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Abstract

Standard models of structural change predict that the share of agricultural value added and agricultural

employment are equalized. In the data they are not. While both decline as the economy develops,

value added per worker in agriculture is substantially lower than in non-agriculture. Moreover, this

agricultural productivity gap is remarkably persistent despite the large reallocation of production fac-

tors across sectors. In this paper, we argue that this sectoral productivity gap might to a large extent

be a spatial gap. Using a novel dataset for more than 700 US commuting zones between 1880 and

2000, we document that agricultural employment shares are strongly negatively correlated with av-

erage earnings and uncorrelated with subsequent net population outflows. These facts are consistent

of substantive frictions to spatial mobility, which prevent the spatial equalization of marginal prod-

ucts. To quantify the strength of this mechanism, we construct a novel theory of spatial structural

change by embedding an economic geography model in a dynamic, neoclassical model of the struc-

tural transformation. We show that spatial frictions can account for more than 50% of the observed

productivity gap. This implies that the direct productivity gains from reallocating workers across

sectors are modest.
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1 Introduction

Standard models of the process of structural change imply that sectoral employment shares and sectoral
value added shares are equalized. In the data they are not. Not only do agricultural employment shares
consistently exceed the share of agricultural value added, but this “agricultural productivity gap” stays
stubbornly high as countries undergo the structural transformation. A case in the point is the historical
experience of the US. While the employment shares declined from 60% to essentially nil since 1850,
value added per worker in the non-agricultural sector is about twice as high as its counterpart in the
agricultural sector and varies little over time. Taken at face value, this implies that over the last 120 years
of US growth, the marginal product of agricultural workers is about half as high as the marginal product
in non-agriculture - despite the fact that more than 50% of the workforce reallocates.

In this paper, we argue that the spatial allocation of economic activity goes a long way to quantitatively
explaining this pattern. Our argument is simple: If regions differ in their comparative advantage, indi-
viduals need to relocate as the economy develops and aggregate spendings shifts away from agriculture.
If mobility is costly, the process of structural change puts downward pressure on wages in rural regions,
which specialize in agriculture. Both the size and the persistence of these wage differences across loca-
tions depend on the speed of spatial reallocation. If spatial reallocation is subject to frictions, wage gaps
emerge. Moreover, if the process of structural change evolves slowly, such wage gaps persist. In the
aggregate, this spatial productivity gap manifests itself as an agricultural productivity gap, even though
the marginal product of labor might be equalized across sectors within a location at each point in time.

Two empirical regularities from the US experience are suggestive that this mechanism might be impor-
tant. First of all, using a novel dataset on historical employment patters and manufacturing earnings
across all US counties starting in 1880, we document a sizable spatial wag gap across locations. Impor-
tantly, there is a strong negative correlation with the share of agricultural employment and this correlation
remains very stable between 1880 and 2000. Hence, regions specializing in agriculture are and remain
low wage regions. Our second fact suggests why such wage differentials are not arbitraged away through
spatial mobility: empirically, the extent of net migration is only weakly correlated with agricultural spe-
cialization. While gross flows are substantial, the agricultural employment share is not the dominant
predictor of the direction of net flows. We for example show that the reallocation of workers from high
to low agricultural places during the 20th century has essentially zero explanatory power for the decline
in the aggregate agricultural employment share. This implies that the entirety of the structural transfor-
mation is a within-region phenomenon and there might be very limited arbitrage (and hence aggregate
reallocation gains) at the relevant, i.e. spatial, margin.

To quantify the importance of this mechanism, we combine an economic geography model with intra-
national trade and labor mobility and an otherwise standard, neoclassical model of structural change.
As far as the process of structural change is concerned, we follow the macroeconomic literature and
allow for demand side forces (i.e. non-homothetic preferences) and supply side forces (i.e. non-balanced
technological progress across sectors). To generate a need for spatial reallocation, we assume that regions
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differ in their sectoral comparative advantage and workers can reallocate spatially subject to moving
costs. In order to expand, regions need to pay higher wages to attract individuals. Because the process of
structural change requires non-agricultural intensive regions to grow, marginal products across space are
not equalized and agricultural value added shares shrink relative to the share of agricultural employment.

