each country’s output change by 2019 GDP.

We calibrate our model under two different vaccination scenarios. Table 1 summarizes
these scenarios.24 The first scenario is a counterfactual scenario, where we assume that
the AEs are vaccinated immediately at the onset of vaccine discovery, which corresponds
to the start of our second period in the model. The EMDEs do not get vaccinated in this
counterfactual scenario. The second scenario is meant to capture the real life vaccine roll-
out, where the AEs get vaccinated faster than the EMDEs throughout the period. The AEs
complete their vaccinations sometime in the middle of the period, whereas the EMDEs,
although getting vaccinated, are not able to fully inoculate their populations by the end of
the period. This scenario depicts the real world rather closely as of the end of 2021.

How do we map our two period model to the rich dynamics of the second period? Our
first period is pre-pandemic. We divide the second pandemic period into 365 days to mimic
the heterogeneity during 2021 and solve the model daily, feeding in daily sectoral supply
and demand shocks. Thanks to fast vaccination in the AEs, we stop feeding the shocks by
the 120th day. As of that day, mid-2021, average number of infections decline to low levels
across the AEs.

Table 1: Vaccination Scenarios

Scenario AEs EMDEs

I Immediate Complete Vaccination No Vaccination

II Fast Vaccination Slow Vaccination

24In both our vaccination scenarios, we assume that the vaccination is done in the same pace in different
segments of the society.
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4.2.1 Scenario I: Immediate Vaccination in AEs and No Vaccination in EMDEs

With this counterfactual scenario, our goal is to illustrate the costs incurred by fully vac-
cinated AEs that are solely due to their trade connections with the unvaccinated world,
even though they completely eliminate the pandemic at home. Thus, there are no sectoral
demand and supply shocks in AEs. In EMDEs the pandemic evolves without access to
any vaccine. It can only be contained by lockdowns. Countries impose lockdowns when
the number of Covid-19 patients that require ICUs exceeds the number of ICUs that are
reserved for Covid-19 patients.

We show the estimated real output losses for the world and by country groups in Ta-
ble 2. We set both the consumption and production trade elasticities to be the same value
and increase them together from row (1) to row (5) under Scenario I. Focusing on row (1),
we observe that the total world real output loss can be as high as 2.2 percent of the pre-
pandemic GDP. The first row constitutes an extreme case where the trade elasticities are set
as 0.5. As the trade elasticities increase and the countries can substitute goods and inputs
that are imported from different countries, overall costs decrease for everyone. The costs
incurred by EMDEs are significantly higher compared to AEs because EMDEs are not vac-
cinated under this scenario. The share of the world output loss that is borne by the AEs go
down steadily from 26 percent to 13 percent as the elasticity of substitution increases. Ev-
idently, when there are no domestic sectoral shocks, the losses from international linkages
are smaller for AEs when the elasticity of substitution is higher.

Table 2: GDP Decline Relative to the Pre-Pandemic World under Scenario I (percent)

Scenario I

Consumption & Production Share of
Trade Elasticities World AE EMDE AEs (%)

(1) ξ ′i , ξi =0.50 2.149 0.561 1.588 26.1
(2) ξ ′i , ξi =0.60 1.347 0.312 1.035 23.2
(3) ξ ′i , ξi =0.70 0.996 0.189 0.806 19.0
(4) ξ ′i , ξi =0.80 0.898 0.140 0.758 15.6
(5) ξ ′i , ξi =0.90 0.857 0.112 0.744 13.1

NOTES: This table presents the real GDP losses under Scenario I. In this counterfactual scenario, we assume
that the pandemic is fully contained in AEs immediately. In EMDEs the pandemic evolves at its natural
course. We assume there are endogenous lockdowns in EMDEs, when the number of Covid-19 patients that
require ICUs exceed the numbers of ICUs that are reserved for Covid-19 patients. Consumption and
production trade elasticities, ξ ′ and ξ ′ have the same value in each row, where we increase both to capture
the effect of higher substitution from row (1) to (5).
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Figure 9: Relative Decline in GDPs under Scenario I (percent)
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NOTES: This figure shows the reductions in relative GDP under Scenario I for two alternative trade
elasticities in Panels (a)–(b), respectively. Vaccinated countries are distinguished by light gray borders.

Figure 9 displays the reductions in countries’ annual real GDPs for 2021, relative to 2019,
in percentage terms. Darker shades illustrate higher real output loss. Vaccinated countries
are denoted by gray borders. We report two sets of estimates for comparison. High trade
elasticity (the panel on the left) corresponds to values that are reported in row (5) of Table 2.
Low trade elasticity (the right panel) corresponds to row (2) in the same table. As we move
from a high trade elasticity to a relatively low trade elasticity, we observe that the relative
reduction in real GDP increases, reflected by the darker shades. This is consistent with the
intuition that lower trade elasticity reflects the difficulty in substituting among suppliers,
leading to more expensive and limited imports of intermediate inputs for AEs.

4.2.2 Scenario II: Fast Vaccination in AEs and Slow Vaccination in EMDEs

This scenario aims to resemble the actual vaccination roll-out in real life. AEs are not fully
vaccinated immediately. In addition, EMDEs have access to the vaccine, albeit at a slower
rate. AEs start vaccination quite early, with the half of the susceptible population getting
vaccinated in the first 30 days and the remaining half getting vaccinated in the following
90 days. Therefore, we assume that the vaccination of all susceptible population will be
accomplished within 120 days in AEs. In contrast, EMDEs are not able to inoculate their
susceptible populations fully, due to lack of sufficient vaccines, as was the case in 2021.
Their vaccination program starts at the same time as the AEs, but it takes a full year to
vaccinate half of the susceptible population.
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Table 3: GDP Decline Relative to the Pre-Pandemic World under Scenario II (percent)

Scenario II

Consumption & Production Share of
Trade Elasticities World AE EMDE AEs (%)

(1) ξ ′i , ξi =0.50 2.687 1.038 1.649 38.6
(2) ξ ′i , ξi =0.60 (Baseline) 1.296 0.592 0.705 45.6
(3) ξ ′i , ξi =0.70 1.125 0.560 0.565 49.8
(4) ξ ′i , ξi =0.80 1.072 0.550 0.523 51.2
(5) ξ ′i , ξi =0.90 1.049 0.545 0.504 51.9
(6) Caliendo and Parro (2015) 1.018 0.523 0.495 51.4

NOTES: This table presents the real GDP losses under Scenario II. AEs follow the vaccination calendar to
vaccinate the full population within four months, whereas EMDEs follow a more gradual vaccination
calendar with only the half of the population getting vaccinated in one year. Consumption and production
trade elasticities, ξ ′ and ξ ′ have the same value in each row, where we increase both to capture the effect of
higher substitution from row (1) to (5). In the last row, we set trade elasticities to the values calculated by
Caliendo and Parro (2015); these values are in general bigger than 4, implying a very high degree of
substitution.

Table 3 shows the results. We observe the highest cost in row (1) with the total world real
output loss of 2.6 percent of the pre-pandemic GDP. We set the two trade elasticities to 0.60,
shown in row (2), as our baseline in rest of our exercises. The baseline value of 0.6 is chosen
to set the elasticities equal to the elasticity between value added and intermediate labor (θ).
In our baseline case, the global output loss is close to 1.3 percent. As the trade elasticities in-
crease, it gets easier to substitute the varieties from different countries, lowering the output
losses.

When the trade elasticities exceed 0.7, the relative costs of AEs exceed more than half
of the total global costs, despite the fact that they are vaccinated faster. Evidently, when
both AEs and EMDEs deal with their own domestic shocks, a higher degree of substitution
decreases the losses of EMDEs more than the AEs. What is the underlying intuition for this
finding? According to our model, the economic costs that arise from supply chain disrup-
tions are inversely related to: (i) The number of suppliers: The diversity of suppliers allows for
alternative trade routes. Ceteris paribus, if one supplier is suffering from the pandemic, the
presence of alternative trade partners allows the importer to switch to another supplier. (ii)
The exposure of the suppliers to the health shock: If you have more suppliers that are vaccinated,
then you are subject to less disruptions in your supply chains.

What does the data tell us? As shown in Figure 1, the EMDEs are relatively more closed
economies compared to AEs. This means that EMDEs operate with fewer suppliers to begin
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with. In addition, AEs tend to trade more with the other AEs. What are the implications
of these observations for the mechanics of our model summarized by (i) and (ii) above?
Given that EMDEs already have less suppliers, and a larger fraction of these suppliers are
unvaccinated (compared to AEs), potential disruptions in major suppliers are more likely
for the EMDEs. Consequently, at low levels of elasticity of substitution, it will hit them
harder because they have limited options to find alternative suppliers. The story is rather
different among AEs. The exposure of AEs to a specific supplier is already less, thanks
to their more diversified integration to international trade network. In a way, they do not
put all their eggs in the same basket. Furthermore, because a larger fraction of their trade
partners is vaccinated, they are exposed to less health shocks. Thus, at any given level of
elasticity of substitution, AEs not only have a lower likelihood of health shock exposure but
also they have the ability to diversify (and hence reduce) the size of the health shock. This
helps them mitigate the economic costs of the pandemic.

As we increase the elasticity of substitution, EMDEs now have the flexibility to switch
to another supplier when they experience major disruptions in their lifelines. This low-
ers their costs substantially. For the AEs, increasing the elasticity of substitution does not
reduce their costs as much, because their diversified set of suppliers already reduce their re-
liance to a single supplier. Furthermore, because they have more vaccinated trade partners,
their need to substitute (and the consequent gains from substitution) is relatively lower.
Consequently, the share of AEs’ costs in world GDP loss increases for higher elasticities
in Scenario II, since under those parameters EMDEs’ losses are lower. This is an impor-
tant result highlighting the interaction between international linkages and domestic shocks
and points to the fact that nationalizing supply chain may not be panacea and can even be
counter-productive.

Row (6) of Table 3 shows the results for the trade elasticity values that are estimated
in Caliendo and Parro (2015). These values can be perceived as long run elasticities with
a higher degree of substitution. In spite of such a high degree of substitution, we obtain
a similar result in terms of AEs share in world GDP losses, 50%, compared to elasticities
lower than 1. This is due to the same compositional effect, where high degree of substitution
helps EMDEs more.25

Figure 10 displays the relative reduction in countries’ real GDPs under scenario II in
percentage terms, again for low and high trade elasticities. The colors in both panels are

25There are endogenous lockdowns in both set of countries here. We also consider another counterfactual
scenario where we do not allow for any lockdown measures. The results for this scenario are presented in
Table C.5 in the Appendix.
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darker for AEs, reflecting higher costs. Compared to Scenario I, AEs face additional factors
that work in opposite directions. On the one hand, their vaccination calendar is now slower,
which increases their domestic losses. On the other hand, their EMDE trade partners now
have access to the vaccine, which reduces their losses that are coming from international
linkages. Comparing Figure 9 and Figure 10, AEs’ slower pace of domestic vaccinations at
home outweigh the trade partners’ access to the vaccine, yielding a net negative impact for
AEs, as we move from Scenario I to Scenario II. This is an important result that shows the
right path for equitable global vaccinations: not to share limited supplies of AEs, since then
domestic pandemic will stay, but rather invest in global production of vaccines.

