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these models, we introduce a theory of supermodular correspondences. We employ
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1 Introduction

Consider a firm that uses ℓ factors to produce a single good sold at a fixed price. The

factors of production are said to be complements if a fall in the price of one factor raises

the demand for all factors (at least weakly). It is well-known that complementarity

holds if the production function is supermodular; in this context, supermodularity says

that the marginal productivity of a factor is increasing in the level of the other factors.1

A natural follow up question is to ask what conditions on the production technology

will guarantee factor complementarity when the firm is producing multiple output goods.

In that case, the firm’s production possibility can be represented by a correspondence Γ

where set Γ(x) consists of all the combinations of output goods that are producible using

factors x. Assuming that there are m output goods priced at q = (q1, q2, . . . , qm), factor

complementarity holds if the maximum revenue

f(x) := max
{
q · y : y ∈ Γ(x)

}
is a supermodular function of x.2 What conditions on Γ will guarantee this?

This issue is one of many in economic modelling that requires supermodularity of

a value function after some optimization procedure. For another example, consider an

agent who has to take an action under uncertainty. Suppose that the agent’s payoff is

g(x, s), where x ∈ X ⊆ R is the chosen action at state s ∈ S ⊆ R. The expected utility

of action x is therefore f(x, t) :=
∫
g(x, s)dλ(s, t), where t ∈ T ⊆ R parameterizes the

distribution function λ(·, t) over S. Suppose that g is such that the marginal payoff of a

higher action increases with s, i.e., the function g is supermodular. Then it is reasonable

that the expected marginal payoff of a higher action should be greater when higher states

are more likely. This intuition is correct: if g is a supermodular function of (x, s), then f

is supermodular in (x, t) if λ(·, t) first order stochastically increases with t. This in turn

implies that the optimal action, i.e., argmax
{
f(x, t) : x ∈ X

}
, increases with t.

As a simple application of this result, consider an agent who decides on his savings x

in period 1, given uncertainty in his period 2 income, denoted by s. Then

g(x, s) := u(m− x) + βu
(
x(1 + r) + s

)
, (1)

1 See Topkis (1978), Milgrom and Roberts (1990), and Milgrom and Shannon (1994).
2 We are assuming here that the firm is a price-taker in all markets. For an alternative interpretation

of vector q and correspondence Γ see Section 4.
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where u is the per-period utility, β is the discount rate, and r is the interest. In this

case, the function g is submodular in (x, s) (equivalently, gxs ≤ 0) so long as u is concave.

Thus, a first order shift in the distribution of period 2 income will reduce savings.

Suppose that instead of being an EU-maximizer, the agent is endowed with maxmin

preferences as in Gilboa and Schmeidler (1989), so that the ex-ante utility of action x is

f(x, t) := min

{∫
S

g(x, s)dλ(s) : λ ∈ Λ(t)

}
, (2)

where Λ(t) denotes a set of probability distributions over S parameterized by t. Thus, f

is the value function arising from Nature choosing λ ∈ Λ(t). Assuming that g is super-

modular, what conditions on the correspondence Λ will guarantee that f is supermodular

(and hence that the optimal choice of x increases with t)? That is, how do we compare

sets of distributions in a way that generalizes the first order stochastic dominance?

Our results. In Section 2 we formulate different ways of extending the notion of su-

permodularity to a correspondence Γ : X → Y , where X is a lattice and Y is an

ordered vector space. Our main results are presented in Section 3. We show that

one notion of the supermodularity of Γ is sufficient (and necessary) to guarantee that

f(x) = max
{
ϕ(y) : y ∈ Γ(x)

}
is a supermodular function, for any positive linear func-

tional ϕ : Y → R, while a different but related notion of the supermodularity of Γ

characterizes the supermodularity of f(x) = min
{
ϕ(y) : y ∈ Γ(x)

}
. The remainder of

the paper is devoted to exploiting these results in different economic contexts.

In Section 4, we apply our main theorems to production analysis. We develop prop-

erties on the production correspondence that are sufficient for factors to be complements

and provide examples where the property holds. We also explore the conditions under

which a change in technology leads to lower (or higher) marginal cost of output.

Section 5 studies the comparative statics of decision-making with maxmin, variational,

and multiplier preferences. For each of these models, we formulate what it means for ‘be-

liefs to shift towards higher states.’ For the maxmin model, we show that f , as defined

by (2), is supermodular in (x, t) for any supermodular g, if and only if the belief corre-

spondence Λ shifts in the following sense: for any t′ ≥ t and λ ∈ Λ(t), λ′ ∈ Λ(t′), there is

µ ∈ Λ(t) and µ′ ∈ Λ(t′) such that

λ′ ⪰ µ, µ′ ⪰ λ, and 1
2
λ + 1

2
λ′ = 1

2
µ + 1

2
µ′,
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where ⪰ denotes first order stochastic dominance.3,4 Returning to our example of the

ambiguity averse saver, greater optimism about his period 2 income, captured by a shift

in Λ in the sense defined, would lead to lower savings in period 1.

Our definition is a natural way of extending first order stochastic dominance to the

comparison of sets of distributions; indeed, if Λ(t) and Λ(t′) are singletons then our

definition is equivalent to first order stochastic dominance. This definition is also sufficient

to guarantee monotone utility comparisons, in the sense that v(t) = min
{ ∫

S
u(s)dλ(s) :

λ ∈ Λ(t)
}

is increasing in t, for any increasing function u. However, the condition is not

necessary and in the maxmin model there are at least two useful notions of first order

stochastic dominance: one for comparing utilities and another for comparing actions. We

provide characterizations for both types of first order stochastic dominance.

We also consider the variational preferences model, where the utility of action x is

f(x, t) := min

{∫
S

g(x, s)dλ(s) + c(λ, t) : λ ∈ △S

}
.

In this context, we characterize the change in the cost function c that captures the notion

that the agent considers higher states to be more likely, which leads in turn to a higher

marginal utility for higher action. In the case of multiplier preferences, where c is relative

entropy, this change in the cost function will occur if the agent’s benchmark distribution

shifts upwards with respect to the monotone likelihood ratio order.

We consider applications to dynamic programming in Section 6; specifically, we show

that the monotone method in Hopenhayn and Prescott (1992) can be extended to the

case where, instead of maximizing discounted expected utility, the agent’s preference over

uncertain utility streams conforms to the maxmin model.

2 Basic concepts

In this section we introduce the basic mathematical concepts that are crucial to our study.

A textbook treatment of this material can be found in Topkis (1998).

3 Note that, if λ′ ⪰ λ, then µ and µ′ can be chosen to be λ and λ′, respectively.
4 This condition holds, for example, if Λ(t) =

{
λ ∈ △S : ν(·, t) ⪰ λ ⪰ µ(·, t)

}
, where distributions

µ(·, t) and ν(·, t) are increasing in t in the first order stochastic sense. Hence, the agent’s uncertainty is

captured by an interval of distributions, with both its upper and lower bounds increasing in t.
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2.1 Orderings, lattices, and comparative statics

A partial order ≥X over a set X is a reflexive, transitive, and antisymmetric binary

relation. A partially ordered set, or a poset, is a pair (X,≥X) consisting of a set X and

a partial order ≥X . Whenever it causes no confusion, we denote (X,≥X) with X. For

any two elements x, x′ of a poset X, their meet, or the greatest lower bound, is denoted

by x ∧ x′, and their join, or the least upper bound, by x ∨ x′. A poset X is a lattice if

for any x, x′ ∈ X both their meet x∧ x′ and their join x∨ x′ exist. A subset Y of X is a

sublattice of X if it contains y ∧ y′ and y ∨ y′ for any y, y′ ∈ Y .

A basic example of a lattice is the Euclidean space Rℓ endowed with the product

order ≥, i.e., for any vectors x, x′ ∈ Rℓ, we have x′ ≥ x if x′
i ≥ xi, for all i = 1, . . . , ℓ.

In this case, the meet x ∧ x′ and the join x ∨ x′ are given by (x ∧ x′)i = min{xi, x
′
i} and

(x ∨ x′)i = max{xi, x
′
i}, for all i = 1, . . . , ℓ. For the purposes of this paper, the second

important example of a lattice is (△S,⪰), where △S is the set of cumulative distribution

functions defined on S ⊆ R and λ′ ⪰ λ if λ′ first order stochastically dominates λ (which

means that λ′(s) ≤ λ(s), for all s ∈ S). Then, for two distribution λ and µ, the join λ∨µ is

given by (λ∨µ)(s) = min{λ(s), µ(s)} and the meet λ∧µ by (λ∧µ)(s) = max{λ(s), µ(s)}.

Our main theoretical results are applicable to correspondences that map a lattice to

an ordered vector space. An ordered vector space (Y,≥Y ) is a real vector space Y endowed

with a partial order ≥Y that preserves the vector space operations, i.e., for any y, y′ ∈ Y ,

if y′ ≥Y y then (y′ + z) ≥Y (y + z) and αy′ ≥Y αy, for any z ∈ Y and α ≥ 0. For the

purposes of the applications in this paper, the relevant ordered vector space is simply the

Euclidean space endowed with the product order.

Lattice-theoretic concepts play an important role in the study of comparative statics.

For any two subsets Y , Y ′ of a lattice X, we say that Y ′ dominates Y in the strong set

order induced by ≥X , if for any y ∈ Y and y′ ∈ Y ′, we have y ∧ y′ ∈ Y and y ∨ y′ ∈

Y ′. Whenever Y ′ and Y contain their greatest elements y′ and y, respectively, then Y ′

dominates Y in the strong set order only if y′ ≥X y.5 While the strong set order is not

complete, it is transitive over subsets of X (see Topkis, 1978).

A function f : X → R defined over a lattice X is supermodular if for any elements x,

5 Similarly, if Y ′ and Y contain their least elements y′ and y respectively, then Y ′ dominates Y in

the strong set order only if y′ ≥X y. Moreover, whenever Y = {y} and Y ′ = {y′} (i.e., the sets are

singletons) then y′ ≥X y if and only if Y ′ dominates Y in the strong set order.
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x′ ∈ X, we have f(x ∧ x′) + f(x ∨ x′) ≥ f(x) + f(x′). We say that f is submodular if

(−f) is supermodular.

Let X be a lattice and T be a partially ordered set. A function f : X×T → R is said

to have increasing differences if, for all x′ ≥X x, the difference δ(t) = f(x′, t) − f(x, t)

is increasing in t. This notion is closely related to supermodularity; indeed, if T ⊆ R,

then it is straightforward to check that the function f(x, t) is supermodular in (x, t) with

respect to the product order on X × T if and only if it is supermodular in x and has

increasing differences in (x, t).

Topkis (1978) shows that whenever the function f : X × T → R is supermodular in

x, then the set of maximizers Φ(t) = arg max
{
f(x, t) : x ∈ X

}
is a sublattice of X. If,

in addition, f has increasing differences in (x, t), then this set increases in t with respect

to the strong set order, i.e., Φ(t′) dominates Φ(t) in the strong set order whenever t′ ≥ t.

We shall refer to this result as the Monotone Comparative Statics (MCS) theorem.6 It is

also known that if Φ(t) is a compact sublattice of a Euclidean space, then it must contain

the least and the greatest elements, and both will be increasing in t.

2.2 Upper and lower supermodular correspondences

Suppose that (X,≥X) is a lattice and (Y,≥Y ) is an ordered vector space. A correspon-

dence Γ : X → Y is upper supermodular if for any two elements x, x′ ∈ X and y ∈ Γ(x),

y′ ∈ Γ(x′), there is z ∈ coΓ(x ∧ x′) and z′ ∈ coΓ(x ∨ x′) such that

z + z′ ≥Y y + y′.7 (3)

Equivalently, the condition can be expressed in terms of average vectors that satisfy

(1/2)z + (1/2)z′ ≥Y (1/2)y + (1/2)y′. See Figure 1 for a graphical interpretation.