Moving costs are of course not the only plausible reason for the persistence of spatial wage gaps. Most
importantly, it might be that differences in the average products are uninformative about a dispersion
in marginal products. If workers for example select on unobserved skills and skilled workers have a
comparative advantage in non-agricultural regions, the empirically observed persistent productivity gap
might simply be a reflection of sorting behavior, whereby skilled individuals locate in non-agricultural
regions. If that was the case, average value added per worker might very well systematically differ across
sectors despite the fact that the marginal product of labor is equalized. Secondly, as for example stressed
by Lagakos and Waugh (2011), sectoral specialization itself might be a reason why output per worker
might be low - if individuals are heterogeneous in the skills they can provide to different industries, the
quality of the marginal worker declines, the higher is the employment share of the industry. Finally,
to the extent that rural regions provide other utility-relevant amenities, the agricultural productivity gap
might simply be a compensating differentials gap. In our theory, we take these aspects explicitly into
account and we show that (and why) one would understate the spatial gap if one were to abstract from
these features.

Two modeling choices are crucial to make the analysis tractable, while still quantitatively meaningful.
First of all, we follow the work of Boppart (2014) and assume that preferences are in the class of price

independent generalized linear (PIGL) preferences. This preference specification has much more flexi-
bility in the strength of income effects compared to the widely-used Stone-Geary specification. This is
important when trying to take the model to the long-run data. In the Stone-Geary case, income effects
vanish asymptotically (see e.g. Comin et al. (2015) or Alder et al. (2017)). This makes it difficult to
quantitatively explain the observed decline in agricultural employment. The PIGL specification does a
much better job to match the long-run data. At the same time, it is still the case that the PIGL prefer-
ence specification has convenient aggregation properties. While the preferences are not in the Gorman
class and hence do not permit a representative household, we show that these preferences together with
the commonly-used Frechet-distribution of individual skill heterogeneity delivers tractable closed form
solutions for the main objects of interests. Secondly, we frame our analysis in terms of an overlapping-
generation model. This structure is key to allow for both individual savings (and hence capital accumu-
lation) and costly spatial mobility. In particular, we show that individuals are forward looking in terms
of their savings behavior but that their spatial choice problems reduces to a static problem. Hence, we
do not have to keep track of individuals’ expectations about the entire distribution of future wages in
different locations - the aggregate interest rate is sufficient.

We apply our theory to the aggregate and regional pattern of the process of development of the US
from 1880 to 2000. To do so we combine standard macroeconomic time-series data on the evolution of
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GDP pc and relative prices with detailed spatial data (at the level of more than 700 commuting zone)
on earnings, employment shares and employment. We show that the calibrated model can rationalize
about 60% of the observed agricultural productivity gap without any frictions operating at the sectoral
level. We then ask to what extent moving costs are the fundamental cause underlying this productivity
gap. To do so, we analyze a counterfactual, where we assume no costs of spatial reallocation. While
this would naturally increase the extent of gross workers flows, the implied agricultural productivity gap
would - surprisingly - not be substantially different. The reason is that our model - as estimated from
the data - implies that workers move for a variety of reasons. While higher wages are one component,
regional amenities and idiosyncratic locational preferences also affect moving flows. If spatial mobility
was free, individuals would move more for all of these reasons. As the latter two are not correlated with
agricultural productivity, the relationship between agricultural specialization and net outflows would not
markedly change.

Related Literature Our paper builds heavily on the macroeconomic literature on structural change and
the recent literature on models of economic geography. The literature on the process of structural change
has almost exclusively focused on the time series implications. Authors such as Kuznets (1957) and
Chenery (1960) have been early observers of the striking downward trend in the aggregate agricultural
employment share and the simultaneous increase in manufacturing employment in the United States.
Later the same facts were documented across developed countries by Herrendorf et al. (2014).

As an explanation of these aggregate trends, two mechanism have been proposed. First of all, there
are models of non-homothetic demand, where non-agricultural goods are income elastic. Early exam-
ples of this line of work are Kongsamut et al. (2001) and Gollin et al. (2002), who assume that subsis-
tence requirements imply a low income elasticity of agricultural demand. Recently, Boppart (2014) and
Comin et al. (2015) consider alternative preference structures. While Comin et al. (2015) proposes a
non-homothetic CES demand system, Boppart (2014) introduces the PIGL demand structure mentioned
above. In this paper, we follow Boppart (2014) in his choice of preference specification. This is mostly
for analytical convenience, in particular its tractable aggregation properties.

An alternative supply-side explanation for the secular reallocation of resources across sectors is based on
unbalanced technological progress or capital deepening. Originating with Baumol (1967), this mecha-
nism has been formalized in Ngai and Pissarides (2007) and Acemoglu and Guerrieri (2008). Herrendorf
et al. (2013) and Alvarez-Cuadrado and Long (2011) are recent example of empirically oriented pa-
pers, trying to distinguish these explanations. In our model, we allow for both unbalanced technological
progress and non-homothetic demand.