Turning to the EMDEs, the sharp reduction in the costs borne by EMDEs is immediately
noticeable with the lighter shades. This is because EMDEs also have access to the vaccine
in this scenario. The darker shades for Turkey and Russia are interesting. Both of these
countries are major exporters to AEs. Hence, when the AEs are subject to a slower pace of
vaccinations, the economies of Turkey and Russia are also adversely affected from lower
demand in AEs for their exports.

Figure 10: Relative Decline in GDPs under Scenario II (percent)

(a) ξi = 0.9
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NOTES: This figure shows the reductions in relative GDP under Scenario II for two alternative trade
elasticities in Panels (a)–(b), respectively. Vaccinated countries are highlighted with light gray borders.

We investigate whether the sectoral output losses are consistent with the key mechanism
of the model, which should yield higher prices in supply constrained sectors. As we show
in Figure C.4, the sectors where we observe larger factor price increases are the tradeable
sectors, whereas services sectors see smaller price changes. To relate these model-implied
changes to the actual input shortages observed in the real world, we use data available
for sub-sectors of manufacturing in 21 European countries. We show that input shortages
in the sector-level data of the European countries, model-implied sectoral output declines,
and model-implied price increases are all significantly correlated. Table C.4 shows these
sector-country regression results. Consistent with our expectations, input shortages in the
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data show a significant negative correlation with the model-implied output declines and a
positive correlation with the model-implied factor price changes.

4.3 Robustness: Counterfactual Shocks and Linkages

We consider two counterfactuals. In the first one, we assume there is no international pro-
duction network (no IPN). In the second one, we assume that there are no relative demand
shocks to change the composition of consumption across sectors. The only shocks are to
labor supply.

Table 4: GDP Decline Relative to the Pre-Pandemic World under Scenario II (percent): The
Role of International Linkages and Demand Shocks

Scenario II
Share of

World AE EMDE AEs (%)
Baseline 1.296 0.592 0.705 45.6
(1) No IPN 1.045 0.556 0.490 53.2
(2) No DS 0.892 0.398 0.495 44.5

NOTES: “No IPN” stands for the case where there are no International Production Networks. “No DS”
stands for no sectoral demand shocks. Our Baseline scenario is with consumption and production trade
elasticities of ξ ′i = 0.6, ξi = 0.6, respectively. “No DS” case also uses these elasticities, whereas “No IPN” case
is closed to international trade.

Table 4 displays the results for these two counterfactuals. We report the baseline find-
ings for Scenario II for comparison purposes (top row). Row (1) shows the first counter-
factual case of no international production network (no IPN). In this analysis, there are no
international I-O linkages, so there is no trade for consumption and production inputs (and
final goods), but only domestic I-O linkages exist. The share of AEs’ costs increase to 53.2
%. Why is this a higher number when we shut down the amplification role of the global
network? This is because of the fact that production in AEs needs the network.

Row (2) of Table 4 shows the results from the second counterfactual of no demand
shocks (no DS). We observe that in the absence of demand shocks there is a decline in real
output loss both for the AEs and EMDEs, compared to the baseline. This is an interesting
result. Compared to the baseline, we keep the supply shocks exactly the same and only re-
move the demand shocks, obtaining lower output losses. This shows that relative sectoral
demand shocks amplifies the negative effects of sectoral supply shocks.
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The intuition for this result comes from the segmented labor markets. The sectors that
face higher demand cannot attract more labor from other sectors, however, they do take the
inputs from other sectors. Due to diminishing returns on the inputs, this results in a loss in
real output. This finding is independent of complementarities and an example based on a
two-sector stylized economy is provided in the Appendix Section B.

4.4 Robustness: Asymmetric Consumption and Production Trade Elas-

ticities with Domestic Complementarities

Table 5: GDP Decline Relative to the Pre-Pandemic World (percent): The Role of Production
Elasticities

Scenario II
Consumption & Production Share of

Trade Elasticities World AE EMDE AEs (%)
Baseline ξ ′i = 0.6, ξi = 0.6 1.296 0.592 0.705 45.6
(1) ξ ′i = 1.1, ξi = 0.5 1.607 0.726 0.881 45.2
(2) ξ ′i = 1.1, ξi = 0.6 1.151 0.585 0.566 50.8
(3) ξ ′i = 1.1, ξi = 0.9 1.039 0.541 0.498 52.1

NOTES: This table presents real output losses under the second scenario, where AEs follow a vaccination
calendar to inoculate the full population within four months, whereas EMDEs follow a more gradual
vaccination calendar with only the half of the population getting vaccinated. We change ξ, trade elasticity for
the production side, but kept, ξ ′, the trade elasticity for the consumption side constant.

In rows (1) to (3) of Table 5 we display robustness results, where we increase the elasticity of
substitution on the production side for traded inputs as before, but we leave the trade elas-
ticity of the consumption of final goods ξ ′i constant, exceeding 1. Intuitively, this exercise
depicts an environment where a consumer can switch from an imported car to a domes-
tic car under shocks. But, on the production side, if domestic car production needs foreign
parts, there can be varying degrees of substitution on these parts. We obtain the same quali-
tative result as before that a higher degree of substitution of intermediate inputs trade helps
EMDEs more than AEs and the share of AEs costs increase from rows (1) to (3), regardless
of ease of substitution of final consumption goods.

Next, we undertake robustness for complementarities within the countries. Table 6,
rows (1) and (2), changes the value of σ, which controls the elasticity of consumption be-
tween different domestic sectors. The baseline uses σ = 1. With higher σ, output losses
increase everywhere. This is due to the amplification effect of sectoral demand shocks on
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supply shocks as we have shown above under “No DS” counterfactual. When the con-
sumers can easily substitute domestically, that relative shift intensifies the domestic supply
constraints, increasing the losses. Interestingly, when σ is lower, the losses for EMDEs in-
crease even more. We do not have a good intuition for this result but we suspect it is due
to the interaction between more severe lockdowns in EMDEs during which difficulty in
consumption substitution across sectors can have more negative effects.

Table 6: GDP Decline Relative to the Pre-Pandemic World (percent): The Role of Production
and Consumption Elasticities

Scenario II
Share of

Elasticities World AE EMDE AEs (%)
Baseline ξ ′i , ξi =0.60 1.296 0.592 0.705 45.6
(1) ξ ′i , ξi =0.60, σ =1.5 1.387 0.658 0.730 47.4
(2) ξ ′i , ξi =0.60, σ =0.5 1.555 0.589 0.966 37.9
(3) ξ ′i , ξi =0.60, θ =1.5 0.928 0.469 0.460 50.5
(4) ξ ′i , ξi =0.60, ε =0.5 1.131 0.552 0.580 48.7
(5) ξ ′i , ξi =0.60, ε =1.5 0.411 0.233 0.177 56.8
(6) Cobb-Douglas 0.818 0.441 0.377 53.9
(7) Leontief-like 3.448 1.675 1.773 48.6

NOTES: This table presents real output losses under the second scenario, where AEs follow the a vaccination
calendar to vaccinate the full population within four months, whereas EMDEs follow a more gradual
vaccination calendar with only the half of the population getting vaccinated. We change elasticities in each
row. Cobb-Douglas refers to the setup where all elasticities are set to 1. Leontief refers to the setup where all
elasticities are set close to 0.2. In theory, this number could be made smaller but the non-linearity associated
with such a choice makes the results unstable. Therefore, we consider this feasible lower limit as the
Leontief-like setting.

In row (3), we change the value of θ, which controls the substitution between labor and
the intermediate bundle. In this case, when we increase the elasticity from 0.6 to 1.5, the
costs decline for everyone as the negative labor supply shock is more easily substituted
by intermediate inputs. When we increase ε, in rows (4) and (5), which is the elasticity
of substitution between sector bundles forming the intermediate bundle, from 0.2 to 0.5
(row (4)) and later to 1.5 (row (5)), the costs decrease with higher substitutability but again
increasing the share of AEs in world GDP losses.

In rows (6) and (7), we show the results for two extremes, Cobb-Douglas and Leontief-
like, for both consumption and production trade elasticities.26 Both AE and EMDE losses
are much lower under Cobb-Douglas than Leontief-like, with a much higher degree of sub-
stitution under Cobb-Douglas. However the share of the world GDP losses borne out by

26σ = 1, θ = 0.6, and ε = 0.2 here as in the baseline.

41



AEs is higher under Cobb-Douglas, again as substitutability helps EMDEs more.

5 Conclusion

A global distribution of vaccines in the face of a global pandemic is primarily a humani-
tarian responsibility. Our paper makes the economic case for it. Using a structural model
combined with economic and epidemiological data, we show that increasing the produc-
tion of vaccines and providing it to the whole world produces significant economic benefits
for the AEs who had the early access to the vaccines. Such investments provide a rate of
return of 2.6 for the AEs, smoothing out the economic impact of the pandemic everywhere.

Our multi-sector-multi-country global network model is calibrated using sectoral sup-
ply and demand shocks for 65 countries and 35 sectors. These shocks are measured with
predicted changes in sectoral consumption demand and labor supply as a function of sec-
toral infections. We measure sectoral infections using an epidemiological framework com-
bined with country-level disease dynamics, allowing for endogenous lockdowns triggered
by lack of vaccinations. Sectoral shocks travel through the global trade and production
network from unvaccinated to vaccinated countries resulting in supply chain disruptions.
We provide upper and lower bound estimates for the negative output effects of global sup-
ply chain disruptions, depending on the degree of complementarity across domestic and
foreign factors of production and consumption of final goods.

If there are strong complementarities in the global network, even if AEs vaccinate them-
selves immediately, they account for a quarter of the world’s real output loss. If comple-
mentarities within the network are weak, however, AEs account for only 13 percent of the
world’s real output loss, under the same scenario. In a realistic case where AEs are fully
vaccinated by mid-year, they account for half of the world real output loss, even when
factors of production and consumption goods are substitutes. Sectoral demand and sup-
ply shocks have non-linear effects, where sectoral demand shocks amplify sectoral supply
shocks, regardless of elasticity of substitution. Complementarity within the global network
by itself amplifies supply shocks and smooths out demand shocks.