The correspondence Γ is lower supermodular if for any x, x′ ∈ X and z ∈ Γ(x ∧ x′),

z′ ∈ Γ(x ∨ x′) there are vectors y ∈ coΓ(x), y′ ∈ coΓ(x′) that satisfy (3).8 Finally, the

6 Milgrom and Shannon (1994) present a well-known generalization of the MCS theorem where su-

permodularity and increasing differences are replaced by their ordinal counterparts.
7 By coA we denote the convex hull of set A.
8 Notice that, the distinction between upper and lower supermodularity disappears if Γ is a function,

i.e., Γ is a singleton-valued, rather than a set-valued correspondence. It is easy to construct corre-

spondences that are upper supermodular but not lower supermodular, or vice versa. For example, let

X =
{
x, x′, (x ∨ x′), (x ∧ x′)

}
, where x and x′ are unordered points in R2 and define Γ : X → R by

Γ(x) = Γ(x′) = {1}, and Γ(x ∧ x′) = Γ(x ∨ x′) = [0.5, 1]. Then Γ is upper supermodular since 1 is in
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1
2
(y + y′)

bc y
′
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bcz
′

bc
1
2
(z + z′)

bcz

Γ(x)

Γ(x′)
Γ(x ∧ x′)

Γ(x ∨ x′)

y1

y2

Figure 1: An upper supermodular correspondence Γ : X → Y = R2.

correspondence is supermodular if it is both upper and lower supermodular.

Submodularity of correspondences can be defined analogously. The correspondence

Γ is upper submodular if for any x, x′ ∈ X and y ∈ Γ(x), y′ ∈ Γ(x′), there is some

z ∈ coΓ(x ∧ x′), z′ ∈ coΓ(x ∨ x′) that satisfy

y + y′ ≥Y z + z′;

equivalently, this means that (−Γ) is an upper supermodular correspondence. One may

define lower submodularity and submodularity in an analogous fashion.

Our definition of supermodular correspondences generalizes the familiar notion of su-

permodularity applied to real-valued functions, presented at the beginning of this section.

It also extends the concept of stochastic supermodularity introduced in Topkis (1968) to

correspondences;9 a function mapping a lattice to the set of probability measures on some

measurable space is said to be stochastically supermodular if condition (3) holds with ≥Y

representing the first order stochastic dominance.

both Γ(x∨ x′) and Γ(x∧ x′). However, it is not lower supermodular. Indeed, choose z = z′ = 0.5, where

z ∈ Γ(x ∧ x′) and z′ ∈ Γ(x ∨ x′); then y + y′ = 2 > 1 = z + z′, for all y ∈ Γ(x) and y′ ∈ Γ(x′).
9 Although Topkis (1968) refers to this property as stochastic convexity, the term stochastic super-

modularity is also commonly used (see Curtat, 1996 or Balbus, Reffett, and Woźny, 2014).
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Suppose that Γ : X → Y has convex and downward comprehensive values, where

latter means that y ∈ Γ(x) and y ≥Y z implies z ∈ Γ(x). Then the correspondence Γ is

upper supermodular if and only if, for all x, x′ ∈ X,

Γ(x ∧ x′) + Γ(x ∨ x′) ⊇ Γ(x) + Γ(x′). (4)

The fact that (4) implies upper supermodularity is clear and does not even require Γ to

have downward comprehensive values. To show the converse, suppose that Γ is upper

supermodular. Thus, for any y ∈ Γ(x), y′ ∈ Γ(x′) there is some z ∈ Γ(x∧x′), z′ ∈ Γ(x∨x′)

such that z+ z′ ≥Y y+ y′. In particular, we have z ≥Y (y+ y′− z′). Since Γ is downward

comprehensive, it must be that (y + y′ − z′) ∈ Γ(x ∧ x′). Consequently, this implies that

(y + y′) = (y + y′ − z′) + z′ belongs to Γ(x ∧ x′) + Γ(x ∨ x′).

A special case of property (4) appears in the study of cooperative games with non-

transferable utility. In that context, X is the collection of coalitions of a finite set N

of players in a game, i.e., the power set of N ; when endowed with the set inclusion

order ⊇, the pair (X,⊇) forms a lattice. For any coalition x, set Γ(x) ⊆ RN consists of

utility profiles (across all players in the game) that could result from the formation of

that coalition. The game is said to be cardinally convex if (4) holds (see Sharkey, 1981,

Section 2); in other words, whenever the correspondence Γ is upper supermodular.

2.3 Generating supermodular correspondences

In this subsection we list some simple results on generating or preserving the supermodular

property on correspondences.

Fact 1. Upper supermodularity is preserved by downward comprehensive extensions. To

be precise, whenever the correspondence Γ : X → Y is upper supermodular, then so

is Γ̄(x) =
{
y ∈ Y : y ≤Y z, for some z ∈ Γ(x)

}
. Similarly, lower supermodularity is

preserved by upward comprehensive extensions.

Fact 2. Upper and lower supermodularity are preserved by summation, i.e., for any

upper (lower) supermodular correspondences Γ, Λ : X → Y , the correspondence Ω(x) =

αΓ(x) + βΛ(x) is an upper (lower) supermodular, for any positive scalars α, β ≥ 0.
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Fact 3. The functions gi : X → R are supermodular over a lattice X, for all i = 1, . . . , ℓ,

if and only if the map G : X → Rℓ, given by G(x) =
(
g1(x), . . . , gℓ(x)

)
, is a supermodular

function, i.e., we have G(x ∧ x′) + G(x ∨ x′) ≥ G(x) + G(x′), for all x, x′ ∈ X, where ≥

denotes the natural product order on Rℓ.

Fact 4. Let Γi : Xi → Y be a correspondence from Xi ⊆ R to an ordered vector space

Y , for i = 1, 2. Then the map Λ : X1 ×X2 → Y , where Λ(x1, x2) = Γ1(x1) + Γ2(x2), is a

supermodular correspondence (in fact, it is also submodular).

Fact 5. For an arbitrary subset Z of an ordered vector space Y , a supermodular function

h : X → Y over a lattice X, and positive scalars α and β, the mapping Γ : X → Y , given

by Γ(x) =
{
αy + βh(x) : y ∈ Z

}
, is a supermodular correspondence.

Fact 6. Let Z be a subset of an ordered vector space Y such that z ≥ 0, for all z ∈ Z. For

any positive, supermodular function h : X → R+ over a lattice X, the correspondence

Γ : X → Y given by Γ(x) =
{
h(x)z : z ∈ Z

}
is supermodular.

This claim requires a short proof. Lemma 5.27 in Aliprantis and Border (2006) guar-

antees that αcoZ + βcoZ = (α + β)coZ, for any positive scalars α and β. To show that

the map Γ is upper supermodular, take any h(x)y ∈ Γ(x) and h(x′)y′ ∈ Γ(x′). Given

the above property of set Z, there is a vector v ∈ coZ such that h(x)y + h(x′)y′ =[
h(x) + h(x′)

]
v. Since h is supermodular and Z is nonnegative,[

h(x) + h(x′)
]
v ≤

[
h(x ∧ x′) + h(x ∨ x′)

]
v.

Since h(x∧ x′)v ∈ coΓ(x∧ x′) and h(x∨ x′)v ∈ coΓ(x∨ x′), this concludes the proof. An

analogous argument guarantees that Γ is also lower supermodular.

Fact 7. Let X, T be lattices and Z be a sublattice of X × T (endowed with the product

order). By XZ we denote the set of elements in X for which there is some t ∈ T such

that (x, t) ∈ Z; it is straightforward to check that XZ is a sublattice of X. Suppose that

h : Z → Y is a supermodular function, where Y is an ordered real vector space. Then

the correspondence Γ : XZ → Y , given by

Γ(x) :=
{
h(x, t) : (x, t) ∈ Z

}
,

is upper supermodular. Indeed, take any y ∈ Γ(x) and y′ ∈ Γ(x′). By the definition

of Γ, there is some t and t′ in T such that y = h(x, t) and y′ = h(x′, t′). Moreover, the
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supermodularity of function h implies that

h
(
(x ∧ x′), (t ∧ t′)

)
+ h

(
(x ∨ x′), (t ∨ t′)

)
≥ h(x, t) + h(x′, t′),

where h
(
(x, t) ∧ (x′, t′)

)
belongs to Γ(x ∧ x′) and h

(
(x, t) ∨ (x′, t′)

)
to Γ(x ∨ x′).

3 Value functions of supermodular correspondences

In this section we present our main theorems on supermodular correspondences. While

the proofs are simple, these results lead naturally to a wide range of applications.

Main Theorem. Suppose that X is a lattice and Y is an ordered vector space. For any

positive linear functional ϕ : Y → R,10

(i) if correspondence Γ : X → Y is upper supermodular then the function f : X → R,

given by f(x) := max
{
ϕ(y) : y ∈ Γ(x)

}
, is supermodular;11

(ii) if correspondence Γ : X → Y is lower supermodular then the function f : X → R,

given by f(x) := min
{
ϕ(y) : y ∈ Γ(x)

}
, is supermodular.

Proof. To show (i), take any x, x′ ∈ X and y ∈ Γ(x), y′ ∈ Γ(x′). By the upper super-

modularity of Γ, there is z ∈ coΓ(x ∧ x′) and z′ ∈ coΓ(x ∨ x′) such that z + z′ ≥Y y + y′.

Therefore, for any positive linear functional ϕ : Y → R,

ϕ(y) + ϕ(y′) = ϕ
(
y + y′

)
≤ ϕ

(
z + z′

)
= ϕ(z) + ϕ(z′)

≤ max
{
ϕ(v) : v ∈ Γ(x ∧ x′)

}
+ max

{
ϕ(v) : v ∈ Γ(x ∨ x′)

}
= f(x ∧ x′) + f(x ∨ x′),

where the first inequality follows from ϕ being positive and the second is implied by the

definition of maximum and the fact that max
{
ϕ(y) : y ∈ A

}
= max

{
ϕ(y) : y ∈ coA

}
(for any set A ⊆ Y ). Taking the maximum over the left-hand side of the inequality, we

conclude that f(x) + f(x′) ≤ f(x ∧ x′) + f(x ∨ x′). Hence, f is supermodular.

10 A linear functional ϕ : Y → R is positive, whenever y ≥Y z implies ϕ(y) ≥ ϕ(z), for all y, z in Y .
11 We shall assume throughout this paper that a solution exists to any optimization problem we con-

sider, so that we could always speak of the maximum (minimum) rather than the supremum (infimum).

That said, it is easy to check that both the Main Theorem and Main Theorem (∗) remain valid if the

existence of an optimum is not guaranteed and we have to replace max (min) with sup (inf).
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To prove (ii), take any z ∈ Γ(x∧ x′), z′ ∈ Γ(x∨ x′). By the lower supermodularity of

Γ, there is some y ∈ Γ(x), y′ ∈ Γ(x′) such that z + z′ ≥Y y + y′. Therefore,

ϕ(z) + ϕ(z′) = ϕ(z + z′) ≥ ϕ(y + y′) = ϕ(y) + ϕ(y′)

≥ min
{
ϕ(v) : v ∈ Γ(x′)

}
+ min

{
ϕ(v) : v ∈ Γ(x)

}
= f(x) + f(x′),

where the first inequality follows from ϕ being positive and the second is implied by the

definition of minimum and the fact that min
{
ϕ(y) : y ∈ A

}
= min

{
ϕ(y) : y ∈ coA

}
(for

any A ⊆ Y ). By taking the minimum over the left-hand side of this inequality, we obtain

f(x ∧ x′) + f(x ∨ x′) ≥ f(x) + f(x′). QED

In some applications one would like to guarantee the submodular property of the value

function. In those instances the following analogue to the Main Theorem applies; we skip

the proof since it is similar.