We combine this strand of the literature with the recent literature on quantitative economic geography
models following Allen and Arkolakis (2014). This literature is mostly static in nature and focuses on
the spatial reallocation of workers across heterogeneous locations (see e.g the recent survey in Redding
and Rossi-Hansberg (2016)). This literature has addressed questions of spatial misallocation (Hsieh
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and Moretti (2015); Fajgelbaum et al. (2015)), the regional effects of trade opening (Fajgelbaum and
Redding (2014),Tombe et al. (2015)), the importance of market access (Redding and Sturm (2005)) or
the productivity effects of agglomeration economies (Ahlfeldt et al. (2015)). Bryan and Morten (2015)
also stress the importance of moving costs on wage differences across space. In contrast to us, they
only consider a static environment and do not focus on the structural transformation or, more generally,
sectoral employment patterns across space.

There are few papers that embed such models with spatial reallocation into dynamic macroeconomic
environments. An early contribution is Caselli and Coleman II (2001), who - using a two region model
with endogenous skill acquisition - argue that spatial mobility was an important by-product of the pro-
cess of structural change in the US. Michaels et al. (2012) also study the relationship between structural
change and spatial mobility but do not study the implications on agricultural productivity. Recent pa-
pers are Desmet et al. (2015), Nagy (2016) and Desmet and Rossi-Hansberg (2014). While Desmet and
Rossi-Hansberg (2014) are concerned with the latter aspects of the structural transformation (between
manufacturing and service employment) and Nagy (2016) studies the process of city formation in the
time-period we are interested in (i.e. the US in the 19th century), none of them is concerned with agri-
cultural productivity gap, the main focus of our work.

This productivity gap, is also the object of interest of a sizable empirical literature. Gollin et al. (2013) for
example measure this agricultural productivity gap for a large cross-sections of countries using micro-
data. The find results, which are comparable to the aggregate numbers in the US cited above, i.e. a
relative difference of a factor of 2. Lagakos and Waugh (2011) argue that sectoral selection might be
an important reason for differences in physical productivity across sectors. As we will show explicitly
below, such selection effect have no consequences for the agricultural productivity gap as measured by
value added. Similarly, there are is a set of paper about the importance of spatial wage gaps. Young
(2013) argues that the observed wage differences across space are consistent individuals selecting on
unobserved skills. Bryan et al. (2014) present direct experimental evidence on the existence of spatial
wage gaps in Bangladesh. Lagakos et al. (2015) use this experimental evidence within a macroeconomic
model of incomplete risk-sharing to gauge the welfare implications. To the best of our knowledge, we are
the first to quantify to what extent spatial wage gaps could be the culprit of the agricultural productivity
gap.

The remainder of the paper is structured as follows. In Sections 3 and 4 we describe our model and the
relationship between spatial frictions and agricultural productivity. Section 5 contains our application to
the structural transformation in the US. Section 7 concludes. An Appendix contains the majority of our
theoretical proofs and further details and robustness checks for our empirical results.
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2 Spatial Structural Change and Agricultural Productivity: Three
Empirical Facts

In this Section we provide three important empirical regularities, which suggest why the agricultural
productivity gap could be a spatial gap. Consider first Figure 1, where we use aggregate data to display
the time series of the agricultural employment share (blue line) and relative agricultural productivity, i.e.
value added per worker in agricultural relative to non-agriculture, for the US economy since 1850. While
agricultural employment declines sharply, relative agricultural productivity is essentially constant and
only half as large as productivity in the non-agricultural sector. This is inconsistent with most macroeco-
nomic models of the structural transformation, where sectoral value added per worker is proportional to
the wage, which is equalized across sectors - see e.g. Herrendorf et al. (2014).1
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Notes: The figure shows the aggregate agricultural employment share (blue line) and value added per worker in agricultural
relative to value added per worker in non-agriculture (red line).

Figure 1: The Structural Transformation and Agricultural Productivity in the US

In Figure 2 we report three empirical regularities about the spatial aspects of the structural transformation,
which highlight why this agricultural productivity gap could be a spatial gap. In the left panel, we
depict the cross-sectional correlation between agricultural employment shares and average earnings since
1880.2 We see that this correlation is strongly negative in 1880 and that it remains negative for the
entirety of the 20th century. The fact that the correlation between average earnings and agricultural
employment stays negative despite the fact agricultural employment declines drastically suggests that
spatial mobility is not the main driver for the process of structural change. The second panel in Figure 1

1To see this more formally, suppose that production in sector s takes place according to Ys = AsF (k, l), where F has
constant returns to scale and all markets are competitive. This implies that the capital intensity is equalized. Hence,

VAs

Ls
=

PsAsF (Ls,Ks)