Early in the pandemic, World Health Organization (WHO) Director Dr. Tedros Ghe-
breyesus and the President of the European Commission Dr. Ursula von der Leyen noted
that “None of us will be safe until everyone is safe.” Our findings extend this argument
to the economies by showing that no economy fully recovers unless every economy recov-
ers. We show that globalization acts both as an amplifier but also as a smoother of sectoral
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shocks. Hence, de-globalization by reducing the number of suppliers can be counterpro-
ductive. The sufferings from other people’s losses is summarized by John Donne’s eloquent
expression that “No man is an island.” Our findings in this paper reveal an economic coun-
terpart to this expression where “No economy is an island.”
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APPENDIX

A Reduced Form Evidence

The EU Commission’s Business and Consumer Survey provides time series data from the
business managers on the factors limiting production.27 Panel A of Figure A.1 plot these
factors as a weighted average of all EU countries for manufacturing, construction, and ser-
vices sectors. Historically, especially during the 2008–2009 crisis, we observe that insuffi-
cient demand (blue line) is the most important factor limiting production. During times of
low demand, labor and/or material shortages turn out to be nonbinding constraints. This
is consistent with the intuition that when the economy is demand constrained, there is a
limited role for supply chain bottlenecks. What is unique about the Covid-19 shock is that
shortage of material and equipment (the green line), and labor (red line) which both became
the key reasons for limiting production in all sectors, including services.

Figure A.1: Factors Limiting Production in Europe

Panel A: 2003q3-2022q1
(a1) Manufacturing
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Panel B: 2019q4-2022q1
(b1) Manufacturing
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NOTES: Figure A.1 plots the replies of business managers to the question “What main factors are currently
limiting your production?” as a weighted average using country shares in EU’s total gross-value added.
These series are smoothed by calculating a two-year moving average and they are seasonally adjusted.

27See https://ec.europa.eu/info/business-economy-euro/indicators-statistics/economic-databases/
business-and-consumer-surveys en for more information about business and consumer surveys.
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Figure A.1 also plots the period after 2019q4 to zoom-in on the asymmetric dynamics
across sectors. As can be seen from Panel B of this figure, the recovery of demand, thanks to
vaccinations and economic stimulus packages, worsened the labor and material shortages
throughout 2021. This is consistent with the framework depicted in Guerrieri et al. (2022),
who note the asymmetric nature of the pandemic and the associated spillovers among sec-
tors. Manufacturing, a tradeable sector, registered higher shortages of inputs due to the
overlap of supply chain bottlenecks and recovery in demand. The adverse effects of the
pandemic were rather noticeable in this sector because most of its inputs are imported. In
comparison, non-tradeable sectors such as construction and services suffer relatively more
from labor shortages. Given the complementarity of intermediate inputs and labor in our
framework, our estimates can capture this notion of switching from a primarily demand-
constrained world to a mostly supply-constrained world during the pandemic’s course.

Figure A.2: Factors Limiting Production during the Pandemic in U.S. (August 2020-May
2022)

Panel A: Supplier Delays
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80
10

01
20

14
01

60
18

02
00

22
02

40
26

02
80

sh
ar

e 
of

 re
sp

on
de

nt
s 

(8
/9

/2
1 

= 
10

0)

01
jul

20
20

01
se

p2
02

0

01
no

v2
02

0

01
jan

20
21

01
mar2

02
1

01
may

20
21

01
jul

20
21

01
se

p2
02

1

01
no

v2
02

1

01
jan

20
22

01
mar2

02
2

01
may

20
22

Delays in delivery/shipping to customers
Domestic supplier delays
Foreign supplier delays
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(a3) Services
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Panel B: Material and Labor Shortage
(b1) Manufacturing
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(b2) Construction

70
80

90
10

0
11

0
12

0
13

0
14

0
15

0
16

0
sh

ar
e 

of
 re

sp
on

de
nt

s 
(8

/9
/2

1 
= 

10
0)

01
au

g2
02

0

01
se

p2
02

0

01
oc

t20
20

01
no

v2
02

0

01
de

c2
02

0

01
jan

20
21

01
feb

20
21

01
mar2

02
1

01
ap

r20
21

01
may

20
21

01
jun

20
21

01
jul

20
21

01
au

g2
02

1

Availability of employees to work
Availability of inputs used to provide good/services

(b3) Services
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NOTES: Figure A.2 plots the replies of small business managers in the U.S. Pulse Survey to the question “In
the last week, was this business affected by any of the following?” This figure provides a cross-sectoral
comparison of the factors that limit U.S. production during the Covid-19 era.

An analogous survey for the U.S. illustrates the factors limiting production as shown in
Figure A.2. This figure highlights the importance of global supply chain bottlenecks even
for the non-tradeable sectors of construction and services in panels (a2) & (b2) and (a3) &
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(b3), with the most important delays coming from foreign suppliers.

A.1 Data Details

A.1.1 Household Pulse Survey

The U.S. Census Bureau designed the Household Pulse Survey (HPS) with the aim of under-
standing the individuals’ experiences of Covid-19 as well as providing timely information
essential in terms of employment status, food security, housing, physical and mental health,
access to health care and educational disruption.28

For the purpose of our analysis, we focus on the national level information in terms of
employment status that is available in the Employment Section.29 This section asks the U.S.
households the reasons for not working and counts the responses for each reason reported.
Using the counts available, we first linearly interpolate the weekly/bi-weekly series into
daily series. We then group the reasons for not working into the following three categories,
listed in the below.

(i) Individual pandemic related reasons (47.1%)

• I was caring for someone or sick myself with coronavirus symptoms

• I did not work because I am/was caring for children not in school or daycare

• I was concerned about getting or spreading the coronavirus

• I did not work because I am/was caring for an elderly person

• I am/was sick (not coronavirus related) or disabled

(ii) Business related reasons (15%)

• I was laid off or furloughed due to coronavirus pandemic

• My employment went out of business due to the coronavirus pandemic
28As of May 2022, the HPS had three phases: In Phase 1 U.S. households were surveyed on a weekly basis

over the time period from April 23, 2020 to July 21, 2020; In Phase 2 U.S. households were surveyed on a
bi-weekly basis over the time period from August 19, 2020 to October 26, 2020; In Phase 3, U.S. households
were surveyed on a bi-weekly basis over the time period from October 28, 2020 to May 9, 2022.

29The HPS uses a national representative sample to produce estimates at three geographic levels: (1) 15
largest Metropolitan Statistical Areas, (2) each of the 50 states plus the District of Columbia, and (3) the na-
tional level. Each round of HPS provides “Table 3. Educational Attainment for Adults Not Working at Time
of Survey, by Main Reason for Not Working and Source Used to Meet Spending Needs.”
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(iii) Government mandated reasons (4.7%)

• My employment closed temporarily due to the coronavirus pandemic

For reasons for not being employed, 47.1% of the U.S. population aged 18 years and older
reported individual pandemic related reasons, 15% reported business related reasons and
4.7% reported government mandated reasons.30

A.1.2 Current Population Survey

U.S. Bureau of Labor Statistics conducts the monthly household labor force survey, Current
Population Survey (CPS), to track the number of employed people who missed work during
the survey reference week. Specifically, this survey provides the following measures: i)
people who did not work at all in the survey reference week, ii) people who usually work
full time but were at work part time (1 to 34 hours) during the reference week.

Figure A.3: Reasons for Not Working, 2012m1–2022m7
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(a) averages over the sample
period 2012m1-2022m7
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(b) pre-Covid-19 averages
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(c) post-Covid-19 averages

NOTES: Figure A.3 displays the fraction of “employed” households in each of the given categories, based on
their expressed reasons for not being at work. The numbers may not be added up to 100 because of rounding
in the computation of the corresponding averages.

Different from the HPS explained above, this survey provides time series data that goes
until 2012. This feature enables us to compare post-Covid-19 employment figures with pre-
Covid-19 ones. For the purpose of our analysis, we utilize the time series data on employed

30From the total U.S. population, we excluded the households who stated the reason for not working as
the retirement at the time of survey. We calculate the shares by collapsing daily values into yearly values and
taking the average of the resulting yearly responses over the period from 2020 to 2022. The numbers do not
add up to 100 because the households stating the reason for not working as “Other” and “No response” are
not considered in the computation.

49



people with a job not at work by selected reasons. Figure A.3 displays the fraction of “em-
ployed” households in each of the given categories, based on their expressed reasons for
not being at work.

B Sectoral Shocks with Sector Specific Labors

Figure B.4: Factor Levels during Pandemic
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y1y1
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In this section, we provide an intuitive perspective to illustrate our results using a stylized
two-sector economy. Figure B.4 shows the Production Possibility Frontiers (PPF) and the
indifference curves of the economy under different scenarios. Before Covid-19, PPF is de-
noted by the blue line and the utility maximization by the indifference curve denoted by
black curve, yielding an equilibrium at point A. For this PPF, we assume that the labor is
mobile between the sectors. Once we make the labor supply sector specific, we arrive at the
PPF represented by the dashed blue line. The dashed blue PPF lies below the pre-Covid
(solid blue) PPF. This is because the dashed line corresponds to the case with an additional
constraint of immobile factor (see, e.g., the specific factors model in Chapter 4 of Krugman
et al., 2022). Up to this stage, the equilibrium remains intact at pre-Covid equilibrium, point
A. After we introduce a sectoral demand shock, however, the utility function changes such
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that we would be optimizing along the red indifference curves. If the labor was not sec-
tor specific, the equilibrium would have moved to point B following the demand shock.
Instead, the new equilibrium moves to point C. Furthermore, since there is also a labor
supply shock in both sectors, the new PPF shifts inwards to the one represented by the
green line and the equilibrium moves to point D. With standard assumptions on indiffer-
ence curves, one can deduce that the output in point D is lower than point C, which is lower
than point B. In standard models, pure demand shocks as moving from point A to point B
will not deliver real output effects. But since point C and point D are worse off compared to
point B, point C is worse off than point B. To quantitatively compare the real output levels
between points A and C, we use the Törnqvist index.

C Additional Figures and Tables

List of Figures and Tables:

• Figure C.1: The Structure of OECD Inter-Country Input-Output (ICIO) Table

• Figure C.2: Combined Input-Output Matrix

• Figure C.3: Proximity Index and Teleworkable Share by Industry

• Figure C.4: Distribution of Factor Price Changes

• Figure C.5: Demand Changes Across Industries

• Table C.1: Country Settings for Various Scenarios

• Table C.2: ICU Bed Capacities

• Table C.3: List of Essential Sectors during Lockdowns

• Table C.4: Relationship with Input Shortage

• Table C.5: GDP Decline Relative to the Pre-Pandemic World (percent): No Endoge-
nous Lockdowns
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Figure C.1: THE STRUCTURE OF OECD INTER-COUNTRY INPUT-OUTPUT TABLE

Intermediate use Final Demand Output

country 1 x industry 1 […] country 65 x industry 36 country 1 x fd 1 […] country 65 x fd 7

country 1 x industry 1 (Z) (F) (Y)

country 1 x industry 2

…

…

country 65 x industry 1

…

country 65 x industry 36

Value added + taxes - subsidies on intermediate 
products

(VA)

Output (Y)

NOTES: This figure illustrates the structure of OECD Inter-Country Input-Output Table (ICIO), which
represents the breakdown of output corresponding to 36 industries and 65 countries, giving us a matrix of
2340×2340 entries. In any industry-country combination, the output (Y) equals intermediate use (Z) plus
final demand (F) of 36 industries in 65 countries. Industry list can be found in Figure C.3. Further, in any
industry-country combination, final demand sums the following components of expenditures over 65
countries. fd1: Households Final Consumption Expenditure (HFCE); fd2: Non-Profit Institutions Serving
Households (NPISH); fd3: General Government Final Consumption (GGFC); fd4: Gross Fixed Capital
Formation (GFCF); fd5: Change in Inventories and Valuables (INVNT); fd6: Direct purchases by
non-residents (NONRES); fd7: Statistical Discrepancy (DISC).

