The Macroeconomic Consequences of Exchange Rate Depreciations by Fukui, Nakamura, and Steinsson

Şebnem Kalemli-Özcan University of Maryland, CEPR, NBER

May 2023

Are exchange rate depreciations expansionary or contractionary?

- <u>Standard Models:</u> (Mundell-Fleming/Obstfeld-Rogoff)
 - \Rightarrow Expansionary due to expenditure switching (X \uparrow , M \downarrow , Net exports $\uparrow)$
- Data: Depreciations and devaluations are associated with contractions, especially for EMs

An impossible identification problem: Exchange rates are endogenous,

 \Rightarrow depreciations go hand in hand with negative output shocks, loose monetary policy and adverse financial shocks/crises

<u>Path 1:</u> Exchange Rate Disconnect Literature—Who cares? Exchange rates are disconnected from macro aggregates

<u>Path 2:</u> Model contractionary channels that dominate expenditure switching quantitatively and provide evidence using micro data

- Balance sheet effects with FX mismatch: \downarrow investment even if \uparrow NX
- Exporter are importers: \downarrow in M means \downarrow in X
- Dollar pricing weakens expenditure switching as \downarrow M but $ar{X}$

Depreciations are expansionary but not due to expenditure switching (NX actually \downarrow)

Depreciations are expansionary since agents take advantage of UIP deviations

 \Rightarrow Higher UIP premia on home currency generates a boom via cheaper FX borrowing relative to expensive local currency borrowing (Capital inflows \uparrow)

Clever identification: Compare peggers to floaters (vis-a-vis the US dollar)

Depreciations are expansionary but not due to expenditure switching (NX actually \downarrow)

Depreciations are expansionary since agents take advantage of UIP deviations

 \Rightarrow Higher UIP premia on home currency generates a boom via cheaper FX borrowing relative to expensive local currency borrowing (Capital inflows \uparrow)

Clever identification: Compare peggers to floaters (vis-a-vis the US dollar)

The Narrative:

- US dollar gets an exogenous UIP shock since noise traders reduce their demand for US dollars, dollar deprecaites
- Peggers expand relative to floaters
- But not because they lower policy rates to keep the peg (nominal interest rates rise)
- Pegger "imports" the UIP shock from the US
- Pegger agents work against noise traders and increase their demand for dollars

Floater UIP (South Africa): $i_{SA} - i_{US} - [E(S) - S] = 0$ if UIP holds; \Rightarrow S=SA/USD; Dollar depreciation: S \downarrow

Pegger UIP (Egypt): $i_{Egypt} = i_{US}$

Floater UIP (South Africa): $i_{SA} - i_{US} - [E(S) - S] = 0$ if UIP holds; \Rightarrow S=SA/USD; Dollar depreciation: S \downarrow

Pegger UIP (Egypt): $i_{Egypt} = i_{US}$

UIP does not hold in the model-no "deep-pocket" investor:

Floater UIP w/deviation: $i_{SA} - i_{US} - [E(S) - S] + \lambda = 0$; λ is the UIP wedge

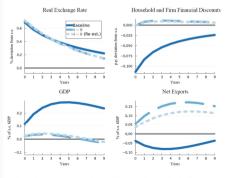
Pegger UIP as a function of Floater UIP: $i_{Egypt} = i_{SA} - ES + S + \lambda$

Floater UIP (South Africa): $i_{SA} - i_{US} - [E(S) - S] = 0$ if UIP holds; \Rightarrow S=SA/USD; Dollar depreciation: S \downarrow

Pegger UIP (Egypt): $i_{Egypt} = i_{US}$

UIP does not hold in the model-no "deep-pocket" investor:

Floater UIP w/deviation: $i_{SA} - i_{US} - [E(S) - S] + \lambda = 0$; λ is the UIP wedge