Ls
= w× F (k,1)

∂F(Ls,Ks)
∂L

= w× F (1,k)
∂F(1,k)

∂L

,

i.e. value added per worker is equalized across sectors.
2In the paper, we use the definition of a commuting zone as our definition of a region. There are roughly 700 commuting

zones in the US. We describe our data in more detail in Section 5 below.
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shows in what sense there indeed is an absence of “spatial arbitrage”.In particular, we report the implied
agricultural employment share, which emerged solely from spatial reallocation. More specifically, we
conduct a “shift-share”-analysis, by fixing regional agricultural employment shares at their 1880 level
and calculate the aggregate agricultural employment share using the population distribution from the
data.3 This is the red line in the middle panel of Figure 1. For comparison we again superimpose the
actual agricultural employment share from Figure 1 in blue. It is clearly seen that - in an accounting sense
- spatial reallocation accounts for essentially nothing of the aggregate decline in agricultural employment.
To put it differently, the process of the structural transformation is not driven by a reallocation of people
from high to low agricultural places. Conversely, most of structural change seems to take place within

regions. That this is indeed the case is seen in the right panel of Figure 2, where we display the cross-
sectional distribution of regional agricultural shares for different years. There is a marked leftwards
shift, whereby all regions see a decline in agricultural employment. Hence, the structural transformation
transforms places and is not merely a process which reallocates production factors across space.
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Notes: In the left panel we show the correlation between the agricultural employment share and average earnings across US
commuting zones. In the middle panel we show the aggregate agricultural employment share (blue line) and the predicted
agricultural share holdings regional agricultural shares at their 1880 level, i.e. ∑r sA,r,1880× lr,t , where sA,r,t and lr,t are the
agricultural employment share and the population share of region r at time t. In the right panel we show the cross-sectional
distribution of agricultural employment shares in different years. For a detailed description of the construction of the regional
data we refer to Section 5.

Figure 2: Spatial Structural Change: Three Facts

The patterns in Figure 1 are qualitatively consistent with an important role for the spatial allocation of
resources in explaining the persistence of the agricultural productivity gap. Regions who specialize in
agriculture are places with low wages on average and spatial arbitrage is too slow a process for such
spatial wage gaps to disappear. Finally, the fact that the vast majority of labor reallocation takes place
within regions, implies that the sharp decline in aggregate agricultural employment is perfectly consistent
with persistent difference in average productivity if marginal products within locations are equalized. In
this paper, we argue that the facts displayed in Figure 1 are also quantitatively consistent with the observed
aggregate productivity gap displayed in Figure 1. This, of course, requires a structural model, which is
where we turn now.

3More precisely, we calculate this series as ∑sA,r,1880×
Lr,t
Lt

, where sA,r,1880 is the regional agricultural employment share
in 1880 and Lr.t is number of workers in region r.
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3 Theory

In this section we present our theory of spatial structural change. The theory rests on three pillars. We start
with an essentially neoclassical model of the structural transformation, where the process of structural
change is generated from non-homothetic demand and unbalanced technological progress. We introduce
a spatial dimension, by embedding this structure into an economic geography model of heterogeneous
locations and costly spatial mobility. Finally, we allow for skill-based selection across locations and
sectors of production by assuming that individuals differ in their human capital and skilled workers have
both an absolute advantage and a comparative advantage in the non-agricultural sector.

3.1 Environment

Technology We consider an economy with two goods, an agricultural good and a non-agricultural
good. For simplicity we also sometimes refer to the latter as the manufacturing good. Each good is a CES
composite of differentiated regional varieties with a constant elasticity of substitution σ . In particular,

Ys =

(
R

∑
r=1

Y
σ−1

σ
rs

) σ

σ−1

, (1)

where Yrs is the amount of goods in sector s stemming from region rand σ is the elasticity of substitution.
Production functions are fully neoclassical and given by

Yrst = ArstKα
rstH

1−α
rst ,

where Krst and Hrst denotes capital and labor (in efficiency units) in region r, sector s and time t. For
expositional simplicity, we suppose that capital shares are identical across sectors. We will allow for
differences in our empirical application. It is useful to express productivity Arst as

Arst = Zst×Qrst with ∑
r

Qσ−1
rst = 1. (2)

Here, Zst is an aggregate TFP shifter in sector s which affects all regions proportionally. Additionally,
there are idiosyncratic sources of productivity. The vector of [Qrs] describes the distribution of regional
productivity differences, that is the extent to which some regions are more efficient at producing sector
s goods compared to other locations. The common components of Qrs across industries captures differ-
ences in absolute advantage, i.e. some location might be more efficient to produce all goods. Similarly,
regional differences in Qrs/Qrs′ capture differences in comparative advantage. Given the normalization
embedded in (2), we also refer to the Qrs as measuring the heterogeneity in productivity across space.
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Capital accumulates in the usual way, i.e. according to