Main Theorem (∗). Suppose that X is a lattice and Y is an ordered vector space. For

any positive linear functional ϕ : Y → R,

(i) if correspondence Γ : X → Y is upper submodular then function f : X → R, given

by f(x) := min
{
ϕ(y) : y ∈ Γ(x)

}
, is submodular;

(ii) if correspondence Γ : X → Y is lower submodular then function f : X → R, given

by f(x) := max
{
ϕ(y) : y ∈ Γ(x)

}
, is submodular.

The assumptions in the Main Theorem are essentially tight. The following result gives

a converse to the theorem in the case where Y is a Euclidean space.12

Proposition 1. Suppose that X is a lattice, Y is a Euclidean space, and the correspon-

dence Γ : X → Y is such that set co Γ(x) + co Γ(x′) is closed for any x, x′ ∈ X.

(i) If the function f : X → R, given by f(x) := max
{
ϕ(y) : y ∈ Γ(x)

}
, is supermodular

for any positive linear functional ϕ : Y → R, then Γ is upper supermodular.

(ii) If the function f : X → R, given by f(x) := min
{
ϕ(y) : y ∈ Γ(x)

}
, is supermodular

for any positive linear functional ϕ : Y → R, then Γ is lower supermodular.

12We omit the converse to Main Theorem (∗), which has a proof similar to that for Proposition 1.
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Remark. The above proposition requires that co Γ(x) + co Γ(x′) be a closed set, for

all x, x′ ∈ X. The assumption holds naturally in the economic applications discussed in

Sections 4–6. In particular, it holds when Γ is compact-valued; more generally, it holds

when, for all x, Γ(x) is closed and bounded from below or closed and bounded from above.

This follows from Proposition 2.38 in Border (1985).13

The proof of Proposition 1, which can be found in the Appendix, proceeds by con-

tradiction. We show that whenever a correspondence is not upper supermodular, we can

apply the separating hyperplane theorem to produce a positive linear functional ϕ for

which the maximal value f is not a supermodular function.

4 Applications to production analysis

The results developed in the last section lead to many applications. We begin our discus-

sion with the most obvious of these, which is the application to multi-output production.

4.1 Complementarity in multi-output production

A firm is endowed with a technology that employs ℓ inputs to manufacture m output

goods. Following McFadden (1966, 1978) and Jacobsen (1970) we represent its production

possibilities with a production correspondence Γ : Rℓ
+ → Rm

+ that maps input vector

x ∈ Rℓ
+ to Γ(x), the set of output vectors that are feasible given the use of x.

Conditional on strictly positive prices for inputs, p ∈ Rℓ
++, and for outputs, q ∈ Rm

++,

the problem of the firm is to choose input x to maximise

π(x, p) := max
{
q · y : y ∈ Γ(x)

}
− p · x.

Even though we interpret vectors y as output profiles, there is a related but slightly

different interpretation. Suppose that the firm is operating in a risky environment with

m states of the world. Then, vector y determines all the contingent revenues that the

firm may choose, when the input vector x is employed. If q is the probability distribution

over different states, then q · y is the expected revenue under profile y.

13A subset A ⊆ Rℓ is bounded from below if there is some z ∈ Rℓ such that z ≤ y, for all y ∈ A and it

is bounded from above if there is some z ∈ Rℓ such that z ≥ y, for all y ∈ A.

12



We are interested in conditions on Γ guaranteeing that all inputs are complements

in the sense that the demand for all inputs increase when the price of one input drops;

in formal terms, complementarity requires that the set of optimal input vectors, Φ(p) =

arg max
{
π(x, p) : x ∈ X

}
, decreases in p with respect to the strong set order.

Proposition 2. Inputs are complements if Γ is upper supermodular.

This proposition follows from the Main Theorem and the MCS theorem. First, for

each x ∈ X, the firm determines the maximal revenue that is achievable, which is

f(x) := max
{
q · y : y ∈ Γ(x)

}
. In the second step, the firm chooses x ∈ Rℓ

+ to

maximise profit π(x, p) = f(x) − p · x. From this observation and the MCS theorem, we

know that inputs are complements if function π is supermodular in x and has increasing

differences in (x,−p). The latter is always true, while the former is satisfied when f is

supermodular. The Main Theorem guarantees that f is supermodular if the production

correspondence Γ is upper supermodular. Furthermore, we know from Proposition 1 that

upper supermodularity is necessary for the supermodularity of f provided Γ has convex

and closed values that are bounded from above.

The following examples are applications of Proposition 2.

Example 1. Consider a production technology with three inputs and two outputs (or

state contingent revenues), where

Γ(x1, x2, x3) :=
{

(y1, y2) ∈ R2 : y1 ≤ 3
√
x1 x2 t, y2 ≤

√
x1 +

√
x3 − t, for t ∈ [0, x3]

}
.

In this case, input 1 is non-rivalrous since it can be used in its entirety to produce both

outputs. On the other hand, input 3 has to be shared between the two productions, while

input 2 is only used in the production of good 1. We claim that this correspondence is

upper supermodular. Indeed, notice that the set

Z :=
{

(x1, x2, x3, t) ∈ R4 : xi ≥ 0, for i = 1, 2, 3, and t ∈ [0, x3]
}

is a sublattice of R4. Moreover, h : Z → R2, where h(x, t) :=
(

3
√
x1 x2 t,

√
x1+

√
x3 − t

)
, is

a supermodular function. Therefore, by Fact 7, Γ̃(x) :=
{
h(x, t) : (x, t) ∈ Z

}
is an upper

supermodular correspondence. Given that Γ is the downward comprehensive extension

of the mapping Γ̃, Fact 1 implies that Γ is also upper supermodular.

13



Example 2. Suppose that

Γ(x) :=
{
y ∈ Rm

+ : g(x) ≥ h(y)
}
,

where g : Rℓ
+ → R+ and h : Rm

+ → R+ are strictly increasing functions. (We could

interpret g(x) as the level of some intermediate good which can be produced with x;

this intermediate good is then transformed into different output goods via the function

h.) We claim that, whenever g is supermodular and h is homogeneous of degree 1, the

correspondence Γ is a supermodular, and thus upper supermodular, so that Proposition 2

applies. Indeed, we can write Γ(x) = g(x)Z, where Z =
{
z ∈ Rℓ

+ : 1 ≥ h(z)
}

, since h is

homogeneous of degree 1; Fact 6 guarantees that Γ is supermodular.

4.2 Technological change and marginal cost

In this application, we consider a firm that produces a single good using ℓ inputs and

investigate the conditions under which technological change reduces the marginal cost of

production.

Let
{
F (t, ·)

}
t∈T be a family of production functions. At input prices p ∈ Rℓ

++, the

production function F (t, ·) : Rℓ
+ → R induces the cost function C(t, ·) : R+ → R, where

C(t, q) := min
{
p · y : F (t, y) ≥ q

}
.

We assume that output q generates revenue B(q) and the firm’s objective is to choose q to

maximize profit, which is B(q)−C(t, q). Irrespective of the precise shape of B, we know

that the profit-maximizing output increases with t whenever C is a submodular function,

since this guarantees that the profit function is supermodular in (t, q).14 Notice that

the submodularity of C is just another way of saying that the marginal cost of output,

Cq(t, q), is decreasing in t, for all q.

So when does marginal cost decrease with t? One may be tempted to think that that

occurs whenever the technology change raises output (formally, if F (t, y) is increasing in

t at each y) but that is not the case.15 By the Main Theorem (∗), the function C(t, q) is

14 Furthermore, it is straightforward to check that the submodularity of C is also necessary for this to

hold if the benefit function B is allowed to take different shapes.
15 For example, suppose F (t, y) = yβ + t, where y is the level of the unique input. Obviously, F (t, y)

increases with t, but C(t, q) = (q − t)1/β and marginal cost Cq(t, q) falls with t if and only if β ≤ 1.
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submodular in (q, t) if the correspondence Γ : T × R+ → Rℓ
+, given by

Γ(t, q) :=
{
y ∈ Rℓ

+ : F (t, y) ≥ q
}
, (5)

is upper submodular. Obviously, Γ(t, q) is bounded from below by 0, and it will have

closed values provided F is continuous; under this condition, the upper submodularity of

Γ is also necessary for the submodularity of C (see remark following Proposition 1).

Example 3. Suppose F (t, y) = tG(y) and G is homogeneous of degree 1. That is, the

function F (t, ·) exhibits constant returns to scale, but need not be quasiconcave. In this

case, there is no need to appeal to our result — the marginal cost is constant at all output

levels; if it is c∗ when t = 1 then then it will be c∗/t for any other t > 0, so marginal

cost falls with t. Nonetheless it is instructive to see how it fits within our framework. It

is straightforward to check that, given constant returns to scale, Γ(t, q) = (q/t)Z, where

Z =
{
y : G(y) ≥ 1

}
. This set is upper submodular, by Fact 6.

Example 4. Suppose that F : T×Rℓ
+ → R+ is increasing and supermodular over T×Rℓ

+,

and F (t, ·) is continuous and concave in y ∈ Rℓ
+, for each t ∈ T . We show in the Appendix

that this suffices for Γ to be upper submodular, so that C is a submodular function.

In particular, if F (t, y) = tG(y), where G : Rℓ
+ → R+ is a continuous, increasing,

concave, and supermodular function, then we know that the marginal costs related to the

production functions F (t, ·) decrease with t ∈ T ⊆ R+.

5 Supermodular correspondences and uncertainty

In this section, we consider an agent who has to pick an action under uncertainty. Suppose

that the possible states of the world are represented by a set S ⊆ R; to keep our exposition

focused on the essentials we assume that S = {s1, s2, . . . , sℓ, sℓ+1} is finite, where s1 <

s2 < . . . < sℓ < sℓ+1. We denote the distributions on S by △S. As we had pointed out in

Section 2.1, (△S,⪰) forms a lattice, where λ ⪰ µ if λ first order stochastically dominates

µ; this feature plays an important role in our analysis.16

16 For this property S need not be finite, but it is crucial that S is a subset of R. Although first order

stochastic dominance can be naturally extended to distributions over multi-dimensional spaces, in such

a case (△S ,⪰) would no longer constitute a lattice.
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First order stochastic dominance is a concept of fundamental importance because it

allows us to compare distributions by expected utility: λ ⪰ µ if and only if
∫
S
u(s)dλ(s) ≥∫

S
u(s)dµ(s) for all increasing functions u : S → R. Furthermore, this basic result has a

simple and widely-used corollary that also allows us to compare the actions of an agent

maximizing expected utility. To be specific, consider an agent who chooses an action from

a set X ⊆ R. The agent’s utility from choosing action x is g(x, s) whenever state s is

realized. Let λ(·, t) be a distribution over S (parameterized by t ∈ T ⊆ R) which captures

the agent’s belief about the likelihood of different states. Then, the expected utility of

taking action x is f(x, t) =
∫
S
g(x, s)dλ(s, t). Now suppose that g is supermodular and λ

is ordered by first order stochastic dominance in the sense that λ(·, t′) ⪰ λ(·, t) whenever

t′ ≥ t. In such a case, if x′ ≥ x, then

f(x′, t) − f(x, t) =

∫
S

[
g(x′, s) − g(x, s)

]
dλ(s, t),

will be increasing in t since δ(s) = g(x′, s)−g(x, s) is increasing in s. In other words, f is

supermodular in (x, t), which (by the MCS theorem) guarantees that the correspondence

Φ(t) = argmax
{
f(x, t) : x ∈ X

}
increases with t in the strong set order.

Our objective in this section is to extend this simple result on comparative statics to

some widely-used multi-prior models of decision-making under uncertainty.

5.1 First order stochastic dominance in the maxmin model

In the maxmin model of Gilboa and Schmeidler (1989), the agent evaluates an uncertain

environment not with a single distribution over the possible states of the world but with

a set of distributions Λ ⊆ △S. If u(s) is the utility when s is realized, then the agent’s

utility in this uncertain environment is

min

{∫
S

u(s)dλ(s) : λ ∈ Λ

}
.