Figure C.2: COMBINED INPUT-OUTPUT MATRIX
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NOTES: The structure of Combined Input-Output table (Ω) that we use. It includes the consumption,
production and factors in a single matrix.
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Figure C.3: Proximity Index and Teleworkable Share by Industry
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Proximity
Teleworkable Share

NOTES: In this figure, we present the physical proximity index, the share of teleworkable employees as well
as demand changes in a given industry, which is categorized based on OECD ISIC Codes. In comparing
proximity values across differential sectors listed in the first column, we use weighted average of
occupation-specific proximity values in those sectors. Specifically, an occupation of a given industry is
assigned with a proximity value that is smaller than 1 if it has sparse working conditions. An occupation of a
given industry is assigned with a proximity value that is larger than 1 if it requires closer proximity than the
”shared office” level. We calculate the proximity values for a given industry after removing the teleworkable
share of the employees of that industry. Doing so, we follow Dingel and Neiman (2020)’s list of teleworkable
occupations to determine the share of employees that can work remotely in each industry.

Figure C.4: Factor Price Changes
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NOTES: This figure represents the distribution of factor price changes across countries for our baseline
model. The sectors are shown on the rows while the countries are shown on the columns. We normalize the
factor prices by subtracting the mean and dividing by the standard deviation of the changes within a
country. The mean values are similar to the ones shown in Figure 10b in the main text. The color scheme is
from green (starting from -1.5), to yellow (0) and to red (1.5).
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Figure C.5: Demand Shocks

(a) Sectoral Demand in the U.S.
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(b) Goodness-of-Fit
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(c) Sectoral Demand— Credit Card Data
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NOTES: Panel (a) shows the range of changes in sectoral personal consumption data for the U.S. (minimum
and maximum observed values). The data is at monthly frequency and obtained from the Bureau of
Economic Analysis (BEA) for the period from March 2020 until the end of 2021. Following Baqaee and Farhi
(2022), we calculate the monthly changes in consumption relative to February 2020. To calculate demand
changes, we first run regressions to fit declines in demands with a second degree polynomial of the
infections. Panel (b) shows the goodness of the fit for each sector through the R2 values. There is no variation
in the reported data for Mining and extraction of energy producing products, Mining support service
activities, Construction and Public administration and defence; compulsory social security sectors. For
expositional convenience, we do not show these industries. Panel (c) shows correlations of predicted
demand changes with real-time demand changes by sector for the period from 2020w11 to 2020w26
(corresponding to the first three months of pandemic since the first Covid-19 case was announced in Turkey).
For Turkey, we estimate predicted demand changes following the computation method explained in
Section 3.2. We calculate weekly changes in credit card spending relative to four-week average value
corresponding to the period from 2020w7 to 2020w10. Following the mapping between CBRT industry codes
and OECD ISIC industries, we exclude the sectors for which credit card is not the common means of
payment, hence the coverage is limited.
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Table C.1: COUNTRY SETTINGS FOR VARIOUS SCENARIOS

ICU capacity Share of Duration of
Country for Reproduction GDP 2019 vaccinated vaccination Openness

Covid-19 patients rate R0 (Billion USD) population (days) Index

Australia 1665 0.7 1,393 100% 120 (30-90) 35
Austria 1000 1.1 446 100% 120 (30-90) 81
Belgium 2756 1.1 530 100% 120 (30-90) 164
Canada 2713 1.3 1,736 100% 120 (30-90) 52
Chile 1383 1.3 282 50% 330 49
Czechia 4151 1.1 247 100% 120 (30-90) 153
Denmark 925 1.2 348 100% 120 (30-90) 60
Estonia 338 1.2 31 100% 120 (30-90) 109
Finland 220 1.1 269 100% 120 (30-90) 55
France 8000 1.1 2,716 100% 120 (30-90) 45
Germany 28000 1.1 3,846 100% 120 (30-90) 71
Greece 704 1.1 210 100% 120 (30-90) 48
Hungary 1094 1.1 161 100% 120 (30-90) 151
Iceland 163 1.1 24 100% 120 (30-90) 49
Ireland 248 1.1 389 100% 120 (30-90) 69
Israel 4900 1.3 395 100% 120 (30-90) 34
Italy 7700 1.1 2,001 100% 120 (30-90) 50
Japan 3996 1.3 5,082 100% 120 (30-90) 28
Korea 5481 1.3 1,642 100% 120 (30-90) 64
Latvia 186 1.1 34 100% 120 (30-90) 102
Lithuania 451 1.1 54 100% 120 (30-90) 127
Luxembourg 91 1.1 71 100% 120 (30-90) 57
Mexico 4211 1.1 1,258 50% 330 74
Netherlands 1161 1.1 909 100% 120 (30-90) 148
New Zealand 585 0.7 207 100% 120 (30-90) 40
Norway 455 1.1 403 100% 120 (30-90) 47
Poland 3074 1.1 592 100% 120 (30-90) 89
Portugal 455 1.1 238 100% 120 (30-90) 66
Slovakia 570 1.1 105 100% 120 (30-90) 170
Slovenia 377 1.1 54 100% 120 (30-90) 166
Spain 4566 1.1 1,394 100% 120 (30-90) 51
Sweden 365 1.1 531 100% 120 (30-90) 60
Switzerland 1012 1.1 703 100% 120 (30-90) 84
Turkey 16850 1.3 754 50% 330 52
United Kingdom 7018 1.1 2,827 100% 120 (30-90) 41
US 84676 1.1 21,370 100% 120 (30-90) 20
Argentina 8404 1.1 450 50% 330 25
Brazil 43466 1.1 1,840 50% 330 22
Brunei 57 1.1 13 50% 330 90
Bulgaria 1347 1.1 68 100% 120 (30-90) 104
Cambodia 495 1.1 27 50% 330 131
China 50328 0.6 14,340 100% 120 (30-90) 32
Colombia 5286 1.3 324 50% 330 28
Costa Rica 136 1.1 62 50% 330 45
Croatia 277 1.3 60 50% 330 75
Cyprus 126 1.1 25 100% 120 (30-90) 51
India 32784 1.3 2,875 50% 330 28
Indonesia 7306 1.1 1,119 50% 330 30
Hong Kong 533 1.3 366 100% 120 (30-90) 304
Kazakhstan 3943 1.1 180 50% 330 53
Malaysia 1086 1.3 365 50% 330 122
Malta 70 1.1 15 100% 120 (30-90) 68
Morocco 2100 1.3 119 50% 330 67
Peru 943 1.1 227 50% 330 40
Philippines 2378 1.1 377 50% 330 49
Romania 1500 1.1 250 100% 120 (30-90) 69
Russia 17500 1.1 1,700 100% 120 (30-90) 40
Saudi Arabia 7813 1.1 793 50% 330 52
Singapore 650 1.2 372 100% 120 (30-90) 202
South Africa 2323 1.1 351 50% 330 56
Taiwan 6725 1.1 611 50% 330 101
Thailand 7241 1.1 544 50% 330 89
Tunisia 479 1.1 39 50% 330 94
Vietnam 251 1.1 262 50% 330 198
ROW 57225 1.1 7,276 50% 330 48

NOTES: This table reports the ICU capacities (see Table C.2 for details), estimated reproduction rates, GDP
figures (obtained from World Development Indicators, 2019 current dollars), shared of population getting
vaccine (for scenario 3), duration of vaccination days (for scenario 3) and openness index, which is defined
as the ratio of imports and exports to GDP.
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Table C.2: ICU BED CAPACITIES