Kt+1 = (1−δ )Kt + It ,

where It denotes the amount of investment at time t and δ is the depreciation rate. We assume that the
investment good is a Cobb-Douglas composite of the agricultural and non-agricultural good given in (1).
Letting φ be the share of the agricultural good in the production of investment goods, the price of the
investment good is given byPI,t = Pφ

A,tP
1−φ

M,t . For the remainder we take the investment good to be the
numeraire.

Selection, Human Capital and Labor Supply We allow individuals to differ in their human capital.
Doing so is important to credibly measure the agricultural productivity gap if individual skills are cor-
related with sectoral sorting.4 In particular, suppose that individuals can be of two types - high skilled
and low skilled. Their skill type h determines the distribution of their sector-specific efficiency units
zi =

(
zi

A,z
i
NA

)
. For tractability, we assume that for each worker i, zi is drawn from the Frechet distribution

Fh
zi

s
(z) = e−Ψh

s z−ζ

, (3)

where Ψh
s parametrizes the average level of human capital of individuals of skill type h in sector s and ζ

governs the dispersion of skills. The empirically relevant case is one where skilled individuals have an
absolute advantage, i.e. ΨH

s > ΨL
s for all s and a comparative advantage in the manufacturing sector, i.e.

ΨH
NA/ΨH

A > ΨL
NA/ΨL

A. A convenient parametrization of these assumption is that5[
ΨL

A ΨL
NA

ΨH
A ΨH

NA

]
=

[
1 1
q qµ

]
.

Hence, q parametrizes the absolute advantage of skilled individuals and µ governs the complementarity
between skills and non-agricultural employment.

We assume that - at the aggregate level - a fraction λ of the population is skilled. How people of different
skills are distributed across space is of course endogenous and will be determined endogenously from
peoples’ migration decisions. While individuals know their skills, i.e. h ∈ {L,H} prior to their mobility
decision, they only learn the actual realization of their efficiency bundle zi afterwards. This structure
has two convenient properties. First of all, individuals differ in their spatial mobility choice only by
their skill. Allowing mobility to depend on the realization of their efficiency bundle zi would be less
tractable as we would need to keep track of continuum of ex-ante heterogenous individuals. Secondly,
this structure retains the convenient aggregation properties of the Frechet distribution in (3). If workers’

4Not surprisingly, such sorting behavior is going to be relevant for our application - we find strong evidence that unskilled
individuals are overrepresented in the agricultural sector.

5Note that ΨL
s = 1 is a normalization given the regional technologies Qrs.
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spatial choice was conditional on zi, the distribution of skills within a location would no longer be of the
Frechet form.

Given these assumptions, we can now characterize the individual earnings and aggregate labor supply in
location r. Let λrt be the endogenous share of skilled individuals working in region r. Total earnings of
individual i residing in region r are given by

yi
r = max

{
wr,A× zi

A,wr,NA× zi
NA
}
, (4)

where wr,s denotes the prevailing equilibrium wage per efficiency unit in region r. The Frechet distribu-
tion implies that average earnings of individual in skill group h are given by

E
[
yi,h

r

]
= Γζ ×Θ

h
r ,

where Γζ = Γ
(
1−ζ−1) and Γ(.) is the gamma function and

Θ
h
r =

(
Ψ

h
Awζ

r,A +Ψ
h
NAwζ

r,NA

)1/ζ

. (5)

Note that Θh
r is equalized across sectors and can be directly calculated from the regional wages

(
wr,A,wr,NA

)
but differs across skill-types. This endogenous scalar Θh

r will turn out to be a key endogenous object in
our analysis and we will refer to it as expected regional income (or for brevity regional income). In
particular, given Θh

r , the share of people of skill group h employed in the two industries is given by

sh
s,r = Ψ

h
s ×
(

wr,s

Θh
r

)ζ

, (6)

so that the sectoral labor supply elasticity is governed by ζ . Using (6) is also easy to show that our model
incorporates the consequences of worker selection stressed by Lagakos and Waugh (2011): the average

amount of efficiency units provided to sector s by individuals of skill group h is given by

Hh
r,s

Lr× sh
s,r

=
(

sh
s,r

)− 1
ζ

(
Ψ

h
s

) 1
ζ

,

i.e. is decreasing in the sectoral employment share sh
s,r as individual sorting implies that the marginal

worker in sector s is worse than the average worker.