We know that, when Λ consists of just one distribution, a first order stochastic shift in

the distribution will lead to higher utility, assuming that u is increasing in s. This leads

naturally to the following question: what shift in the set of beliefs would guarantee that

there is an increase in utility? The following proposition provides the precise answer.

Proposition 3. Suppose the correspondence Λ : T → △S has compact and convex values.

Then the following statements are equivalent.

16



(i) Correspondence Λ satisfies the following property:

(F1) if t′ ≥ t, then for any λ′ ∈ Λ(t′) there is λ ∈ Λ(t) such that λ′ ⪰ λ.

(ii) For any increasing function u : S → R, the function v : T → R, given by v(t) :=

min
{ ∫

S
u(s)dλ(s) : λ ∈ Λ(t)

}
is increasing in t.

This proposition gives us one natural way of defining first order stochastic dominance

between sets of distributions since (F1) characterizes higher ex ante utility when u is

increasing. The sufficiency of (F1) is easy to show. Indeed, take any t′ ≥ t and λ′ ∈ Λ(t′).

By (F1), there is λ ∈ Λ(t) such that λ′ ⪰ λ. Thus, for any increasing u,∫
S

u(s)dλ′(s) ≥
∫
S

u(s)dλ(s) ≥ min

{∫
S

u(s)dν(s) : ν ∈ Λ(t)

}
.

Taking the minimum over the left-hand side, we obtain v(t′) ≥ v(t). The proof of the

necessity of (F1) is found in the Appendix.

A natural follow-up question is whether (F1) is also sufficient to guarantee monotone

comparative statics. More precisely, let the utility from choosing action x be g(x, s) when

state s is realized and suppose that g is a supermodular function. Then one could ask if

(F1) guarantees that the function

f(x, t) := min

{∫
S

g(x, s)dλ(s) : λ ∈ Λ(t)

}
(6)

is supermodular in (x, t). The following example shows that this is not true.

Example 5. Suppose that X = {0, 1} and S = {s1, s2, s3}. The distribution λ is given

by λ(s1) = 1/2 and λ(s2) = 3/4. The distribution λ′ is given by λ′(s1) = λ′(s2) = 1/2

and µ(s1) = 1/4, µ(s2) = 7/8. Suppose that T = {t, t′}, where t′ > t, and Λ(t′) = {λ′}

and Λ(t) = co{λ, µ} is the convex hull of λ′ and µ. Since λ′ ⪰ λ, correspondence Λ obeys

stochastic dominance in the sense given by (F1). By applying Proposition 3, we know

that max
{
f(x, t′) : x ∈ X

}
≥ max

{
f(x, t) : x ∈ X

}
, where f is as in (6). However, this

does not guarantee that the optimal action is increasing, even when g is supermodular

in (x, s). Indeed, let g : X × S → R be such that g(0, s1) = g(0, s2) = 5, g(0, s3) = 21,

g(1, s1) = 0, g(1, s2) = 8, and g(1, s3) = 24, which is increasing in s and supermodular in

(x, s). Since
∫
S
g(0, s)dλ′(s) >

∫
S
g(1, s)dλ′(s), we have {0} = argmax

{
f(x, t′) : x ∈ X

}
.
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Furthermore, since g is supermodular, we obtain
∫
S
g(0, s)dλ(s) >

∫
S
g(1, s)dλ(s); how-

ever, this does not mean that the agent chooses action 0 at Λ(t); In fact, since∫
S

g(0, s)dλ(s) >

∫
S

g(1, s)dµ(s) >

∫
S

g(1, s)dλ(s) >

∫
S

g(0, s)dµ(s),

it must be that {1} = argmax
{
f(x, t) : x ∈ X

}
.

In order to guarantee that the agent finds it optimal to choose a higher action as

beliefs shift, we need to formulate a condition for comparing sets of distributions that

is more stringent than (F1). The following proposition provides such a necessary and

sufficient condition and is the main result of this subsection.

Proposition 4. Suppose that correspondence Λ : T → △S has compact and convex

values. The following statements are equivalent.

(i) The correspondence Λ satisfies the following property:

(F2) for any t′ ≥ t, λ ∈ Λ(t) and λ′ ∈ Λ(t′), there is µ ∈ Λ(t) and µ′ ∈ Λ(t′)

such that

λ′ ⪰ µ, µ′ ⪰ λ, and 1
2
λ + 1

2
λ′ = 1

2
µ + 1

2
µ′.

(ii) For any supermodular function g : X × S → R, correspondence Γ : X × T → Rℓ,

Γ(x, t) :=
{
a ∈ Rℓ : ai = −δi(x)λ(si), for all i = 1, . . . , ℓ, where λ ∈ Λ(t)

}
is lower supermodular, where δi(x) =

[
g(x, si+1) − g(x, si)

]
, for all i = 1, . . . , ℓ.

(iii) The function f : X × T → R, given by (6), is supermodular in (x, t), for any

supermodular function g : X × S → R.

Remark 1. As shown in the proof, the claim (i) ⇒ (ii) ⇒ (iii) does not require Λ to

have compact or convex values. These assumptions are used to prove that (iii) ⇒ (i).

Remark 2. We show in the Appendix that Proposition 4 remains true if S is an interval

of R and function g(x, ·) is Riemann-Stieltjes integrable with respect to each λ ∈ Λ(t), for

all x ∈ X and t ∈ T . This holds if any of the following conditions is satisfied: (a) function

g(x, s) is continuous in s ∈ S; (b) g(x, s) is bounded on S and has only finitely many

discontinuities in s, and all distributions in Λ(t) are atomless; or (c) g(x, s) is bounded

on S and monotone, and all distributions in Λ(t) are atomless.
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Remark 3. The claim in this proposition remains true even if we leave part (i) unchanged;

replace “lower supermodularity” in part (ii) with “upper supermodularity”; and replace

the“min”operator in part (iii) with“max”. In other words, (F2) is necessary and sufficient

to guarantee that the function F : X × T → R given by

F (x, t) := max

{∫
S

g(x, s)dλ(s) : λ ∈ Λ(t)

}
(7)

is supermodular, for any supermodular function g. We prove this claim in the Appendix.

The α-maxmin model by Ghirardato, Maccheroni, and Marinacci (2004) allows for both

ambiguity averse and ambiguity loving behavior, with the agent’s utility of the form

α min

{∫
S

g(x, s)dλ(s) : λ ∈ Λ(t)

}
+ (1 − α) max

{∫
S

g(x, s)dλ(s) : λ ∈ Λ(t)

}
,

for some α ∈ [0, 1]. This function is supermodular in (x, t) if Λ satisfies (F2), since both

elements of the sum are supermodular in (x, t). By the MCS theorem, the optimal action

will also increase with t in the strong set order.

Proof of Proposition 4. The proof that (iii) implies (i) is in the Appendix. To show that

(i) implies (ii), take any x′ ≥ x, t′ ≥ t and a ∈ Γ(x, t), a′ ∈ Γ(x′, t′). By definition of the

correspondence Γ, there are distributions λ ∈ Λ(t), λ′ ∈ Λ(t′) such that ai = −δi(x)λ(si)

and a′i = −δi(x
′)λ′(si), for all i = 1, . . . , ℓ. By (F2), there is µ ∈ Λ(t) and µ′ ∈ Λ(t′) such

that λ′(si) ≤ µ(si), µ′(si) ≤ λ(si), and λ(si) + λ′(si) = µ(si) + µ′(si), for i = 1, . . . , ℓ.

Since g : X × S → R is supermodular if and only if δi(x) is increasing (for each i),

δi(x
′)
[
µ(si) − λ′(si)

]
≥ δi(x)

[
µ(si) − λ′(si)

]
= δi(x)

[
λ(si) − µ′(si)

]
,

for i = 1, . . . , ℓ. Construct vectors b, b′, where bi = −δi(x
′)µ(si) and b′i = −δi(x)µ′(si),

for all i. Clearly, b ∈ Γ(x′, t), b′ ∈ Γ(x, t′), and a + a′ ≥ b + b′.

To show (ii) ⇒ (iii), note that for any function g : X × S → R and distribution λ,∫
S

g(x, s)dλ(s) = g(x, s1)λ(s1) +
ℓ∑

i=1

g(x, si+1)
[
λ(si+1) − λ(si)

]
= g(x, sℓ+1)λ(sℓ+1) +

ℓ∑
i=1

[
g(x, si) − g(x, si+1)

]
λ(si) (8)

= g(x, sℓ+1) +
ℓ∑

i=1

[
− δi(x)λ(si)

]
,
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Figure 2: Probability measures represented in the Machina-Marshak triangle. On the

right, the thick straight lines represent values Λ(t) and Λ(t′) from Example 7.

since λ(sℓ+1) = 1. Therefore, function f can be reformulated as

f(x, t) = g(x, sℓ+1) + min
{
1 · a : a ∈ Γ(x, t)

}
,

where 1 is the unit vector and Γ is defined as in (ii). Since Γ is lower supermodular, the

Main Theorem guarantees that f is a supermodular function. QED

We now have two intuitive set extensions of the notion of first order stochastic domi-

nance: (F1) ensures monotone utility comparisons and (F2) monotone comparative stat-

ics. Clearly, (F2) implies (F1), but the converse is not true as shown in Example 5. Indeed,

if we take the Λ(t′) = {λ′} and Λ(t) = co{λ, µ}, then (F2) fails since (for example) there

is no distribution in Λ(t′) that dominates µ ∈ Λ(t).

When does Λ satisfy (F2)? An obvious but restrictive example is when every distri-

bution in Λ(t′) dominates every distribution in Λ(t) if t′ > t. The following examples give

more general conditions under which (F2) holds.

Example 6 (Strong set order). Suppose that the correspondence Λ is increasing in the

strong set order induced by the first order stochastic dominance ⪰, i.e., for any t′ ≥ t,

λ ∈ Λ(t), and λ′ ∈ Λ(t′), we have λ ∧ λ′ ∈ Λ(t) and λ ∨ λ′ ∈ Λ(t′). Since λ′ ⪰ λ ∧ λ′,

λ ∨ λ′ ⪰ λ, and (λ ∧ λ′) + (λ ∨ λ′) = λ + λ′, the condition (F2) is satisfied. For example,

let ν(·, t) and µ(·, t) be distributions in △S that are increasing in t with respect to first
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order stochastic dominance and satisfy ν(·, t) ⪰ µ(·, t) for all t. Then the correspondence

Λ(t) =
{
λ ∈ △S : ν(·, t) ⪰ λ ⪰ µ(·, t)

}
that maps t to all distributions lying between

ν(·, t) and µ(·, t) increases with t in the strong set order.

Example 7 (Increasing mean). Take an increasing function h : S → R and suppose that,

for each t ∈ T ⊂ R, the set Λ(t) consists of all distributions over S for which the expected

value of h is equal to t. Formally, let

Λ(t) =

{
λ ∈ △S :

∫
S

h(s)dλ(s) = t

}
.

We show in the Appendix that Λ : T → △S satisfies (F2), even though it is clear that Λ

is not increasing in the strong set order (see Figure 2 on the right).

In certain applications, it is natural for g(x, s) to be increasing in s for all x ∈ X.

In this case, one can assume, without loss of generality, that the belief correspondence

Λ is upward comprehensive, i.e., if λ ∈ Λ(t) and λ′ ⪰ λ then λ′ ∈ Λ(t).17 The following

result (which we prove in the Appendix) states that when Λ is upward comprehensive,

property (F2) remains a necessary and sufficient condition even if we only require the

supermodularity of f for those functions g that are supermodular and increasing in s.18

Proposition 5. Suppose that correspondence Λ : T → △S has compact, convex, and

upper comprehensive values. Then the following statements are equivalent.

(i) The correspondence Λ satisfies property (F2).

(ii) The function f(x, t), defined in (6), is supermodular in (x, t) for all functions g

that are supermodular in (x, s) and increasing in s.

We conclude this subsection with three economic applications.