ISO-3 Country ICU Covid-19 Reference

AUS Australia 1665 https://www.mja.com.au/journal/2020/surge-capacity-australian-intensive-care-units-associated-covid-19-admissions
AUT Austria 1000 https://www.covid19healthsystem.org/countries/austria/livinghit.aspx?Section=2.1%20Physical%20infrastructure&Type=Section
BEL Belgium 2756 https://www.covid19healthsystem.org/countries/belgium/livinghit.aspx?Section=2.1%20Physical%20infrastructure&Type=Section
CAN Canada 2713 https://www.covid19healthsystem.org/countries/canada/livinghit.aspx?Section=2.1%20Physical%20infrastructure&Type=Section
CHL Chile 1383 https://www.oecd.org/coronavirus/en/data-insights/intensive-care-beds-capacity
CZE Czech Republic 4151 https://www.covid19healthsystem.org/countries/czechrepublic/livinghit.aspx?Section=2.1%20Physical%20infrastructure&Type=Section
DNK Denmark 925 https://www.sst.dk/-/media/Nyheder/2020/ITA COVID 19 220320.ashx?la=da&hash=633349284353F4D8559B231CDA64169D327F1227
EST Estonia 338 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472675/
FIN Finland 220 https://www.covid19healthsystem.org/countries/finland/livinghit.aspx?Section=2.1%20Physical%20infrastructure&Type=Section
FRA France 8000 https://www.covid19healthsystem.org/countries/france/livinghit.aspx?Section=2.1%20Physical%20infrastructure&Type=Section
DEU Germany 28000 https://www.covid19healthsystem.org/countries/germany/livinghit.aspx?Section=2.1%20Physical%20infrastructure&Type=Section
GRC Greece 704 https://www.covid19healthsystem.org/countries/greece/livinghit.aspx?Section=2.1%20Physical%20infrastructure&Type=Section
HUN Hungary 1094 https://www.oecd.org/coronavirus/en/data-insights/intensive-care-beds-capacity
ISL Iceland 163 https://europepmc.org/article/med/32796182
IRL Ireland 248 https://www.thejournal.ie/icu-bed-numbers-5217685-Sep2020/
ISR Israel 4900 https://www.covid19healthsystem.org/countries/israel/livinghit.aspx?Section=2.1%20Physical%20infrastructure&Type=Section
ITA Italy 7700 https://apnews.com/article/international-news-virus-outbreak-italy-barcelona-france-d7a43368a17f0abaff4d563151b84127
JPN Japan 3996 https://journals.lww.com/ccmjournal/Fulltext/2020/05000/Critical Care Bed Capacity in Asian Countries and.6.aspx
KOR Korea, Rep. 5481 https://journals.lww.com/ccmjournal/Fulltext/2020/05000/Critical Care Bed Capacity in Asian Countries and.6.aspx
LVA Latvia 186 https://www.covid-19.no/critical-care-bed-numbers-in-europe
LTU Lithuania 451 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472675/
LUX Luxembourg 91 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472675/
MEX Mexico 4211 https://www.oecd.org/coronavirus/en/data-insights/intensive-care-beds-capacity
NLD Netherlands 1161 https://www.oecd.org/coronavirus/en/data-insights/intensive-care-beds-capacity
NZL New Zealand 585 https://www.nzherald.co.nz/nz/covid-19-coronavirus-new-zealands-intensive-care-unit-capacity-revealed/GYQ2FXOYHJECZAHU2YKHXYFWXI/
NOR Norway 455 https://www.oecd.org/coronavirus/en/data-insights/intensive-care-beds-capacity
POL Poland 3074 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472675/
PRT Portugal 455 https://www.covid-19.no/critical-care-bed-numbers-in-europe
SVK Slovak Republic 570 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472675/
SVN Slovenia 377 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472675/
ESP Spain 4566 https://www.covid-19.no/critical-care-bed-numbers-in-europe
SWE Sweden 365 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472675/
CHE Switzerland 1012 https://www.oecd.org/coronavirus/en/data-insights/intensive-care-beds-capacity
TUR Turkey 16850 https://dosyasb.saglik.gov.tr/Eklenti/36164,siy2018en2pdf.pdf?0
GBR United Kingdom 7018 https://www.oecd.org/coronavirus/en/data-insights/intensive-care-beds-capacity
USA United States 84676 https://www.oecd.org/coronavirus/en/data-insights/intensive-care-beds-capacity
ARG Argentina 8404 https://www.oecd-ilibrary.org/sites/63d94877-en/index.html?itemId=/content/component/63d94877-en
BRA Brazil 43466 https://www.oecd-ilibrary.org/sites/63d94877-en/index.html?itemId=/content/component/63d94877-en
BRN Brunei Darussalam 57 https://journals.lww.com/ccmjournal/Fulltext/2020/05000/Critical Care Bed Capacity in Asian Countries and.6.aspx
BGR Bulgaria 1347 https://www.covid19healthsystem.org/countries/bulgaria/livinghit.aspx?Section=2.1%20Physical%20infrastructure&Type=Section
KHM Cambodia 495 Selected to be close to the minimum observed levels.
CHN China 50328 https://journals.lww.com/ccmjournal/Fulltext/2020/05000/Critical Care Bed Capacity in Asian Countries and.6.aspx
COL Colombia 5286 https://www.oecd-ilibrary.org/sites/63d94877-en/index.html?itemId=/content/component/63d94877-en
CRI Costa Rica 136 https://www.oecd-ilibrary.org/sites/63d94877-en/index.html?itemId=/content/component/63d94877-en
HRV Croatia 277 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472675/
CYP Cyprus 126 https://in-cyprus.philenews.com/coronavirus-seven-patients-in-intensive-care/
IND India 32784 https://journals.lww.com/ccmjournal/Fulltext/2020/05000/Critical Care Bed Capacity in Asian Countries and.6.aspx
IDN Indonesia 7306 https://journals.lww.com/ccmjournal/Fulltext/2020/05000/Critical Care Bed Capacity in Asian Countries and.6.aspx
HKG Hong Kong SAR, China 533 https://journals.lww.com/ccmjournal/Fulltext/2020/05000/Critical Care Bed Capacity in Asian Countries and.6.aspx
KAZ Kazakhstan 3943 https://journals.lww.com/ccmjournal/Fulltext/2020/05000/Critical Care Bed Capacity in Asian Countries and.6.aspx
MYS Malaysia 1086 https://journals.lww.com/ccmjournal/Fulltext/2020/05000/Critical Care Bed Capacity in Asian Countries and.6.aspx
MLT Malta 70 https://www.covid19healthsystem.org/countries/malta/livinghit.aspx?Section=2.1%20Physical%20infrastructure&Type=Section
MAR Morocco 2100 https://northafricapost.com/39786-covid-19-morocco-expands-hospital-capacity.html
PER Peru 943 https://www.oecd-ilibrary.org/sites/63d94877-en/index.html?itemId=/content/component/63d94877-en
PHL Philippines 2378 https://journals.lww.com/ccmjournal/Fulltext/2020/05000/Critical Care Bed Capacity in Asian Countries and.6.aspx
ROU Romania 1500 https://www.covid19healthsystem.org/countries/romania/livinghit.aspx?Section=2.1%20Physical%20infrastructure&Type=Section
RUS Russian Federation 17500 https://tass.com/world/1162077
SAU Saudi Arabia 7813 https://journals.lww.com/ccmjournal/Fulltext/2020/05000/Critical Care Bed Capacity in Asian Countries and.6.aspx
SGP Singapore 650 https://journals.lww.com/ccmjournal/Fulltext/2020/05000/Critical Care Bed Capacity in Asian Countries and.6.aspx
ZAF South Africa 2323 https://www.samrc.ac.za/news/covid-19-surge-investing-heavily-icu-capacity-not-only-option
TWN Taiwan 6725 https://journals.lww.com/ccmjournal/Fulltext/2020/05000/Critical Care Bed Capacity in Asian Countries and.6.aspx
THA Thailand 7241 https://journals.lww.com/ccmjournal/Fulltext/2020/05000/Critical Care Bed Capacity in Asian Countries and.6.aspx
TUN Tunisia 479 https://www.medrxiv.org/content/10.1101/2020.06.02.20120147v1.full.pdf
VNM Vietnam 251 https://www.who.int/docs/default-source/wpro---documents/countries/viet-nam/covid-19/vnm-moh-who-covid-19-sitrep4.pdf
ROW Rest of the World 57225 Selected to be close to the minimum observed levels.

NOTES: This table provides the resources from which we built the ICU capacities dedicated for Covid-19
patients in each country. If there is a direct number for the ICU beds for Covid-19 in a resource, we used that
number. Otherwise we assigned 70% of the total ICU beds to Covid-19 patients. We estimated this ratio from
the countries that we have the information about dedicated ICU beds to Covid-19 patients.
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https://www.covid19healthsystem.org/countries/belgium/livinghit.aspx?Section=2.1%20Physical%20infrastructure&Type=Section
https://www.covid19healthsystem.org/countries/canada/livinghit.aspx?Section=2.1%20Physical%20infrastructure&Type=Section
https://www.oecd.org/coronavirus/en/data-insights/intensive-care-beds-capacity
https://www.covid19healthsystem.org/countries/czechrepublic/livinghit.aspx?Section=2.1%20Physical%20infrastructure&Type=Section
https://www.sst.dk/-/media/Nyheder/2020/ITA_COVID_19_220320.ashx?la=da&hash=633349284353F4D8559B231CDA64169D327F1227
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472675/
https://www.covid19healthsystem.org/countries/finland/livinghit.aspx?Section=2.1%20Physical%20infrastructure&Type=Section
https://www.covid19healthsystem.org/countries/france/livinghit.aspx?Section=2.1%20Physical%20infrastructure&Type=Section
https://www.covid19healthsystem.org/countries/germany/livinghit.aspx?Section=2.1%20Physical%20infrastructure&Type=Section
https://www.covid19healthsystem.org/countries/greece/livinghit.aspx?Section=2.1%20Physical%20infrastructure&Type=Section
https://www.oecd.org/coronavirus/en/data-insights/intensive-care-beds-capacity
https://europepmc.org/article/med/32796182
https://www.thejournal.ie/icu-bed-numbers-5217685-Sep2020/
https://www.covid19healthsystem.org/countries/israel/livinghit.aspx?Section=2.1%20Physical%20infrastructure&Type=Section
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https://www.oecd.org/coronavirus/en/data-insights/intensive-care-beds-capacity
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https://www.oecd.org/coronavirus/en/data-insights/intensive-care-beds-capacity
https://dosyasb.saglik.gov.tr/Eklenti/36164,siy2018en2pdf.pdf?0
https://www.oecd.org/coronavirus/en/data-insights/intensive-care-beds-capacity
https://www.oecd.org/coronavirus/en/data-insights/intensive-care-beds-capacity
https://www.oecd-ilibrary.org/sites/63d94877-en/index.html?itemId=/content/component/63d94877-en
https://www.oecd-ilibrary.org/sites/63d94877-en/index.html?itemId=/content/component/63d94877-en
https://journals.lww.com/ccmjournal/Fulltext/2020/05000/Critical_Care_Bed_Capacity_in_Asian_Countries_and.6.aspx
https://www.covid19healthsystem.org/countries/bulgaria/livinghit.aspx?Section=2.1%20Physical%20infrastructure&Type=Section
https://journals.lww.com/ccmjournal/Fulltext/2020/05000/Critical_Care_Bed_Capacity_in_Asian_Countries_and.6.aspx
https://www.oecd-ilibrary.org/sites/63d94877-en/index.html?itemId=/content/component/63d94877-en
https://www.oecd-ilibrary.org/sites/63d94877-en/index.html?itemId=/content/component/63d94877-en
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472675/
https://in-cyprus.philenews.com/coronavirus-seven-patients-in-intensive-care/
https://journals.lww.com/ccmjournal/Fulltext/2020/05000/Critical_Care_Bed_Capacity_in_Asian_Countries_and.6.aspx
https://journals.lww.com/ccmjournal/Fulltext/2020/05000/Critical_Care_Bed_Capacity_in_Asian_Countries_and.6.aspx
https://journals.lww.com/ccmjournal/Fulltext/2020/05000/Critical_Care_Bed_Capacity_in_Asian_Countries_and.6.aspx
https://journals.lww.com/ccmjournal/Fulltext/2020/05000/Critical_Care_Bed_Capacity_in_Asian_Countries_and.6.aspx
https://journals.lww.com/ccmjournal/Fulltext/2020/05000/Critical_Care_Bed_Capacity_in_Asian_Countries_and.6.aspx
https://www.covid19healthsystem.org/countries/malta/livinghit.aspx?Section=2.1%20Physical%20infrastructure&Type=Section
https://northafricapost.com/39786-covid-19-morocco-expands-hospital-capacity.html
https://www.oecd-ilibrary.org/sites/63d94877-en/index.html?itemId=/content/component/63d94877-en
https://journals.lww.com/ccmjournal/Fulltext/2020/05000/Critical_Care_Bed_Capacity_in_Asian_Countries_and.6.aspx
https://www.covid19healthsystem.org/countries/romania/livinghit.aspx?Section=2.1%20Physical%20infrastructure&Type=Section
https://tass.com/world/1162077
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Table C.3: LIST OF ESSENTIAL SECTORS DURING LOCKDOWNS

NACE Rev. 2 Definition

01 Crop and animal production, hunting and related service activities
10 Manufacture of food products

1722 Manufacture of household and sanitary goods and of toilet requisites
1811 Printing of newspapers
1920 Manufacture of refined petroleum products

21 Manufacture of basic pharmaceutical products and pharmaceutical preparations
35 Electricity, gas, steam and air conditioning supply
36 Water collection, treatment and supply

463 Wholesale of food, beverages and tobacco
4646 Wholesale of pharmaceutical goods
4711 Retail sale in non-specialised stores with food, beverages or tobacco predominating
472 Retail sale of food, beverages and tobacco in specialised stores