Pegger UIP as a function of Floater UIP: $i_{Egypt} = i_{SA} - ES + S + \lambda$

- When US dollar depreciates (S \downarrow), lower premia on SA/higher on US ($\lambda \downarrow$)
 - \Rightarrow SA appreciates relative to US and Egypt

 \Rightarrow Boom in Egypt relative to SA since Egypt can take advantage of lower FX borrowing costs and receive capital inflows

Model Mechanics

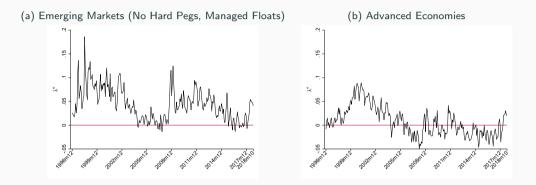
- Augmented Itskhoki and Mukhin' 21, JPE: HH and firms can borrow and save in FX (s > 0)—VERY IMPORTANT, no expansion with s = 0
- Adding capital flight shock make everyone reduce demand for dollars, outflows and recession
- With both shocks, no correlation between output and exchange rates

Financial switching instead of expenditure switching

Why showing evidence on the mechanism is important?

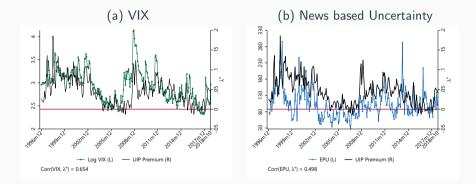
Why showing evidence on the mechanism is important?

- <u>Cross-border data</u>: wider UIP premiums associated with higher borrowing costs from abroad (within country their mechanism applies)
- In theory: two different modeling style behind UIP deviations, both give similar portfolio balance/exchange rate equations:
 - $\bullet\,$ Financial frictions \Rightarrow Limit to arbitrage so you cannot absorb the risky asset
 - Risk aversion \Rightarrow Imperfect substitution of assets; RA investor do not want to absorb


Why showing evidence on the mechanism is important?

- <u>Cross-border data</u>: wider UIP premiums associated with higher borrowing costs from abroad (within country their mechanism applies)
- In theory: two different modeling style behind UIP deviations, both give similar portfolio balance/exchange rate equations:
 - $\bullet\,$ Financial frictions $\Rightarrow\,$ Limit to arbitrage so you cannot absorb the risky asset
 - Risk aversion \Rightarrow Imperfect substitution of assets; RA investor do not want to absorb

The source of the UIP deviation matters for:


- Policy implications: when do you want to close UIP deviations with what policy?
- If it is driven by higher uncertainty, one can match both relative cheap borrowing in FX within a country and higher borrowing costs from abroad overall.

CROSS-BORDER: UIP does not hold

Notes: Kalemli-Ozcan and Varela, 2019: 5 Facts of the UIP Premium

CROSS-BORDER: UIP correlates with risk sentiment, news, uncertainty

Notes: Kalemli-Ozcan and Varela, 2019: 5 Facts of the UIP Premium

WITHIN A COUNTRY: There is evidence for the authors' mechanism

Notes: di Giovanni, Kalemli-Ozcan, Ulu, and Baskaya'21, RESTUD: International Spillovers & Local Credit Cycles

- A risk based model can account for both facts as pegs/managed floats inherits stochastic properties of USD
- Akinci, Kalemli-Ozcan, Queralto, 2022; Hassan, Mertens, Zhang'23, RESTUD

Identification assumption: pegs are not differentially exposed to aggregate shocks correlated with the USD

Identification assumption: pegs are not differentially exposed to aggregate shocks correlated with the USD <u>Candidate 1</u>: US monetary policy as pegs should mimic the US-RULED OUT!

- Low correlation between US monetary policy and US dollar
- When US dollar depreciates pegs should ↓ i to keep the peg but they show ↑ i (countercyclical MP/imported US risk premia—De Leo, Gopinath, Kalemli-Ozcan, 2023)

Identification assumption: pegs are not differentially exposed to aggregate shocks correlated with the USD <u>Candidate 1</u>: US monetary policy as pegs should mimic the US-RULED OUT!