Example 8 (Optimal savings). Returning to the example in the Introduction, an agent

decides on her savings x ∈ X in period 1, given uncertainty on period 2 income s ∈ S. In

that case, g is submodular in (x, s) and given by (1). Thus, if correspondence Λ increases

in the sense of (F2), the agent will find it optimal to reduce savings.
17 Given a correspondence Λ, let Λ̄(t) =

{
λ ∈ △S : λ ⪰ λ′, for λ′ ∈ Λ(t)

}
. It is clear that Λ̄ is upward

comprehensive and that min
{ ∫

S
g(x, s)dλ(s) : λ ∈ Λ(t)

}
= min

{ ∫
S
g(x, s)dλ(s) : λ ∈ Λ̄(t)

}
, for all x.

18 Notice that the comparative statics problem is dramatically simplified if g is increasing in s and Λ(t)

contains its infimum, i.e., a distribution λ(t) that is dominated by every other distribution in Λ(t). Then

f(x, t) =
∫
S
g(x, s)dλ(s), for all x, and we know that f is supermodular in (x, t) if λ(·, t) increases with

t. (This is consistent with Proposition 5 because Λ(t) = {λ ∈ △S : λ ⪰ λ(t)} satisfies (F2).) However,

there are natural examples of Λ obeying (F2) without Λ(t) containing its infimum; see Example 7.
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Example 9 (Portfolio problem). An investor divides her wealth m > 0 between a safe

asset, that pays out r > 0 for sure, and a risky asset with an uncertain gross payout of s

in S ⊆ R+. The investor’s beliefs over the risky return is captured by the correspondence

Λ : T → △S, where △S is the space of probability distributions over S.

The investor chooses to invest x ∈ X ⊆ R in the risky asset, with the rest of her

wealth invested in the safe security. We allow the investor to go short on either asset but

require her to be solvent, i.e., it must be that xs+ (m−x)r ≥ 0, for all s ∈ S and x ∈ X.

Assuming that her Bernoulli index is u : R+ → R and the investor is ambiguity averse,

the investor’s utility at x ∈ X is given by

f(x, t) := min

{∫
S

u
(
xs + (m− x)r

)
dλ(s) : λ ∈ Λ(t)

}
. (9)

To capture the idea that a higher t represents greater optimism, we assume that

correspondence Λ increases in t according to (F2). In particular, this implies that the

function f is supermodular if g(x, s) := u
(
xs+(m−x)r

)
is supermodular. Assuming that

u is strictly increasing, concave, and twice continuously differentiable, it is straightforward

to check that g is supermodular if the coefficient of relative risk aversion of u is less

than 1.19 Therefore, with this condition on u, we can apply the MCS theorem to guarantee

that the investor’s holding in the risky asset increases with t. This conclusion holds even

if the investor’s preference has the α-maxmin form.20

The next example has a different flavor from Example 9: it has both x and t as choice

variables and exploits the fact that supermodularity is preserved by the sum.

Example 10. A firm operating in uncertain market conditions must decide on how much

to produce and how much to spend on promoting its product via advertising. In period 1,

the marginal cost of production is c > 0 and the marginal cost of advertising is a > 0. If

the firm chooses t units of advertising, its belief on the demand for its output s is given

by a set of distributions Λ(t) ⊆ △S; higher advertising leads to greater demand in the

sense that Λ satisfies (F2). We assume that the price of the good is fixed at 1.

19Note that, since x can take negative values, function g does not increase in s.
20 We are not the first to discuss comparative statics of the portfolio choice model under ambiguity. For

example, Gollier (2011) examines how the demand for the risky asset changes with the level of ambiguity

aversion, in the context of the smooth ambiguity model. Cherbonnier and Gollier (2015) study both

the smooth ambiguity model and the α-maxmin model; the authors provide conditions under which the

demand for the risky asset increases with respect to initial wealth.
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In period 2, the firm’s actual demand s is realized and the firm has to meet this

demand even if it exceeds its period 1 output; the profit in period 2 is

π(x, s) := s− κ
(

max{s− x, 0}
)
.

Function κ : R+ → R+ should be interpreted as the cost of producing the additional units

to meet demand in period 2. At the same time, goods for which there is no demand can

be freely disposed. Also, notice that π(x, s) need not be increasing in s.

The firm chooses x ≥ 0 and t ≥ 0 in period 1 to maximise

Π(x, t, c, a) := min

{∫
S

π(x, s)dλ(s) : λ ∈ Λ(t)

}
− cx− at.

It is straightforward to check that the function π is supermodular if κ is increasing,

convex, and κ(0) = 0.21 Given this, Proposition 4 guarantees that

f(x, t) = min

{∫
S

π(x, s)dλ(s) : λ ∈ Λ(t)

}
is a supermodular function of (x, t) and therefore Π is supermodular in (x, t). Further-

more, Π has increasing differences in
(
(x, t), (−c,−a)

)
. Applying the MCS theorem, we

conclude that more advertising and higher output will ensue from either a fall in the cost

of advertising a or a fall in the cost of period 1 production c.

5.2 Variational and multiplier preferences

Proposition 4 can be extended to cover a broader class of preferences. Maccheroni, Mari-

nacci, and Rustichini (2006) introduce and axiomatize a generalization of the maxmin

model, called variational preferences. In this model, the utility of some action x is

f(x) = min
{ ∫

S
g(x, s)dλ(s) + c(λ) : λ ∈ △S

}
. Loosely speaking, the agent’s utility from

action x is obtained by minimizing her expected utility over the set of all probability

distributions; unlike the maxmin model where the agent is restricted to a subset of △S,

any distribution in △S could be ‘picked’ in the variational preferences model, though

each distribution λ is associated with a different cost c(λ).22 Below, we parameterize the

21 Take any x′ ≥ x and consider three cases. If (i) s ≤ x, then δ(s) :=
[
π(x′, s)−π(x, s)

]
= 0; whenever

(ii) x < s ≤ x′, then δ(s) = κ(s− x); and finally (iii) s > x′ implies δ(s) = κ(s− x)−κ(s− x′). In either

case, under the assumptions imposed on κ, the function δ is increasing in s.
22 For a discussion see Maccheroni, Marinacci, and Rustichini (2006) or Epstein and Schneider (2010).
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cost function c by t ∈ T ⊆ R and identify conditions under which the agent’s utility is

supermodular in (x, t).

Proposition 6. Let c : △S × T → R+ be a continuous and convex function on △S, for

all t ∈ T . The following statements are equivalent.

(i) The function c satisfies the following property:

(C) for any t′ ≥ t in T and λ, λ′ in △S there is µ, µ′ in △S such that

λ′ ⪰ µ, µ′ ⪰ λ, 1
2
λ + 1

2
λ′ = 1

2
µ + 1

2
µ′, and c(λ, t) + c(λ′, t′) ≥ c(µ, t) + c(µ′, t′).

(ii) For any supermodular function g : X × S → R, correspondence Γ : X × T → Rℓ+1,

Γ(x, t) :=
{
a ∈ Rℓ+1 : ai = −δi(x)λ(si), if i = 1, . . . , ℓ, and aℓ+1 = c(λ, t), for λ ∈ △S

}
is lower supermodular, where δi(x) =

[
g(x, si+1) − g(x, si)

]
, for i = 1, . . . , ℓ.

(iii) Function f : X × T → R, where

f(x, t) := min

{∫
S

g(x, s)dλ(s) + c(λ, t) : λ ∈ △S

}
, (10)

is supermodular for any supermodular function g : X × S → R.

The proof is found in the Appendix. Implication (i) ⇒ (ii) ⇒ (iii) does not require the

cost function c to be convex or continuous. We employ the additional assumption to prove

that (iii) ⇒ (i). Condition (C) in the proposition can be thought of as generalization of

condition (F2) imposed on Λ : T → △S in Proposition 6. Indeed, given Λ, we define

c(λ, t) =

 0 if λ ∈ Λ(t);

∞ otherwise.

Then c obeys (C) if and only if Λ obeys (F2), while (10) reduces to the maxmin form (6)

in this case. Below are two more examples of cost functions that satisfy property (C).

Example 11 (Submodular cost). Suppose that function c : △S×T → R+ is submodular,

i.e., for all λ, λ′ ∈ △S and t, t′ ∈ T ,

c(λ, t) + c(λ′, t′) ≥ c(λ ∨ λ′, t ∨ t′) + c(λ ∧ λ′, t ∧ t′).

Then c obeys condition (C), as we can always choose µ = λ ∧ λ′ and µ′ = λ ∨ λ′.
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Example 12. Suppose that c̃ : R × T → R is a submodular function and the cost

function c : △S × T → R is evaluated by c(λ, t) := c̃
(∫

S
h(s)dλ(s), t

)
for some increasing

function h : S → R. In other words, the cost function depends only on the mean of the

random variable h with respect to the distribution λ, and the parameter t. We claim that

c satisfies condition (C). Indeed, take any λ, λ′ in △S and denote the mean of function

h corresponding to each distribution by m, m′ respectively. Suppose that m′ ≥ m; then

there are distributions µ, µ′ with means m, m′ respectively, such that λ′ ⪰ µ, µ′ ⪰ λ,

and (1/2)λ + (1/2)λ′ = (1/2)µ + (1/2)µ′.23 Since c(λ, t) = c(µ, t) and c(λ′, t′) = c(µ′, t′),

we obtain c(λ, t) + c(λ′, t′) = c(µ, t) + c(µ′, t′). If m′ < m, choose µ = λ′ and µ′ = λ. By

the submodularity of c̃, we obtain (as required)

c(λ, t) + c(λ′, t′) = c̃(m, t) + c̃(m′, t′) ≥ c̃(m′, t) + c̃(m, t′) = c(µ, t) + c(µ′, t′).

An important sub-class of variational preferences are multiplier preferences, which

were used in Sargent and Hansen (2001) and axiomatized by Strzalecki (2011a). In this

case, the cost function is c(λ, t) = θR
(
λ∥λ∗(·, t)

)
, for θ ≥ 0 and λ∗(·, t) ∈ △S, where

R
(
λ∥λ∗(·, t)

)
:=

∫
S

ln

(
dλ(s)

dλ∗(s, t)

)
dλ(s)

is the relative entropy.24 Note that dλ(s), dλ∗(s, t) denote the probability of state s in

the distribution λ, λ∗(·, t), respectively. This representation can be interpreted in the

following manner. The decision maker has a belief over the states of the world given by a

reference or benchmark distribution λ∗(·, t), but she is not completely confident that she is

exactly correct. To accommodate this concern, the decision maker takes all distributions

in △S into account when evaluating her utility from a given action, though distributions

further away from λ∗(·, t) cost more and are thus less likely to be the distribution that

solves the minimization problem in (10).

The multiplier preferences model has a cost function that is particularly well-behaved.

Proposition 7. The cost function c : △S × T → R, given by c(λ, t) := θR
(
λ∥λ∗(·, t)

)
is

submodular on △S, for all t ∈ T and positive θ. Furthermore, if λ∗(·, t) is increasing in

t with respect to the monotone likelihood ratio,25 then c is submodular in (λ, t).

23 For a proof of this claim, see the proof of Example 7 in the Appendix.
24 See Strzalecki (2011b) for a detailed discussion on the relation between variational preferences,

multiplier preference, and subjective expected utility.
25 This requires that, for any t′ ≥ t, the ratio dλ∗(s, t′)/dλ∗(s, t) be increasing with s. This property

implies λ∗(·, t′) ⪰ λ∗(·, t).
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We prove this result in the Appendix. Note that when c(λ, t) is submodular in (λ, t)

then it obeys condition (C) (see Example 11). By applying Proposition 6, we conclude

that f(x, t) is supermodular in (x, t) if g(x, s) is supermodular in (x, s) and λ∗(·, t) is

increasing in t with respect to the monotone likelihood ratio order. This result captures

the idea that as the agent revises her benchmark belief towards higher states, the cost

function changes in a way that raises the marginal utility to her of taking higher actions.