Demographics In terms of preferences and demographics, we consider an OLG economy. Individuals
live for two periods, work when they are young and save to be able to consume when they are old. The
OLG is structure is convenient because it generates a motive for savings (and hence capital accumulation),
while still being sufficiently tractable to allow for spatial mobility.

In our model, individuals have three economic choices to make: (i) they decide how much to save and
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consume, (ii) they allocate their spending optimally across the two consumption goods and (iii) and
they decide where to work and live. In terms of timing, we assume that individuals are born, decide on
their preferred location when they are young and then remain in that location for their entire life. Their
offsprings are born in the location where the old generation resides. For simplicity, we abstract from
endogenous human capital accumulation and assume that skills are perfectly inherited, i.e. parents with
skill h have children of skill h.

Letting V (et ,Pt) be the indirect utility function of spending an amount et at prices Pt =
(
PA,t ,PNA,t

)
,

life-time utility of individual i after having moved to region r is given by

U i
r = max

[et ,et+1,s]
{V (et ,Pt)+βV (et+1,Pt+1)} , (7)

subject to

et + st = yi
rt (8)

et+1 = (1+ rt+1)st . (9)

Here, yi
rt is individual i’s real income in region r (see (4)), st denotes the amount of savings and rt =Rt−δ

is the real interest rate.

Preferences For our model to induce the process of structural change, we have to move away from
homothetic preferences. In particular, we require a specification of preferences, where consumers reduce
their relative agricultural spending as they grow richer. To do so, we follow Boppart (2014) and assume
that individual preferences can be represented by the indirect utility function

V (e,P) =
1
η

(
e

pφ

A p1−φ

NA

)η

− ν

γ

(
pA

pNA

)γ

+
ν

γ
− 1

η
, (10)

This is a slight generalization of the PIGL demand system employed by Boppart (2014).6 This demand
system has two convenient properties. First of all, it incorporates both income effects (governed by η) and
price effects (governed by γ) in a flexible way. In particular, Roy’s Identity implies that the expenditure

6For V (e, p) to be well-defined, we have to impose additional parametric conditions. In particular, we require that η < 1,
that γ ≥ η . These conditions are satisfied in our empirical application. See Section 8.6 of the Appendix for a detailed
discussion. Boppart (2014) uses this demand system to study the the evolution of service sector. In terms of (10) he assumes
that PA is the price of goods and PNA is the price of services and considers the case of φ = 0.
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share on the agricultural good, ϑA (e, p), is given by7

ϑA (e, p) ≡ xA (e, p) pA

e
= φ +ν

(
pA

pM

)γ

e−η . (11)

For η > 0, the expenditure share on agricultural goods is declining in total expenditure. This captures
the income effect of non-homothetic demand, whereby higher spending reduces the relative expenditure
share on agricultural goods. The long-run secular decline in agricultural employment shown above is to
a large extent driving by the increase in income per capita, which shifts aggregate demand away from
agriculture. Holding real income e constant, the expenditure share is increasing in the relative price of
agriculture if γ > 0. The case of η = 0 corresponds to a homothetic demand system, where expenditure
shares only depend on relative prices. The case of η = γ = 0 is the Cobb Douglas case where expenditure
shares are constant.

We opted for the the preferences specification in (10) for two reasons. First of all, Alder et al. (2017)
have shown that while the more popular Stone-Geary specification is unable to quantitatively account for
the long-run process of structural change between 1880 and 2000, a preference specification in the PIGL
class provides a good fit to the long-run data. Secondly, we show below that these preferences allow for
a very tractable aggregation despite the fact that they fall outside the Gorman class. Hence, they can be
incorporated into a general equilibrium trade model in a tractable way.8

Spatial Mobility Now consider the decision for individual i with skill h to move from j to r. We follow
the literature on discrete choice models and assume the value of doing so can be summarized by

U ih
jr = Eh [Ur]−MC jr +Ar +κν

i
j,

where Eh [Ur] is the expected utility of living in region r (which is conditional on the skill level h), Ur is
characterized in (15), MC jr denotes the cost of moving from j to r, Ar is akin to a location amenity, which
summarizes the attractiveness of region r and which is common to all individuals and νh

j is an idiosyn-
cratic error term, which is independent across locations and individuals. Furthermore, κ parametrizes the
importance of the idiosyncratic shock, i.e. the extent to which individuals sort based on their idiosyn-
cratic tastes relative to the systematic attractiveness of region r. The higher κ , the less responsive are
individuals to the fundamental value of a location embedded in Eh [Ur].

As in in the standard conditional logit model, we assume that νh
j is drawn from a Gumbel distribution.