4730 Retail sale of automotive fuel in specialised stores
4773 Dispensing chemist in specialised stores
4774 Retail sale of medical and orthopaedic goods in specialised stores
4781 Retail sale via stalls and markets of food, beverages and tobacco products
4920 Freight rail transport
4941 Freight transport by road
5224 Cargo handling

53 Postal and courier activities
60 Programming and broadcasting activities
61 Telecommunications

639 Other information service activities
75 Veterinary activities
86 Human health activities
87 Residential care activities

NOTES: This table provides the list of the essential sectors that we consider for the implementation of
lockdowns under Scenario I & Scenario II. These sectors are identified by the full lockdown practices of
countries. Turkish Ministry of Interior, for example, issued a decree on April 10, 2020 indicating the list of
essential sectors.
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Table C.4: MODEL-IMPLIED CHANGES AGAINST DATA

Dep. Var. %∆Y (Model) %∆w f (Model)
(1) (2)

∆Input Shortage (Data) -0.2362** 0.5448**
(0.086) (0.202)

Country FE yes yes

Obs. 319 319
R2 0.083 0.26

NOTES: Table C.4 presents the relationship between input shortages in the manufacturing sector of 21
European countries with the output changes (%∆Y) and factor price changes (%∆w f ) based on our model.
We measure the severity of the input shortages using the responses of business managers collected by the EU
Commission’s Business and Consumer Survey. In the survey, we focus on the input shortage as a factor
limiting production. Specifically, for any given quarter in the period 2003q1-2021q4, we quantify the severity
of the input shortages in a given country-sector pair by the standard deviations above its country-specific
average value over the period 2003q1–2021q4. As an additional robustness check to determine the
relationship between input shortages and the actual data, we regress the percentage change in industrial
production from December 2020 to December 2021 onto the change in input shortages observed in 2021q4
(relative to 2020q4). There is a negative and significant correlation of 0.12 between the severity of input
shortages observed in the data and the decline in actual industrial production. Heteroskedastic-consistent
standard errors are reported in parentheses. ***, **, and * indicate significance at the 1%, 5%, and 10% levels,
respectively.

Table C.5: GDP Decline Relative to the Pre-Pandemic World (percent): No Endogenous
Lockdowns

Baseline Scenarios
Parameter Share of
Setup World AE EMDE AEs (%)

(1) ξ ′i , ξi =0.60 (With lockdown) 1.296 0.592 0.705 45.6
(2) ξ ′i , ξi =0.60 (Without Lockdown) 0.757 0.159 0.598 21.0

NOTES: This table presents the total economic cost associated with the Covid-19 pandemic for the World,
AEs, and EMDEs calculated under the scenario where lockdowns are not allowed. In this scenario, we
assume that the pandemic is fully contained in AEs immediately. In EMDEs, the pandemic evolves at its
natural course, but they could not impose any lockdown measures. We estimate the total economic cost of
each of these scenarios under different trade elasticities set as 0.6, which is the baseline scenario. ξ denotes
the trade elasticity for the production side, and ξ ′ denotes the trade elasticity for the consumption side; see
Figure 7 for details.
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D Model Calculations

Notation and IO matrices

Before moving into individual equations, let’s define the variables and operations that we
will use. The variables that we will use are summarized in Table D.1.

Table D.1: NOTATION USED IN THE MODEL

Var. Dimensions Explanation

C 1 Number of countries.
N (F) 1 Number of industries (factors).
CN (CF) 1 Number of country-industry (country-factor) pairs.
Ω (C + CN + CF)× (C + CN + CF) Input shares (See Eq. D.1 for its structure).
ΩN CN × CN Intermediate input shares.
Ωs CN × N Sectoral aggregate input shares (calculated from ΩN ).
ΩF CN × CF Factor input shares.
b ≡ Ω0 C× CN Expenditure shares.
bs ≡ Ω0s C× N Sectoral aggregate expenditure shares.
α CN × 1 Sectoral value-added (VA) shares.
ω0 C× N Sectoral demand shocks.
Ψ (C + CN + CF)× (C + CN + CF) Leontief Inverse: (I−Ω)−1 (See Eq. D.2 for its structure).
ΨN CN × CN Leontief Inverse for goods: (I −ΩN )−1.
ΨF CN × CF Leontief Inverse for factors: ΨNΩF .
λ (C + CN + CF)× 1 Domar weights.
λN CN × 1 Domar weights for goods.
λF CF× 1 Domar weights for factors.
L CF× 1 Factor size.
χ C× 1 Expenditure/ Income shares of countries.
p (C + CN + CF)× 1 Prices (equals to wages for factors).
w CF× 1 Wages (price for factors).
ξ N × 1 Elasticity of substitution (EoS) within sectors.
σ scalar Consumption EoS across sectors.
ε scalar EoS across input-bundles.
φ scalar EoS across VA and intermediate input bundle.
1n n Vector of ones of dimension n.
1x logical 1 if x is true, 0 otherwise.
In n× n Identity Matrix of size n.

Here, we will explicitly show the structure of Ω and Ψ matrices and their components.
In particular, Ω matrix can be written as:

Ω =



0(CF×CF)0(CF×CN)0(CF×C)

ΩFΩN0(CN×C)

0(C×CF)b = Ω00(C×C)

(D.1)
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ΩN is CN × CN, ΩF is CN × CF and b is C× CN matrix. In our case, ΩF is a diagonal
matrix whose diagonal elements are the value-added share in an industry. The correspond-
ing Ψ matrix is given by:

Ψ = (I −Ω)−1
=



I(CF×CF)0(CF×CN)0(CF×C)

ΨN ΩFΨN0(CN×C)

b ΨN ΩFb ΨNI(C×C)

(D.2)

Hence, if we just obtain ΨN , the other parts of Ψ matrix can be easily obtained.

Solving for Shocks

Let’s denote the total expenditure in country c with Ec ≡ ∑ic′ E0c
ic′ and its expenditure share

in the world with χc ≡ Ec/E. C dimensional χ is the vectoral representation of the country
shares. For expositional convenience and to highlight the difference between the consump-
tion side and the production side, we will denote bc

jm ≡ Ω0c
jm. Hence, b is a C× (CN + CF)

matrix whose first CN columns represent share of goods in final expenditure and last CF
columns are 0. In this section, (CN + CF)× (CN + CF) dimensional Ω matrix represents
the input-output relations between goods and factors only. For any jm ∈ CN ∪ F , we can
write:

λjm =
pjmyjm

E

= ∑
c∈C

pjmx0c
jm

Ec

Ec

E
+ ∑

kc

pjmxkc
jm

E

= ∑
c∈C

bc
jmχc + ∑

kc
Ωkc

jm
pkcykc

E

= ∑
c∈C

bc
jmχc + ∑

kc
Ωkc

jmλkc.

In matrix notation:
λ′ = χ′b + λ′Ω

Inverting this equation yields:
λ′ = χ′bΨ

Ψ ≡ (I −Ω)−1 is the (N + F)× (N + F) dimensional Leontief inverse matrix and does not
include the final consumers. Taking the derivative of this equations yields:

dλ′ = dχ′bΨ + χ′dbΨ + χ′bdΨ.
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Since Ψ = I + Ω + Ω2 + Ω3 + . . . , we can write:

dΨ = dΩ + Ω dΩ + dΩ Ω + Ω2 dΩ + Ω dΩ Ω + dΩ Ω2 + . . .

= (I + Ω + Ω2 + Ω3 + . . . ) dΩ (I + Ω + Ω2 + Ω3 + . . . )
= Ψ dΩ Ψ.

Alternatively:

d(Ψ Ψ−1) = 0 = dΨ Ψ−1 + Ψ dΨ−1 ⇒ dΨ Ψ−1 = −Ψ dΨ−1 ⇒ dΨ = −Ψ dΨ−1 Ψ = Ψ dΩ Ψ.

Therefore:

dλ′ = dχ′bΨ + χ′dbΨ + χ′bdΨ

= dχ′bΨ + χ′dbΨ + χ′bΨ dΩ Ψ

= dχ′bΨ + χ′dbΨ + λ′ dΩ Ψ

= (dχ′b + χ′db + λ′ dΩ)Ψ

For the first term, we use the fact that χc = ∑ f c λ f c. Hence:

dχc = ∑
f c∈Fc

dλ f c.

Our observed expenditure shocks are at the industry level. Let’s denote a multiplicative
expenditure shock to industry j as ω0c

j . Let’s define industry i’s share in expenditure by con-
sumers in country c with bscj ≡ ∑m bc

jm. After the shock, sectoral expenditure shares change
to ω0c

j bscj. In the price index, this shock will be raised to power σ. From the consumption
CES, we can write:

pjmx0c
jm

p0cYc
=

pjmx0c
jm

Ec
= bc

jm(ω
0c
j )σ

 pjm

p0c
j

−ξi
 p0c

j

p0c

−σ(
pjm

p0c

)

= bc
jm(ω

0c
j )σ

(
pjm

)1−ξi
(

p0c
j

)ξi−σ (
p0c
)σ−1 .

We assume that we start with ω0c
j = 1. We can write the elements of db′ with:

dbc
jm = bc

jmd log bc
jm = bc

jmd log

 pjmx0c
jm

p0cEc


= bc

jm(1− ξ j)d log pjm + bc
jm

(
ξ j − σ

bscj

)
∑
v∈C

bc
jvd log pjv

+ bc
jm(σ− 1) ∑

iv∈CN
bc

ivd log piv + bc
jmσd log ω0c

j
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For good production, corresponding input shares for goods are given by:

pjmxkc
jm

pkcykc
= Ωkc

jm

 pjm

pkc
j

−ξi
 pkc

j

pkc
M

−ε(
pkc

M
pkc

)−φ(
pjm

pkc

)

= Ωkc
jm

(
pjm

)1−ξi
(

pkc
j

)ξi−ε (
pMkc

)ε−φ (pkc
)φ−1 .

Let’s define Ωskc
j ≡ ∑m Ωkc

jm and the value added share as αkc ≡ 1− ∑jm Ωkc
jm. We assume

that the factors are industry-specific. Let’s denote the factor used in industry kc with fkc ≡
kc + CN. For that factor, Ωkc

fkc
= αkc. We can express the changes in non-zero elements of Ω:

dΩkc
jm = Ωkc

jmd log Ωkc
jm = Ωkc

jmd log

 pjmxkc
jm

pkcykc


= Ωkc

jm(1− ξ j)d log pjm + Ωkc
jm

ξ j − ε

Ωskc
j

 ∑
v∈C

Ωkc
jvd log pjv

+ Ωkc
jm

(
ε− φ

1− αkc

)
∑

iv∈CN
Ωkc

iv d log piv + Ωkc
jm(φ− 1)d log pkc.

Factor shares, on the other hand, are given by:

w f mxkc
j f

pkcykc
= Ωkc

f m

(
w f m

pkc

)−φ(
w f m

pkc

)

= Ωkc
f m

(
w f m

)1−φ (
pkc
)φ−1 .