In Examples 8, 9 and 10, we gave economic applications of Proposition 4, assuming

that the agent has maxmin utility. It is clear that, by appealing to Proposition 6, the

conclusions in those examples will continue to hold, mutatis mutandi, if the agent has

variational or, more specifically, multiplier preferences.

6 Dynamic programming under ambiguity aversion

In an influential paper, Hopenhayn and Prescott (1992) used the tools of monotone

comparative statics to analyze stationary dynamic optimization problems. In this section,

we show how those results could be extended to the case where the agent has a multi-prior

belief, by applying the results from the previous section.

We consider an agent who faces a stochastic control problem where X and S are the

sets of endogenous and exogenous state variables, respectively. To keep the exposition

simple, we shall assume that X is a sublattice of a Euclidean space and S is a subset

of another Euclidean space. The evolution of s over time follows a Markov process

with the transition function λ. The agent’s problem can be formulated in the following

way (see Stokey, Lucas, and Prescott, 1989). At each period τ , given the current state

(xτ , sτ ) ∈ X×S, the agent chooses the endogenous variable xτ+1 for the following period.

We assume that xτ+1 is chosen from a non-empty feasible set which may depend on the

current state and which we denote by B(xτ , sτ ) ⊆ X. The single-period return is given by

the function F : X ×S ×X → R; F (x, s, y) is the payoff when (x, s) is the state variable

in period τ and y is the endogenous state variable in period τ + 1 chosen in period τ .

The agent discounts these payoffs by a constant factor β ∈ (0, 1).

The agent’s objective is to maximize her expected discounted payoffs over an infi-

nite horizon, given the initial condition (x, s). We denote the value of this optimization
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problem by v∗(x, s). Under standard assumptions — in particular, the continuity and

boundedness of F and the continuity of B — this problem admits a recursive represen-

tation, where v = v∗ is the unique solution to the Bellman equation

v(x, s) = max

{
F (x, s, y) + β

∫
S

v(y, s̃)dλ(s̃, s) : y ∈ B(x, s)

}
,

where λ(·, s) is a cumulative probability distribution over states of the world in the fol-

lowing period, conditional on the current state s.26 The function v∗ is bounded and

continuous. Moreover, the operator T : B → B defined by(
T v

)
(x, s) = max

{
u(x, s, y) + β

∫
S

v(y, s̃)dλ(s̃, s) : y ∈ B(x, s)

}
,

that maps the space B of bounded and continuous real-valued functions over X × S into

itself has the following property: beginning at any v ∈ B, the function (T nv) converges

uniformly to v∗ as n tends to infinity.27 Furthermore, the set

Φ(x, s) := arg max

{
F (x, s, y) + β

∫
S

v∗(y, s̃)dλ(s̃, s) : y ∈ B(x, s)

}
is non-empty and compact, for all (x, s) ∈ X×S, and the correspondence Φ : X×S → X

is upper hemi-continuous. We refer to any optimal control problem in which v∗ and Φ

have the properties listed in this paragraph as a well-behaved problem.

Given a well-behaved problem, Hopenhayn and Prescott (1992) (henceforth HP) apply

Theorem 4.3 in Topkis (1978) to show that the value v∗(x, s) is supermodular in x and

has increasing differences in (x, s) under the following assumptions: (i) F (x, s, y) is

supermodular in (x, y) and has increasing differences in
(
(x, y), s

)
; (ii) the graph of B is

a sublattice of X × S × X; (iii) λ(·, s) is increasing in s with respect to the first order

stochastic dominance. The properties of v∗ in turn guarantee that the function

f(x, s, y) := F (x, s, y) + β

∫
S

v∗(y, s̃)dλ(s̃, s)

is supermodular in y and has increasing differences in
(
y, (x, s)

)
. By the MCS theorem,

Φ(x, s) is a compact sublattice of X and is increasing in (x, s) in the strong set order.28

26 See Theorem 9.6 in Stokey, Lucas, and Prescott (1989) for details.
27T n is the nth orbit of the operator T , i.e., (T n+1v) = T

(
T nv).

28 Condition (ii) on B guarantees that B(x, s) is sublattice of X and that it increases with (x, s) in the

strong set order. Given the properties on f , we know that Φ(x, s) is a sublattice and that it increases

with (x, s) in the strong set order; this follows from a more general version of the MCS theorem (than

the one stated in Section 2) that allows for increasing constraint sets. See Topkis (1978).
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This in turn guarantees that the greatest optimal selection

ϕ(x, s) :=
{
y ∈ Φ(x, s) : y ≥X z, for all z ∈ Φ(x, s)

}
, 29

exists and is an increasing and Borel measurable of (x, s). Lastly, the policy function

ϕ induces a Markov process on X × S, where, for measurable sets Y ⊆ X and T ⊆ S,

the probability of Y × T conditional on (x, s) is the probability of T conditional on s if

ϕ(x, s) ∈ Y , and it is zero otherwise. HP make use of the monotonicity of ϕ to guarantee

that this Markov process has a stationary distribution.30

We now consider a stochastic control problem identical to the one we just described,

except that we allow the agent to be ambiguity averse. Since at each period τ the

exogenous variable is drawn from the set S, the set of all possible realizations of the

exogenous variable over time is given by S∞. An expected utility maximizer behaves

as though she is guided by a distribution over S∞; to obtain the utility of a given plan

of action, the agent evaluates the discounted utility on every possible path, i.e., over

every element in S∞ and takes the average across paths, weighing each path with its

probability. When the agent has a maxmin preference, her behavior can be modelled by

a set of distributions M over S∞. The utility of a plan is then given by the minimum of

the expected discounted utility for every distribution in M.

In contrast to expected discounted utility, it is known that the agent’s utility in the

maxmin model will not generally have a recursive representation. However, there is a

condition on M called rectangularity which is sufficient (and effectively necessary) for

this to hold (see Epstein and Schneider, 2003). Furthermore, it is known that a time-

invariant version of rectangularity is also sufficient to guarantee that the agent’s problem

can be solved through the Bellman equation, in a way analogous to that for expected

discounted utility (see Iyengar, 2005). This condition says that the agent’s belief over

the possible value of the exogenous variable in the following period, after observing s

in the current period, is given by a set of distribution functions Λ(s); this set depends

on the current realization of the exogenous variable and is time-invariant. The set M,

29 Function is well-defined because Φ is compact-valued and a sublattice.
30 The focus in this section is on primitive conditions guaranteeing the monotonicity of the policy

function. Readers who are interested in how the distribution over (x, s) evolves over time (under mono-

tonicity or weaker assumptions) should consult Huggett (2003). HP and Stachurski and Kamihigashi

(2014) also discuss uniqueness and other issues relating to the stationary distribution.
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given an initial value s0, is then obtained by concatenating the transition probabilities.

Therefore, the probability associated with a path (s0, s1, s2, s3, . . .) is
∏∞

i=1 pi, where p1

is the probability of s1 for some distribution in Λ(s0), p2 is the probability of s2 for some

distribution in Λ(s1), etc.

With this assumption on M in place, and some other standard conditions, one could

guarantee that the value v∗(x, s) of the control problem with the initial state (x, s), is the

unique solution to the Bellman equation

v(x, s) = max
{
F (x, s, y) + β(Av)(y, s) : y ∈ B(x, s)

}
where (Av)(y, s) = min

{ ∫
S
v(y, s̃)dλ(s̃) : λ ∈ Λ(s)

}
(see Iyengar, 2005). Furthermore,

the problem is well-behaved in the sense defined at the beginning of this section, i.e., the

operator T given by (T v)(x, s) := max
{
u(x, s, y)+β(Av)(y, s) : y ∈ B(x, s)

}
converges

uniformly to v∗ and the correspondence Φ is upper hemi-continuous on X × S.

With this basic set-up, we are almost in a position to recover a monotone result of the

HP type: all that is needed is a condition guaranteeing that (Av)(y, s) is a supermodular

function of (y, s), whenever v is supermodular. When X and S are one-dimensional,

Proposition 4 tells us that this holds if the beliefs correspondence Λ satisfies (F2). The

proof of the next proposition is supplied in the Appendix.

Proposition 8. Consider a well-behaved optimal control problem where X, S ⊂ R, with

X compact and S finite. Suppose that F (x, s, y) is supermodular in (x, s, y), Λ : S → △S

satisfies (F2), and the graph of B : X × S → X is a sublattice; then the value function

v∗(x, s) is supermodular in (x, s) and the correspondence Φ : X × S → R, where

Φ(x, s) := arg max
{
F (x, s, y) + β(Av∗)(y, s) : y ∈ B(x, s)

}
,

is sublattice-valued and increasing in the strong set order. Moreover, the greatest selection

ϕ : X × S → R of Φ is well-defined, increasing, and Borel measurable.

Below we discuss an application of this result.

Example 13. Consider the following dynamic optimization problem of a firm. In each

period, the firm collects revenue π(x, s), where s ∈ S denotes the realized exogenous state

of the world and x ∈ R+ is the level of capital stock currently available to the firm. Once

29



s is revealed to the firm and the revenue collected, the firm may invest a ∈ [0, K] at a

cost c(a), K being a finite positive number. With this investment, capital stock in the

next period is y = δx+a, where δ ∈ [0, 1] denotes the fraction of non-depreciated capital.

Therefore, the dividend in each period is

F (x, s, y) := π(x, s) − c(y − δx),

where the firm chooses y from the interval B(x, s) = [δx, δx + K]. We know from HP

that if the firm is an expected utility maximizer and the optimal control problem is

well-behaved, then the firm has a policy function that is increasing in (x, s) under the

following additional conditions: the transition function Λ : S → △S is increasing with

respect to first order stochastic dominance and F is supermodular; the latter property

is guaranteed if π is supermodular in (x, s) (but not necessarily increasing in s) and c

is concave. Proposition 8 goes further by saying that this conclusion remains true if the

firm has a maxmin preference, so long as the transition correspondence Λ satisfies (F2).

Appendix

Proof of Proposition 1. We show part (i) and omit the proof of (ii), which is analo-

gous. Towards contradiction, suppose that Γ is not upper supermodular. Hence, there is

x, x′ in X and y ∈ Γ(x), y′ ∈ Γ(x′) such that for any z ∈ coΓ(x∧x′) and z′ ∈ coΓ(x∨x′),

we have z + z′ ̸≥ y + y′.

Let U =
{
u ∈ Y : u ≤ v, for some v ∈ coΓ(x∧x′) + coΓ(x∨x′)

}
. This set is convex,

downward comprehensive, and (y + y′) ̸∈ U . Moreover, coΓ(x ∧ x′) + coΓ(x ∨ x′) is a

closed set by assumption, and therefore, so is U . By the strong separating hyperplane

theorem, there is a non-zero, linear functional ϕ∗ such that ϕ∗(y + y′) > ϕ∗(u), for all

u ∈ U . As U is downward comprehensive, ϕ∗ must be positive.

We claim that f(x) = max
{
ϕ∗(u) : u ∈ Γ(x)

}
is not supermodular. Indeed,

f(x ∧ x′) + f(x ∨ x′) = max
{
ϕ∗(u) : u ∈ Γ(x ∧ x′)

}
+ max

{
ϕ∗(u) : u ∈ Γ(x ∨ x′)

}
= max

{
ϕ∗(u) : u ∈ Γ(x ∧ x′) + Γ(x ∨ x′)

}
< ϕ∗(y + y′) = ϕ∗(y) + ϕ∗(y′)

≤ max
{
ϕ∗(u) : u ∈ Γ(x)

}
+ max

{
ϕ∗(u) : u ∈ Γ(x′)

}
= f(x) + f(x′),

which contradicts the supermodularity of f . QED
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Proof of the claim in Example 4. Take any t′ ≥ t and q′ ≥ q. We need to show

that for all y ∈ Γ(t′, q), y′ ∈ Γ(t, q′) there is some z ∈ Γ(t, q) and z′ ∈ Γ(t′, q′) such that

z + z′ ≤ y + y′. By definition, F (t′, y) ≥ q and F (t, y′) ≥ q′. Since F is increasing in

t, F (t′, y′) ≥ q′; if, in addition, F (t, y) ≥ q, then we can choose z = y and z′ = y′ and

z + z′ = y + y′ obviously holds.