7As we show in detail in Section 8.2 in the Appendix, Roy’s Identity implies that

ϑA (e, p) = xM
A (p,e)× pA

e
=−

∂V (p,e(p,u))
∂ pA

pA

∂V (p,e(p,u))
∂e e

,

where xM
A (p,e) denotes the Marshallian demand function. For V (p,e) given in (10), this expression reduces to (11).

8This is in contrast to the non-homothetic CES demand system, which has recently been analyzed in Comin et al. (2015).
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This implies that the share of people with skill type h moving from j to r is given by

ρ
h
jrt =

exp
( 1

κ
×
(
Eh [Ur]+Art−MC jr

))
∑

R
l=1 exp

( 1
κ
×
(
Eh [Ul]+Alt−MC jl

)) , (12)

so that the total number of workers of skill type h in region r is simply

Lh
r,t =

R

∑
j=1

(
ρ

h
jrt×Lh

j,t−1

)
,

i.e. given by the inflows from all children of skilled individuals in all other regions. Note also that the
share of non-movers of skill type h is simply given by ρh

j j. We will show below that Eh [Ur] has a tractable
closed form expression, which makes (12) easy to solve.

3.2 Competitive Equilibrium

Given the environment above, we can now characterize the equilibrium of the economy. We proceed in
three steps. We first characterize the household problem, i.e. the optimal consumption-saving decision
and spatial choice. We then show that the solution to the household problem together with our distri-
butional assumptions on individuals’ skills delivers an aggregate demand system, which can write as a
function of a single endogenous variable, despite the fact that our economy does not admit a represen-
tative consumer. Finally, we show that the dynamic competitive equilibrium has a structure akin to the
neoclassical growth model: given the sequence of interest rates {rt}t , we can solve the entire spatial
equilibrium from simple static equilibrium condition. The equilibrium sequence of interest rates can then
be calculated from households’ savings decisions.

Individual Behavior

Consider first the households’ consumption-saving decision given in (7). The two-period OLG structure
together with the specification of preferences in (10) has a tractable solution for both the optimal allo-
cation of expenditure and the consumers’ total utility Ur. We summarize this solution in the following
Lemma.

Lemma 1. Consider the maximization problem in (7), (8) and (9) where V (e,P) is given in (10). The

solution to this problem is given by

eY
t (y) = ψ (rt+1)× y (13)

eO
t+1 (y) = (1+ rt+1)× (1−ψ (rt+1))× y (14)

Ur =
1
η

ψ (rt+1)
η−1× yη +Λt,t+1 (15)
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where

ψ (rt+1) =
(

1+β
1

1−η (1+ rt+1)
η

1−η

)−1
(16)

Λt,t+1 = −ν

γ

((
pA,t

pM,t

)γ

+β

(
pA,t+1

pM,t+1

)γ)
+(1+β )

(
ν

γ
− 1

η

)
.

Proof. See Section 8.1 in the Appendix.

Lemma 1 characterizes the solution to the household problem. Three properties are noteworthy. First of
all, the policy functions for the optimal amount of spending when young (eY

t (y)) and old (eO
t+1 (y)) are

linear in earnings. This will allow for a tractable aggregation of individuals’ demands. Secondly, these
expenditure policies resemble the familiar OLG structure, where the individual consumes a share

eY
t (y)
y

= ψ (rt+1) =
1

1+β
1

1−η (1+ rt+1)
η

1−η

of his income when young and consumes the remainder (and the accrued interest) when old. In particular,
if η = 0, which is the case if demand is non-homothetic (again see Section 3.2 below), we recover the
well-known OLG formulation with log utility where the consumption share is simply given by 1/(1+β ).
Importantly, this consumption share only depends on the interest rate rt+1 but not on the relative prices
Pt or Pt+1. This is due to our assumption that nominal income e is deflated by the same price index as
the investment good. This is convenient for tractability and akin to the single-good neoclassical growth
model, where the consumption good and the investment good uses all factors in equal proportions. For
our purposes, this ensures that an increase in the price of investment good, pI,t , makes savings more
attractive but at the same reduces the marginal utility of spending. Finally, overall utility Ur is additive
separable between income y and current and future prices Pt and Pt+1 (which determine Λt,t+1). This
property will be essential to characterize agents’ optimal spatial choice in a tractable way.

To solve agents’ spatial choice problem, we have to calculate their expected life-time utility Eh [Ur] - see
(12). Given that life-time utility is a power function of individual income yi

r and individual income is
Frechet distributed with shape ζ and mean Γζ ×Θh

r , expected life-time utility can be calculated as

Eh [Ur] =

[
1
η

ψ (rt+1)
η−1× yη +Λt,t+1

]
=

Γη/ζ

η
ψ (rt+1)

η−1×
(

Θ
h
r

)η

+Λt,t+1.