We know that Ωkc
f m is non-zero only if f m = fkc. For this factor, we can write:

dΩkc
fkc

= Ωkc
fkc

d log Ωkc
fkc

= αkcd log

(
w fkc

L fkc

pkcykc

)
= αkc(1− φ)d log w fkc

+ αkc(φ− 1)d log pkc.

dΩkc
f m = 0 for all other factors f m 6= fkc.

Sanity Check

Since rows of b matrix are normalized, ∑jm∈CN dbc
jm should be equal to 0.

∑
jm∈CN

dbc
jm = ∑

jm∈CN
bc

jm(1− ξ j)d log pjm
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+ ∑
jm∈CN

bc
jm

(
ξ j − σ

bscj

)
∑
v∈C

bc
jvd log pjv

+ ∑
jm∈CN

bc
jm(σ− 1) ∑

iv∈CN
bc

ivd log piv

+ ∑
jm∈CN

bc
jmσd log ω0c

j .

Rearranging the terms:

∑
jm∈CN

dbc
jm = ∑

jm∈CN
bc

jm(1− ξ j)d log pjm

+ ∑
jv∈C

bc
jvd log pjv

(
ξ j − σ

bscj

)
∑

m∈C
bc

jm

+ ∑
iv∈CN

bc
ivd log piv(σ− 1) ∑

jm∈CN
bc

jm

+ ∑
jm∈CN

bc
jmσd log ω0c

j .

Since:
∑

m∈C
bc

jm = bscj and ∑
jm∈CN

bc
jm = 1,

We find that

∑
jm∈CN

dbc
jm = ∑

jm∈CN
bc

jmd log pjm[(1− ξ j) + (ξ j − σ) + (σ− 1)]

+ ∑
jm∈CN

bc
jmσd log ω0c

j = ∑
jm∈CN

bc
jmσd log ω0c

j = 0.

In last line, we use the fact that we normalize the shocks such that this term is zero.

Since rows of Ω are normalized, ∑jm∈CN∪F dΩkc
jm should be equal to 0.

∑
jm∈CN∪F

dΩkc
jm = ∑

jm∈CN
Ωkc

jm(1− ξ j)d log pjm

+ ∑
jm∈CN

Ωkc
jm

ξ j − ε

Ωskc
j

 ∑
v∈C

Ωkc
jvd log pjv

+ ∑
jm∈CN

Ωkc
jm

(
ε− φ

1− αkc

)
∑

iv∈CN
Ωkc

iv d log piv

+ ∑
jm∈CN

Ωkc
jm(φ− 1)d log pkc

+ αkc(1− φ)d log w fkc
+ αkc(φ− 1)d log pkc.
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Rearranging the terms:

∑
jm∈CN∪F

dΩkc
jm = ∑

jm∈CN
Ωkc

jm(1− ξ j)d log pjm

+ ∑
jv∈N

Ωkc
jvd log pjv

ξ j − ε

Ωskc
j

 ∑
m∈C

Ωkc
jm

+ ∑
iv∈CN

Ωkc
iv d log piv

(
ε− φ

1− αkc

)
∑

jm∈CN
Ωkc

jm

+ αkc(1− φ)d log w fkc
+ (φ− 1)d log pkc

 ∑
jm∈CN

Ωkc
jm + αkc

 .

Since:
∑

m∈C
Ωkc

jm = Ωskc
j and ∑

jm∈CN
Ωkc

jm = 1− αkc,

we can write:

∑
jm∈CN∪F

dΩkc
jm = ∑

jm∈CN
Ωkc

jm[(1− ξ j) + (ξ j − ε) + (ε− φ)]d log pjm

+ αkc(1− φ)d log w fkc
+ (φ− 1)d log pkc

= (1− φ)( ∑
jm∈CN

Ωkc
jmd log pjm + αkcd log w fkc

− d log pkc).

By Shepard’s Lemma:

d log pkc = ∑
jm∈CN

Ωkc
jmd log pjm + αkcd log w fkc

.

Hence
∑

jm∈CN∪F
dΩkc

jm = 0.

Combining Differentials

Recall:
dλ′ = (dχ′b + χ′db + λ′ dΩ)Ψ

. The first term in the parenthesis is:

dχ′b = ∑
c

∑
g∈Fc

dλgbc
jm.
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Each element of the second term, χ′db, is given by:

∑
c∈C

χcdbc
jm = ∑

c∈C
χcbc

jm(1− ξ j)d log pjm

+ ∑
c∈C

χcbc
jm

(
ξ j − σ

bscj

)
∑
v∈C

bc
jvd log pjv

+ ∑
c∈C

χcbc
jm(σ− 1) ∑

iv∈CN
bc

ivd log piv

+ ∑
c∈C

χcbc
jmσd log ω0c

j .

We will separate the third term into two parts: one for the goods and one for the factors.
For goods kc ∈ N :

∑
kc

λkcdΩkc
jm = ∑

kc
λkcΩkc

jm(1− ξ j)d log pjm

+ ∑
kc

λkcΩkc
jm

ξ j − ε

Ωskc
j

 ∑
v∈C

Ωkc
jvd log pjv

+ ∑
kc

λkcΩkc
jm

(
ε− φ

1− αkc

)
∑

iv∈CN
Ωkc

iv d log piv

+ ∑
kc

λkcΩkc
jm(φ− 1)d log pkc.

For the good kc ∈ N and factor fkc we have:

λ′ dΩkc
fkc

= ∑
kc

λkcdΩkc
fkc

= ∑
kc

λkcαkc

[
(1− φ)d log w fkc

+ (φ− 1)d log pkc

]
.

Combining these equations and using Shepard’s Lemma to replace:

d log pjm = ∑
g∈F

Ψjm
g d log wg

and
d log λg = d log wg + d log Lg,

we find that:

dλ f

λ f
= d log λ f = d log w f + d log L f

Line 1: = ∑
jm∈CN

∑
c∈C

∑
g∈F

λg[d log wg + d log Lg]bc
jm1g∈Fc Ψ

jm
f /λ f

Line 2: + ∑
jm∈CN

∑
g∈F

∑
c∈C

χcbc
jm(1− ξ j)Ψ

jm
g d log wgΨjm

f /λ f
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Line 3: + ∑
jm∈CN

∑
c∈C

∑
v∈C

∑
g∈F

χcbc
jm

(
ξ j − σ

bscj

)
bc

jvΨjv
g d log wgΨjm

f /λ f

Line 4: + ∑
jm∈CN

∑
c∈C

∑
iv∈CN

∑
g∈F

χcbc
jm(σ− 1)bc

ivΨiv
g d log wgΨjm

f /λ f

Line 5: + ∑
jm∈CN

∑
c∈C

χcbc
jmσd log ω0c

j Ψjm
f /λ f

Line 6: + ∑
jm∈CN

∑
kc∈CN

∑
g∈F

λkcΩkc
jm(1− ξ j)Ψ

jm
g d log wgΨjm

f /λ f

Line 7: + ∑
jm∈CN

∑
v∈C

∑
kc∈CN

∑
g∈F

λkcΩkc
jm

ξ j − ε

Ωskc
j

Ωkc
jvΨjv

g d log wgΨjm
f /λ f

Line 8: + ∑
jm∈CN

∑
kc∈CN

∑
iv∈CN

∑
g∈F

λkcΩkc
jm

(
ε− φ

1− αkc

)
Ωkc

iv Ψiv
g d log wgΨjm

f /λ f

Line 9: + ∑
jm∈CN

∑
kc∈CN

∑
g∈F

λkcΩkc
jm(φ− 1)Ψkc

g d log wgΨjm
f /λ f

Line 10: + (1− φ)d log w f + (φ− 1) ∑
g∈F

Ψ
i f
g d log wg,

where i f denotes the industry that uses the factor f . Last line derives from the fact that after
multiplying with ΨF and dividing by λ f we obtain:

∑
kc

λkcαkc

[
(1− φ)d log w fkc

+ (φ− 1)d log pkc

]
Ψ fkc

f /λ f .

But Ψ fkc
f = 1 if f = fkc and 0 otherwise. Hence, the only surviving term is for good kc = i f .

λi f αi f /λ f

[
(1− φ)d log w f + (φ− 1)d log pi f

]
.

Note that λi f αi f = λ f . Replacing d log pi f = ∑g∈F Ψ
i f
g d log wg gives us the last line.

Model solution with matrix operations

Special Matrix Operations. There are also several special matrix operations that we use in
our computation. � represent element-by-element multiplication and� represent element-
by-element division. When these operations are between matrices of different sizes, we
will assume that the smaller dimensional matrix would be repeated to match the larger
dimensional matrix. Furthermore, when we use a logic operator with a matrix, it implies
an element-by-element binarization. So M > 0 will return a binary matrix of the same size
of M with elements equal to 1 if the corresponding element in M is larger than 0. Lastly, we
denote the tensor operator with ⊗.
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Solution Strategy. Our ultimate goal is to transform equations in the previous section
above to the format:

d log w = A d log w + B

type equation, so we can solve d log w, which will give us d log p, which in turn will give us
d log Ω. A matrix is CF× CF matrix and B is a CF dimensional vector. A matrix will multi-
ply a vector of d log wg to transform into a d log w f . we can now write the contributions of
each line of d log w equations separately. Each line will be decomposed into:

A(l)d log w + B(l)

matrices where l represents line numbers. Each component of A(l)
f ,g will be mapping d log wg

to d log w f . Combining all these lines, we can write:

A =
10

∑
l=1

A(l) and B =
10

∑
l=1

B(l).

Line 1:
∑

jm∈CN
∑
c∈C

∑
g∈F

λg[d log wg + d log Lg]bc
jm1g∈Fc Ψ

jm
f /λ f

Hence:
A(1)

f ,g = ∑
jm∈CN

∑
c∈C

bc
jmλg1g∈Fc Ψ

jm
f /λ f

and
B(1) = A(1)d log L.

We can turn 1g∈Fc into a binary CF× C matrix whose (g, c)th element is 1 iff g ∈ Fc
by IC ⊗ 1F. Hence:

A(1) = ((ΨF )′ � λF )[b′((IC ⊗ 1′F)� (λF )′)]

Line 2:
∑

jm∈CN
∑

g∈F
∑
c∈C

χcbc
jm(1− ξ j)Ψ

jm
g d log wgΨjm

f /λ f

A(2)
f ,g = ∑

jm∈CN
∑
c∈C

χcbc
jm(1− ξ j)Ψ

jm
g Ψjm

f /λ f

B(2) = 0CF.

A(2) = ((ΨF )′ � λF )(ΨF � [1C ⊗ (1− ξ)]� [b′χ])

Line 3:

∑
jm∈CN

∑
c∈C

∑
v∈C

∑
g∈F

χcbc
jm

(
ξ j − σ

bscj

)
bc

jvΨjv
g d log wgΨjm

f /λ f
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A(3)
f ,g = ∑

j∈I
(ξ j − σ) ∑

m∈C
(Ψjm

f /λ f ) ∑
c∈C

(
χcbc

jm

bscj

)
∑
v∈C

bc
jvΨjv

g

B(3) = 0CF.