Alternatively, suppose that F (t, y) < q. Let v = y′ − (y ∧ y′). By monotonicity of F ,

we have F (t, y ∧ y′) ≤ F (t, y) < q < q′ ≤ F (t, y′). Since F (t, ·) is continuous, there is

λ ≥ 0 such that F
(
t, (y ∧ y′) + λv

)
= q. Then

q′ − q ≤ F (t, y′) − F
(
t, (y ∧ y′) + λv

)
≤ F (t′, y′) − F

(
t′, (y ∧ y′) + λv

)
≤ F

(
t′, (y ∨ y′) − λv

)
− F (t′, y) ≤ F

(
t′, (y ∨ y′) − λv

)
− q,

where the second inequality holds because F obeys increasing differences between t and

the input vector and the third inequality holds because F (t′, ·) is supermodular and

concave. (For a proof of the second claim see Proposition 2 in Quah, 2007.) Hence

q′ ≤ F
(
t′, (y∨y′)−λv

)
; in other words, [(y ∨ y′) − λv] ∈ Γ(t′, q′). Letting z = (y∧y′)+λv

and z′ = (y ∨ y′) − λv, we obtain z + z′ = (y ∧ y′) + (y ∨ y′) = y + y′. QED

Proof that (ii) ⇒ (i) in Proposition 3. We prove this by contradiction. If (F1)

fails, there is some t′ ≥ t and λ′ ∈ Λ(t′) such that λ′ ̸⪰ λ, for all λ ∈ Λ(t). Let

V =
{
y ∈ Rℓ : yi ≥ λ′(si), for i = 1, . . . , ℓ

}
. Since V ∩ Λ(t′) = ∅ and

(
V −Λ(t′)

)
is closed

and convex, by the strong separating hyperplane theorem, min
{∑ℓ

i=1 p̂iyi : y ∈ V
}

>

max
{∑ℓ

i=1 p̂iλ(si) : λ ∈ Λ(t′)
}

, for some p̂ ∈ Rℓ. Given that V is upward comprehensive,

p̂ > 0; furthermore,
∑ℓ

i=1 p̂iλ
′(si) = min

{
p̂ · y : y ∈ V

}
. Define u : S → R by u(s1) = p̂1

and u(si+1) = u(si) + p̂i+1, for i = 1, . . . , ℓ. Note that u is an increasing function. Since∫
S
u(s)dµ(s) = u(sℓ+1) −

∑ℓ
i=1 p̂iµ(si) for any µ ∈ △S (recall (8) in Section 5.1),

min

{∫
S

u(s)dλ(s) : λ ∈ Λ(t)

}
= u(sℓ+1) − max

{
ℓ∑

i=1

p̂iλ(si) : λ ∈ Λ(t)

}

> u(sℓ+1) −
ℓ∑

i=1

p̂iλ
′(si) ≥ u(sℓ+1) − max

{
ℓ∑

i=1

p̂iλ(si) : λ ∈ Λ(t′)

}

= min

{∫
S

u(s)dλ(s) : λ ∈ Λ(t′)

}
.

Thus (F1) is indeed necessary for monotone maxmin utility. QED
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Proof that (iii) ⇒ (i) in Proposition 4. Suppose Λ violates (F2), so that for some

λ ∈ Λ(t) and λ′ ∈ Λ(t′) there is no µ ∈ Λ(t), µ′ ∈ Λ(t′) such that µ′ ⪰ λ, λ′ ⪰ µ, and

(1/2)λ + (1/2)λ′ = (1/2)µ + (1/2)µ′. Let

D =
{

(d, d′) ∈ Rℓ × Rℓ : di =
[
µ′(si) − λ(si)

]
and d′i =

[
µ(si) − λ′(si)

]
,

for i = 1, . . . , ℓ, where µ ∈ Λ(t) and µ′ ∈ Λ(t′)
}
. (11)

Then it is clear that D ∩ C = ∅, where C =
{

(c, c′) ∈ Rℓ × Rℓ : c = −c′ and c′ ∈ Rℓ
+

}
.

Since C is closed, convex and contains (0, 0), and D is compact and convex, by the strong

separating hyperplane theorem, there is (p̂, p̂′) in Rℓ × Rℓ such that

p̂ · d + p̂′ · d′ < 0 ≤ p̂ · c + p̂′ · c′,

for all (c, c′) ∈ C and (d, d′) ∈ D. Let ϵi denote the ℓ-dimensional vector with all entries

equal to 0 apart from ith-entry i, which equals 1. Given that (−ϵi, ϵi) belongs to C, for

all i = 1, . . . , ℓ, we obtain p̂′ ≥ p̂. Take any x, x′ ∈ X such that x′ > x and define function

g : X × S → R as follows. Let g(y, s1) = 0, for all y ∈ X, and

g(y, si) :=


∑i−1

j=1 p̂i if y < x′;∑i−1
j=1 p̂

′
i otherwise,

(12)

for all i = 2, . . . , (ℓ + 1). The function g is supermodular because p̂′ ≥ p̂. Moreover, for

any µ ∈ Λ(t), µ′ ∈ Λ(t′), we have∫
S

g(x, s)dλ(s) −
∫
S

g(x, s)dµ′(s) +

∫
S

g(x′, s)dλ′(s) −
∫
S

g(x′, s)dµ(s)

=
ℓ∑

i=1

pi
[
µ′(si) − λ(si)

]
+

ℓ∑
i=1

p′i
[
µ(si) − λ′(si)

]
< 0

since (µ′ − λ, µ− λ′) ∈ D. This holds for any µ ∈ Λ(t), µ′ ∈ Λ(t′); as a consequence,

f(x, t) + f(x′, t′) ≤
∫
S

g(x, s)dλ(s) +

∫
S

g(x′, s)dλ′(s)

< min

{∫
S

g(x, s)dν(s) : ν ∈ Λ(t′)

}
+ min

{∫
S

g(x′, s)dν(s) : ν ∈ Λ(t)

}
= f(x, t′) + f(x′, t).

So f is not supermodular, contradicting (iii). QED
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Proof of Remark 2 following Proposition 4. Suppose that S = [a, b]. Let {sni }ni=0

be a sequence with n + 1 terms such that a = sn0 < sn1 < . . . < snn−1 < snn = b. Since at

each (x, t), function g(x, ·) is the Riemann-Stieltjes integrable with respect to λ ∈ Λ(t),

we can choose {sni }ni=0 so that∫
S

g(x, s)dλ(s) = lim
n→∞

n−1∑
i=0

g(x, si+1)
[
λ(si+1) − λ(si)

]
for all λ ∈ Λ(t). This guarantees that limn→∞ fn(x, t) = f(x, t) for all (x, t), where

fn(x, t) := min

{
n−1∑
i=0

g(x, sni+1)
[
λ(sni+1) − λ(sni )

]
: λ ∈ Λ(t)

}
.

We know, from the case where S is finite, that fn : X×T → R is a supermodular function.

Since supermodularity is preserved by pointwise convergence, f is supermodular. QED

Proof of Remark 3 following Proposition 4. The proof mimics the one for Propo-

sition 4 so we only provide a sketch. To show that (i) implies the upper supermodularity

of Γ, take any x′ ≥ x, t ≥ t′ and a ∈ Γ(x′, t), a′ ∈ Γ(x, t′); by the definition of Γ, there

is λ ∈ Λ(t) and λ′ ∈ Λ(t′) such that ai = −δi(x
′)λ(si) and a′i = −δi(x)λ′(si), for all i.

By (F2) there is µ ∈ Λ(t) and µ′ ∈ Λ(t′) such that λ′(si) ≤ µ(si), µ
′(si) ≤ λ(si), and

λ(si) + λ′(si) = µ(si) + µ′(si), for all i. Since g is supermodular, δi(x
′)
[
λ(si) − µ′(si)

]
≥

δi(x)
[
λ(si) − µ′(si)

]
= δi(x)

[
µ(si) − λ′(si)

]
, for each i. Construct vectors b, b′ where

bi = −δi(x)µ(si) and b′i = −δi(x
′)µ′(si), for all i. Clearly, b ∈ Γ(x′, t), b′ ∈ Γ(x, t′), and

b + b′ ≥ a + a′.

The proof that the upper supermodularity of Γ implies that F , given by (7), is su-

permodular is a straightforward application of the Main Theorem and we shall omit it.

Lastly, we show that if (F2) is violated, then there is a supermodular function g for which

F is not supermodular. As in the proof that (iii) implies (i) in Proposition 4, we first

obtain p̂ and p̂′ such that p̂ ≤ p̂′ and p̂ · d + p̂′ · d′ < 0 for all (d, d′) ∈ D (as defined in

(11)). Define g : X × S → R by setting g(y, s1) = 0 for all y ∈ X and

g(y, si) :=


∑i−1

j=1−p̂′i if y < x′;∑i−1
j=1−p̂i otherwise,

for all i > 1. The function g is supermodular; moreover, for any µ ∈ Λ(t), µ′ ∈ Λ(t′),∫
S

g(x′, s)dµ′(s) −
∫
S

g(x′, s)dλ(s) +

∫
S

g(x, s)dµ(s) −
∫
S

g(x, s)dλ′(s) < 0.

This in turn implies that F (x, t) + F (x′, t′) < F (x, t′) + F (x′, t). QED
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Continuation of Example 7. We show that correspondence Λ satisfies (F2). Take

any t′ ≥ t and λ ∈ Λ(t), λ′ ∈ Λ(t′). Given that
∫
S
h(s)d(λ ∧ λ′)(s) ≤

∫
S
h(s)dλ′(s) = t

and
∫
S
h(s)dλ′(s) = t′, there is α ∈ [0, 1] such that

α

∫
S

h(s)dλ′(s) + (1 − α)

∫
S

h(s)d(λ ∧ λ′)(s) = t.

Let µ = αλ′ + (1 − α)(λ ∧ λ′) and µ′ = αλ + (1 − α)(λ ∨ λ′). Clearly, µ ∈ Λ(t), λ′ ⪰ µ,

and λ ⪰ µ′. Since λ + λ′ = (λ ∨ λ′) + (λ ∧ λ′), we also obtain λ + λ′ = µ + µ′. Hence,∫
S

h(s)dµ′(s) =

∫
S

h(s)dλ(s) +

∫
S

h(s)dλ′(s) −
∫
S

h(s)dµ(s) = t + t′ − t = t′.

Thus µ′ ∈ Λ(t′). We conclude that Λ satisfies (F2). QED

Proof of Proposition 5. Proposition 4 guarantees that (i) implies (ii). To prove the

converse, we first claim that if function f is supermodular for any supermodular function

g that increases with s, then Λ satisfies the following property, which we shall refer to as

(F3): for any t′ ≥ t, λ ∈ Λ(t), and λ′ ∈ Λ(t′), there is µ ∈ Λ(t) and µ′ ∈ Λ(t′) such that

λ′ ⪰ µ and (1/2)λ + (1/2)λ′ ⪰ (1/2)µ + (1/2)µ′. Notice that (F3) is weaker than (F2).