- Low correlation between US monetary policy and US dollar
- When US dollar depreciates pegs should ↓ i to keep the peg but they show ↑ i (countercyclical MP/imported US risk premia—De Leo, Gopinath, Kalemli-Ozcan, 2023)

<u>Candidate 2</u>: Risk-on-off/GFC (Rey'13, JH)—Bad times: Dollar appreciates, spreads/UIP \uparrow , capital flows \downarrow

- Pegs/managed floats/EMs exposed more to these risk shocks—risk-sensitive capital flows (Kalemli-Ozcan'19, JH)
- Pegs-floats would show a relative expansion w/USD depreciation due to different exposure to global risk/sentiment shocks.
- Different than pegs share negative shocks w/US issue since USD depreciates in good times

Identification assumption: pegs are not differentially exposed to aggregate shocks correlated with the USD <u>Candidate 1</u>: US monetary policy as pegs should mimic the US-RULED OUT!

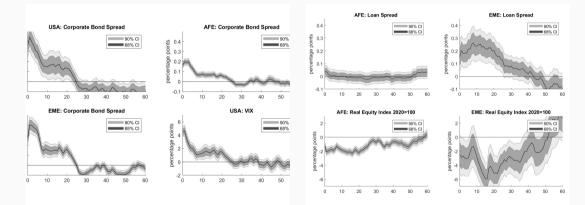
- Low correlation between US monetary policy and US dollar
- When US dollar depreciates pegs should ↓ i to keep the peg but they show ↑ i (countercyclical MP/imported US risk premia—De Leo, Gopinath, Kalemli-Ozcan, 2023)

<u>Candidate 2:</u> Risk-on-off/GFC (Rey'13, JH)—Bad times: Dollar appreciates, spreads/UIP \uparrow , capital flows \downarrow

- Pegs/managed floats/EMs exposed more to these risk shocks—risk-sensitive capital flows (Kalemli-Ozcan'19, JH)
- Pegs-floats would show a relative expansion w/USD depreciation due to different exposure to global risk/sentiment shocks.
- Different than pegs share negative shocks w/US issue since USD depreciates in good times

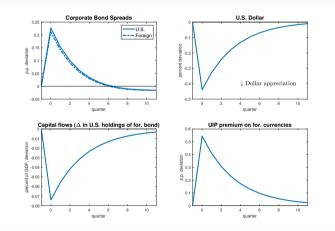
Candidate 3: The choice of pegging is endogenous to lack of monetary policy credibility

• Countries who peg lack policy credibility which is why they are more exposed to risk shocks—peg provides another nominal anchor (authors show higher inflation in pegs)

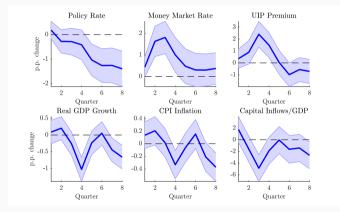

Focusing on advanced countries will help w/these issues.

- This is an important paper.
- Combining clever identification with a creative model can address one of the most important questions in international macro

- This is an important paper.
- Combining clever identification with a creative model can address one of the most important questions in international macro
 - Depreciations alone can be expansionary (when home agents have access to foreign financing)
 - Unless combined with global risk-off/capital flight episodes
 - Calls for flexible exchange rates—different implication than state of the art models + IMF


Appendix

Local Projections on US-UIP Shocks


Source: Akinci, Kalemli-Ozcan, Queralto, 2022

Model Calibration: Transmission of US-UIP shock via higher uncertainty/sentiment

Source: Akinci, Kalemli-Ozcan, Queralto, 2022

Local Projections on US-MP shock

Source: De Leo, Gopinath, Kalemli-Ozcan, 2023