With these definitions, we can write:

A(3) = ∑
j∈I

(ξ j − σ)((ΨF(j))
′ � λF )([χ� b(j) � bs(j)]

′b(j))Ψ
F
(j)

where (j) indexes the row or columns corresponding to industry j.

Line 4:
∑

jm∈CN
∑
c∈C

∑
iv∈CN

∑
g∈F

χcbc
jm(σ− 1)bc

ivΨiv
g d log wgΨjm

f /λ f

A(4)
f ,g = (σ− 1) ∑

jm∈CN
(Ψjm

f /λ f ) ∑
c∈C

χcbc
jm ∑

iv∈CN
bc

ivΨiv
g

B(4) = 0CF.

A(4) = (σ− 1)((ΨF )′ � λF )(χ� b)′bΨF

Line 5:
∑

jm∈CN
∑
c∈C

χcbc
jmσd log ω0c

j Ψjm
f /λ f = B(5)

f

A(5) = 0CF×CF

B(5) = σ((ΨF )′ � λF )[(b� d log ω)′χ]

Line 6:
∑

jm∈CN
∑

kc∈CN
∑

g∈F
λkc(1− ξ j)1Ωkc

jm>0Ψjm
g d log wgΨjm

f /λ f

A(6)
f ,g = ∑

jm∈CN
∑

kc∈CN
λkcΩkc

jm(1− ξ j)Ψ
jm
g Ψjm

f /λ f

B(6) = 0CF.

A(6) = ((ΨF )′ � λF )(ΨF � [1C ⊗ (1− ξ)]� [(ΩN )′λN ])

Line 7:

∑
jm∈CN

∑
v∈C

∑
kc∈CN

∑
g∈F

λkcΩkc
jm

ξ j − ε

Ωskc
j

Ωkc
jvΨjv

g d log wgΨjm
f /λ f

A(7)
f ,g = ∑

j∈I
∑

kc∈CN
∑

m∈C
(Ψjm

f /λ f )λkcΩkc
jm

ξ j − ε

Ωskc
j

 ∑
v∈C

Ωkc
jvΨjv

g

B(7) = 0CF.
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A(7) = ∑
j∈I

(ξ j − σ)((ΨF(j))
′ � λF )([χ�ΩN(j) �Ωs(j)]

′ΩN(j))Ψ
F
(j)

Line 8:

∑
jm∈CN

∑
kc∈CN

∑
iv∈CN

∑
g∈F

λkcΩkc
jm

(
ε− φ

1− αkc

)
Ωkc

iv Ψiv
g d log wgΨjm

f /λ f

A(8)
f ,g = ∑

jm∈CN
Ψjm

f /λ f ∑
kc∈CN

λkcΩkc
jm

(
ε− φ

1− αkc

)
∑

iv∈CN
Ωkc

iv Ψiv
g

B(8) = 0CF.

A(8) = (ε− φ)((ΨF )′ � λF )([λN � (1− α)]�ΩN )′ΩNΨF

Line 9:
∑

jm∈CN
∑

kc∈CN
∑

g∈F
λkcΩkc

jmΨkc
g d log wgΨjm

f /λ f

A(9)
f ,g = (φ− 1) ∑

jm∈CN
(Ψjm

f /λ f ) ∑
kc∈CN

λkcΩkc
jmΨkc

g

B(9) = 0CF.

A(9) = (φ− 1)((ΨF )′ � λF )(ΩN � λN )′ΨF

Line 10:
(1− φ)d log w f + (φ− 1) ∑

g∈F
Ψ

i f
g d log wg

A(10)
f ,g = (1− φ)1 f=g + (φ− 1)Ψ

i f
g

B(10) = 0CF.

A(10) = (1− φ)ICF + (φ− 1)ΨF = (1− φ)(ICF −ΨF )

Sanity Check

If all the calculations are correct, the resultant A matrix should be singular because of re-
dundancies. Therefore, we need to replace one of the conditions with the fact that the world
nominal GDP is constant:

dE = ∑
g

dλg = ∑
g

λg(d log wg + d log Lg) = 0.

Hence, we can use this relation to break the singularity:

A1,1 = 0, A1,g>1 = −λg and B1 = − log L′ · λF .
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Table D.2: FORMULATING d log w = A d log w + B

# Equation A B

1 ∑jm∈CN ∑c∈C ∑g∈F λg[d log wg + d log Lg]bc
jm1g∈Fc Ψ

jm
f /λ f ((ΨF )′ � λF )[b′((IC ⊗ 1′F)� (λF )′)] A(1)d log L

2 ∑jm∈CN ∑g∈F ∑c∈C χcbc
jm(1− ξ j)Ψ

jm
g d log wgΨjm

f /λ f ((ΨF )′ � λF )(ΨF � [1C ⊗ (1− ξ)]� [b′χ]) 0CF

3 ∑jm∈CN ∑c∈C ∑v∈C ∑g∈F χcbc
jm

(
ξ j−σ

bscj

)
bc

jvΨjv
g d log wgΨjm

f /λ f ∑j∈I(ξ j − σ)((ΨF(j))
′ � λF )([χ� b(j) � bs(j)]

′b(j))ΨF(j) 0CF

4 ∑jm∈CN ∑c∈C ∑iv∈CN ∑g∈F χcbc
jm(σ− 1)bc

ivΨiv
g d log wgΨjm

f /λ f (σ− 1)((ΨF )′ � λF )(χ� b)′bΨF 0CF

5 ∑jm∈CN ∑c∈C χcbc
jmσd log ω0c

j Ψjm
f /λ f 0CF×CF σ((ΨF )′ � λF ) [χ′(b� d log ω)]′

6 ∑jm∈CN ∑kc∈CN ∑g∈F λkcΩkc
jm(1− ξ j)Ψ

jm
g d log wgΨjm

f /λ f ((ΨF )′ � λF )(ΨF � [1C ⊗ (1− ξ)]� [(ΩN )′λN ]) 0CF

7 ∑jm∈CN ∑v∈C ∑kc∈CN ∑g∈F λkcΩkc
jm

(
ξ j−ε

Ωskc
j

)
Ωkc

jvΨjv
g d log wgΨjm

f /λ f ∑j∈I(ξ j − σ)((ΨF(j))
′ � λF )([χ�ΩN(j) �Ωs(j)]

′ΩN(j))Ψ
F
(j) 0CF

8 ∑jm∈CN ∑kc∈CN ∑iv∈CN ∑g∈F λkcΩkc
jm

(
ε−φ

1−αkc

)
Ωkc

iv Ψiv
g d log wgΨjm

f /λ f (ε− φ)((ΨF )′ � λF )([λN � (1− α)]�ΩN )′ΩNΨF 0CF

9 ∑jm∈CN ∑kc∈CN ∑g∈F λkcΩkc
jmΨkc

g d log wgΨjm
f /λ f (φ− 1)((ΨF )′ � λF )(ΩN � λN )′ΨF 0CF

10 (φ− 1)∑g∈F Ψ
i f
g d log wg (1− φ)(ICF −ΨF ) 0CF

Ext ∑g dλg = ∑g λg(d log wg + d log Lg) = 0 A1,1 = 0, A1,g>1 = −λg B1 = − log L′ · λF

Updating Variables

After solving for d log wg, we can solve for other variables as follows.

Good Prices: Using Shepard’s Lemma, we can easily obtain good prices with:

d log pjm = ∑
g∈F

Ψjm
g d log wg

Factor Domar Weights are related to the factor wages with:

dλ f = λ f (d log w f + d log L f ).

Country Income Shares:
dχc = ∑

f∈Fc

dλ f .

Changes in consumption patterns:

dbc
jm = bc

jm(1− ξ j)d log pjm + bc
jm

(
ξ j − σ

bscj

)
∑
v∈C

bc
jvd log pjv

+ bc
jm(σ− 1) ∑

iv∈CN
bc

ivd log piv + bc
jmσd log ω0c

j

Here, all the terms have bc
jm as a multiplier. That amounts to element by element multipli-

cation. Ignoring that term, we will calculate the rest of the terms which will constitute a
C× CN matrix, which we will denote with BTt where t stands for term.:

Term 1:
(1− ξ j)d log pjm
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In Matrix notation:
BT1 = 1C ⊗ ([1C ⊗ (1− ξ)]� d log p)′

Term 2: (
ξ j − σ

bscj

)
∑
v∈C

bc
jvd log pjv

In Matrix notation:

BT2
(j) = 1′C ⊗ [(ξ j − σ)(b(j) � bs(j))d log p(j)]

Term 3:
(σ− 1) ∑

iv∈CN
bc

ivd log piv

In Matrix notation:
BT3 = (σ− 1)1′CN ⊗ (b d log p)

Term 4:
σd log ω0c

j

In Matrix notation:
BT4 = σd log ω

Changes in input weights:

dΩkc
jm = Ωkc

jm(1− ξ j)d log pjm + Ωkc
jm

ξ j − ε

Ωskc
j

 ∑
v∈C

Ωkc
jvd log pjv

+ Ωkc
jm

(
ε− φ

1− αkc

)
∑

iv∈CN
Ωkc

iv d log piv + Ωkc
jm(φ− 1)d log pkc

Here, all the terms have Ωkc
jm as a multiplier. That amounts to element by element multi-

plication. Ignoring that term, we will calculate the rest of the terms which will constitute a
CN × CN matrix, which we will denote with OTt where t stands for term.:

Term 1:
(1− ξ j)d log pjm

In Matrix notation:

OT1 = 1CN ⊗ ([1C ⊗ (1− ξ)]� d log p)′

Term 2: ξ j − ε

Ωskc
j

 ∑
v∈C

Ωkc
jvd log pjv
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In Matrix notation:

OT2
(j) = 1′CN ⊗ [(ξ j − σ)(ΩN(j) �Ωs)d log p(j)]

Term 3: (
ε− φ

1− αkc

)
∑

iv∈CN
Ωkc

iv d log piv

In Matrix notation:

OT3 = (ε− φ)1′CN ⊗ ([ΩN � (1− α)] d log p)

Term 4:
(φ− 1)d log pkc

In Matrix notation:
OT4 = (φ− 1)(d log p⊗ 1′CN)

Changes in value-added share:

dΩkc
fkc

= dαkc = αkc(1− φ)d log w fkc
+ αkc(φ− 1)d log pkc.

In Matrix notation:
dα = (φ− 1)(α� [d log p− d log w])⊗ 1′CN

Leontief Inverse: After combining db and dΩ matrices, we can write (C + CN + CF) ×
(C + CN + CF) dimensional dΨ as:

d Ψ = Ψ dΩ Ψ.

Good Domar Weights: Recall that:

dλ′ = (dχ′b + χ′db + λ′ dΩ)Ψ.

We know that dχ′, db and dΩ terms from above. Hence, we can calculate the changes in
Good Domar weights from this expression.
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