We prove by contradiction. Assuming that Λ violates (F3), we shall produce a function

g that is supermodular in (x, s) and increasing in s such that f is not supermodular. Our

proof is similar to the one we gave for the claim that (iii) implies (i) in Proposition 4 and we

shall refer to it. Take any t′ ≥ t and λ ∈ Λ(t), λ′ ∈ Λ(t′); suppose there is no µ ∈ Λ(t) and

µ′ ∈ Λ(t′) with the properties required by (F3). Then, by defining D as in (11), we obtain

C̄∩D = ∅, where C̄ =
{

(c, c′) ∈ Rℓ×Rℓ : c ≥ −c′ and c′ ∈ Rℓ
+

}
. Since D is compact and

convex, and C̄ is closed and convex with (0, 0) ∈ C̄, the strong separating hyperplane

theorem guarantees that there is (p̂, p̂′) in Rℓ×Rℓ such that p̂ ·d+ p̂′ ·d < 0 ≤ p̂ · c+ p̂′ · c′,

for all (c, c′) ∈ C̄ and (d, d′) ∈ D. Using the argument from the earlier proof we know

that p̂′ ≥ p̂. Furthermore, in this case, (c, 0) ∈ C̄ for all c ∈ Rℓ
+; therefore, p̂ ≥ 0. We

define g : X×S → R by (12). This function is supermodular since p̂′ ≥ p̂ and it increases

with s since p̂′, p̂ ≥ 0. We have shown in the earlier proof that f in this case is not

supermodular, yielding a contradiction.

To complete the proof we show that (F3) implies (F2) when Λ is upper comprehensive.

(F3) states that for any t′ ≥ t, λ ∈ Λ(t), and λ′ ∈ Λ(t′), there is µ ∈ Λ(t) and µ′ ∈ Λ(t′)

such that µ(si) ≥ λ′(si) and µ(si)+µ′(si) ≥ λ(si)+λ′(si) for all i. We modify µ and µ′ such
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that the stronger property required by (F2) holds. This adjustment is done state by state,

beginning with the lowest. Suppose µ(s1)+µ′(s1) > λ(s1)+λ′(s1). If it is possible, choose

ν1(s1) in the interval
[
λ′(s1), µ(s1)

]
such that ν1(s1)+µ′(s1) = λ(s1)+λ′(s1) and then set

ν ′1(s1) = µ′(s1). If, after setting ν1(s1) = λ′(s1), we have ν1(s1) +µ′(s1) > λ(s1) +λ′(s1),

then set ν ′1(s1) = λ(s1). Let ν1(si) = µ(si) and ν ′1(si) = µ(si) for i ≥ 2. Note that

ν1 and ν ′1 are bona fide distributions (i.e., both functions are increasing with the state)

and, since Λ is upper comprehensive, ν1 ∈ Λ(t), ν ′1 ∈ Λ(t′). Furthermore, ν1 and

ν ′1 satisfy the conditions required by (F3) and ν1(s1) + ν ′1(s1) = λ(s1) + λ′(s1). Now

define ν2 and ν ′2 by ν2(si) = ν1(si) and ν ′2(si) = ν ′1(si), for all i ̸= 2. If possible,

set ν2(s2) ∈
[

max{λ′(s2), ν
1(s1)}, µ(s2)

]
so that ν2(s1) + ν ′1(s2) = λ(s2) + λ′(s2) and

then set ν ′2(s2) = ν ′1(s2). If this is impossible, set ν2(s2) = max{λ′(s2), ν
1(s1)} and

set ν ′2(s2) so that ν2(s2) + ν ′2(s2) = λ(s2) + λ′(s2). Note that both ν2 and ν ′2 are

distributions, with ν2 ∈ Λ(t), ν ′2 ∈ Λ(t′), and ν(si) ≥ λ′(si) for all i; furthermore,

ν2(si) + ν ′2(si) ≥ λ(si) + λ′(si) for all i, with equality in the case of i = 1, 2. Repeating

this adjustment process we eventually obtain ν ∈ Λ(t) and ν ′ ∈ Λ(t′) with the property

that ν(si) ≥ λ′(si) and ν(si) + ν ′(si) = λ(si) + λ′(si) for all i. Thus, (F2) holds. QED

Proof of Proposition 6. The proof is close to that of Proposition 4, so we shall only

sketch it. To show that (i) ⇒ (ii), take some x′ ≥ x, t′ ≥ t and any a ∈ Γ(x, t),

a′ ∈ Γ(x′, t′). By definition of Γ, there are λ, λ′ ∈ △S such that ai = −δi(x)λ(si),

a′i = −δi(x
′)λ′(si), for i ≤ ℓ, and aℓ+1 = c(λ, t), a′ℓ+1 = c(λ′, t′). Property (C) guarantees

that there are distributions µ, µ′ ∈ △S such that µ(si) − λ′(si) = λ(si) − µ′(si) ≥ 0,

for i = 1, . . . , ℓ, and c(λ, t) + c(λ′, t′) ≥ c(µ, t) + c(µ′, t′). Since g is supermodular, δi(x)

is increasing in x, and we obtain δi(x
′)
[
µ(si) − λ′(si)

]
≥ δi(x)

[
λ(si) − µ′(si)

]
. Define

vectors b, b′ so that bi = −δi(x
′)µ(si), b

′
i = −δi(x)µ′(si), for i ≤ ℓ, and bℓ+1 = c(µ, t),

b′ℓ+1 = c(µ′, t′). Clearly, b ∈ Γ(x′, t), b′ ∈ Γ(x, t′) and a + a′ ≥ b + b′.

To prove that (ii) ⇒ (iii), note that f(x, t) = g(x, sℓ+1) + min
{
1 · a : a ∈ Γ(x, t)

}
.

An application of the Main Theorem guarantees that (iii) holds. .

To show that (iii) ⇒ (i), suppose there is t′ ≥ t and λ, λ′ such that there is no
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µ, µ′ ∈ △S satisfying the conditions required by (C). Then D ∩K = ∅, where

D =
{

(d, d′, r) ∈ Rℓ × Rℓ × R : di =
[
µ′(si) − λ(si)

]
, d′i =

[
µ(si) − λ′(si)

]
,

for i = 1, 2, . . . , ℓ and r ≥ c(µ, t) + c(µ′, t′) − c(λ, t) − c(λ′, t′), for µ, µ′ ∈ △S

}
and K =

{
(−k, k, 0) ∈ Rℓ ×Rℓ ×R : k ≥ 0

}
. Both D and K are convex sets (the former

because of the convexity of c) and (D−K) is closed. By the strong hyperplane theorem

to obtain (p̂, p̂′, q) ∈ Rℓ × Rℓ × R such that (p̂, p̂′, q) · (d, d′, r) < 0 ≤ (p̂, p̂′) · (−k, k), for

all (d, d′, r) ∈ D and (−k, k, 0) ∈ K. In particular, (p̂, p̂′) · (−k, k) ≥ 0 for all k ≥ 0

guarantees that p̂′ ≥ p̂. If we choose µ = λ ∧ λ′ and µ′ = λ ∨ λ′, then −d = d′ > 0, and

so (p̂, p̂′, q) · (d, d′, r) = (p̂, p̂′) · (−d′, d′) + qr < 0 implies that q < 0 (since r > 0). With

no loss of generality, we may set q = −1. Take any x, x′ ∈ X such that x′ > x and define

g : X × S → R as follows: let g(y, s1) = 0, for all y ∈ X, and, for i ≥ 2, let g(y, si) have

the form (12), which is supermodular. Moreover, for any µ, µ′ ∈ △S, we have[∫
S

g(x, s)dλ(s) + c(λ, t)

]
+

[∫
S

g(x′, s)dλ′(s) + c(λ′, t′)

]
−

[∫
S

g(x, s)dµ′(s) + c(µ′, t′)

]
−

[∫
S

g(x′, s)dµ(s) + (c(µ, t)

]
=

ℓ∑
i=1

pi
[
µ′(si) − λ(si)

]
+

ℓ∑
i=1

p′i
[
µ(si) − λ′(si)

]
−

(
c(µ, t) + c(µ′, t′) − c(λ, t) − c(λ′, t′)

)
< 0.

This leads to f(x, t) + f(x′, t′) < f(x, t′) + f(x′, t), which contradicts (iii). QED

Proof of Proposition 7. It suffices to show that R
(
λ∥λ∗(·, t)

)
is submodular in λ (for

each t) and that it has decreasing differences in (λ, t). To prove the first claim, let λ,

λ′ ∈ △S and denote λ∨λ′ and λ∧λ′ by µ′ and µ respectively. R
(
λ∥λ∗(·, t)

)
is submodular

in λ if, for all i,

dλ(si) ln dλ(si) + dλ′(si) ln dλ′(si) −
[
dλ(si) + dλ′(si)

]
ln dλ∗(si, t)

≥ d(µ)(si) ln dµ(si) + dµ′(si) ln dµ′(si) −
[
dµ(si) + dµ′(si)

]
ln dλ∗(si, t). (13)

Clearly, this inequality holds with equality for i = 1. Consider i > 1. With no loss of

generality, let µ(si−1) = λ(si−1) and µ′(si−1) = λ′(si−1). Consider two cases. Assume
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that (a) dλ′(si) + λ′(si−1) ≤ dλ(si) + λ(si−1), so that µ(si) = λ(si) and µ′(si) = λ′(si).

Then dµ(si) = dλ(si) and dµ′(si) = dλ′(si) and (13) is satisfied with equality. Suppose,

instead, that (b) dλ′(si) + λ′(si−1) > dλ(si) + λ(si−1), which implies µ(si) = λ′(si) and

µ′(si) = λ(si). Let δ = λ(si−1) − λ′(si−1) and notice that 0 ≤ δ < dλ′(si) − dλ(si). Since

dµ(si) = dλ′(si) − δ and dµ′(si) = dλ(si) + δ,

dµ(si) ln dµ(si) + dµ′(si) ln dµ′(si) −
[
dµ(si) + dµ′(si)

]
ln dλ∗(si, t)

=
[
dλ′(si) − δ

]
ln
[
dλ′(si) − δ

]
+
[
dλ(si) + δ

]
ln
[
dλ(si) + δ

]
−

[
dλ(si) + dλ′(si)

]
ln dλ∗(si, t)

≤ dλ(si) ln dλ(si) + dλ′(si) ln dλ′(si) −
[
dλ(si) + dλ′(si)

]
ln dλ∗(si, t)

where the last inequality follows from the convexity of the map from z → z log z. So we

have shown that (13) holds for all i and thus R
(
λ∥λ∗(·, t)

)
is submodular in λ.

In order to show that R
(
λ∥λ∗(·, t)

)
has decreasing differences in (λ, t), take any dis-

tribution λ′ ⪰ λ, t′ ≥ t, and notice that[
R
(
λ′∥λ∗(·, t′)

)
−R

(
λ∥λ∗(·, t′)

)]
−

[
R
(
λ′∥λ∗(·, t)

)
−R

(
λ∥λ∗(·, t))

]
=

ℓ∑
i=1

[
ln dλ∗(si, t

′) − ln dλ∗(si, t)
][
dλ(si) − dλ′(si)] ≤ 0,

since ln dλ∗(s, t′) − ln dλ∗(s, t) is increasing in i (because λ∗(t) is increasing in t with

respect to the monotone likelihood ratio order) and λ′ ⪰ λ. QED

Proof of Proposition 8. Let v : X × S → R be a continuous and bounded function.

Since the problem is well-behaved we know that the function (T v), given by(
T v

)
(x, s) = max

{
F (x, s, y) + β(Av)(y, s) : y ∈ B(x, s)

}
,

is a continuous function on X × S and T nv converges uniformly to v∗ as n → ∞.

By Proposition 4, whenever function v is supermodular, then so is Av. This implies

that F (x, s, y) + β(Av)(y, s) is supermodular over X × S ×X. Given that the graph of

correspondence B is a sublattice, by Theorem 4.3 in Topkis (1978), the function T v is

supermodular in (x, s). Since supermodularity is preserved under uniform convergence,

we conclude that v∗ = T v∗ is a supermodular function of (x, s). The set Φ(x, s) consists

of elements y that maximize F (x, s, y) + β(Av∗)(x, s) over B(x, s). Since the objective
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function is supermodular, while values of correspondence B are complete sub-lattices of

X, by the MCS theorem, set Φ(x, s) is a complete sub-lattice of X. Furthermore, since B

increases over X × S in the strong set order, so does Φ. As the problem is well-behaved,

Φ(x, s) admits the greatest selection ϕ(x, s) and this selection is increasing. That ϕ is

Borel measurable follows from standard arguments (see HP). QED
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