Substituting this expression into (12) yields the equilibrium spatial choice probabilities as

ρ
h
jrt =

exp
(

1
κ
×
(

Γη/ζ

η
ψ (rt+1)

η−1×
(
Θh

r
)η

+Art−MC jr

))
∑

R
l=1 exp

(
1
κ
×
(

Γη/ζ

η
ψ (rt+1)

η−1×
(
Θh

l

)η −MC jl

)) .
This expression has two important properties. First of all, note that it does not feature Λt,t+1, which is
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constant across locations and hence does not determine spatial labor flows. This additive separability of
future prices embedded in Λt,t,+1 is crucial, because it turns individuals’ optimal location choices into a
static problem.9 Moreover, for a given interest rate rt+1, spatial flows only depend on the endogenous
vector of regional income

[
Θh

rt
]

r, which are determined from (static) labor market clearing conditions.
This structure allows us to calculate the transitional dynamics in the model with a realistic geography,
i.e. with about 700 regions.

Equilibrium Aggregation and Aggregate Structure Change

The spatial equilibrium of economic activity is of course driven by aggregate demand conditions. Our
economy does not admit a representative consumer, because the PIGL preference specification in (10)
falls outside of the Gorman class. In particular, consider a set of individuals i∈S , with spending ei. The
aggregate demand for agricultural products stemming from this set of consumers is given by

PCA
S =

∫
i∈S

ϑA (ei,P)eidi =
(

φ +ν

(
pA

pM

)γ ∫
i∈S

e−η

i
eidi∫
i eidi

)
×ES ,

where ES =
∫

i∈S eidi denotes aggregate spending. Hence, as long as preferences are non-homothetic,
i.e. as long as η > 0, aggregate demand does not only depend on aggregate spending ES , but the
entire distribution of spending [ei]i matters. Hence, characterizing the aggregate demand function in our
economy, which features ample heterogeneity through individuals’ skills, their location choice (which
determines the factor prices they face) and the actual realization of the skill vector zi, is in principle
non-trivial.

It turns out that our model delivers very tractable expressions for the economy’s aggregate quantities.
This is due to three reasons. The distributional assumption on individual skills implies that individual
income yi is Frechet distributed. In Lemma 1 we showed that individuals’ expenditure policy functions
are linear. Hence, individual spending eis also Frechet distributed. And because individuals’ sectoral
demands depend on spending via a power function, we can solve for the term capturing the inequality in
spending explicitly. In particular, suppose that ei is distributed Frechet with parameter A and shape ζ . It
is then easy to very that (see Section 8.3 in the Appendix)

∫
i∈S

e−η

i
eidi∫
i eidi

=
E
[
e1−η

]
E [e]

= υ×A−η/ζ ,

where υ = Γ

(
1− 1−η

ζ

)
/Γ

(
1− 1

ζ

)
is a constant. Hence, aggregate demand is an explicit function of the

dispersion in spending (ζ ) and the level of income (A). Because equilibrium factor prices only determine
individuals’ income (and hence spending) via the parameter A, we can solve for the aggregate demand
side of the economy explicitly. In particular the aggregate expenditure share of the set of consumers S

9Note that our assumption of frictionless trade is important for this result - with unrestricted trade costs, future prices
would be location specific and Λt,t+1 would not be constant across space.
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is given by

ϑA
(
[ei]i∈S ,P

)
≡

PCA
S

ES
= φ + ν̃

(
pA

pM

)γ

×E−η

S ,

where ES = Γζ A1/ζ is mean spending and ν̃ = νΓ

(
1− 1−η

ζ

)
/Γ

(
1− 1

ζ

)1−η

. Hence, the aggregate
demand system is as if it stems from a representative consumer with mean spending ES and an adjusted
preference parameter ν̃ .

We exploit this “almost” aggregation property intensely in computing the model. Recall that our econ-
omy, consists of 2×2×R distinct sets of the consumers - two generations, two skill types and R locations.
Letting Eh,Y

r,t and Eh,O
r,t denote the mean spending of the young and generation with skills h in region r,

Lemma 1 implies that

Eh,Y
r,t = ψ (rt+1)Γζ Θ

h
r,t and Eh,O

r,t = [(1+ rt)(1−ψ (rt))]Γζ Θ
h
r,t−1.

Note that the amount of spending of the old generation in year t depends on their income earned in period
t−1, their savings rate (1−ψ (rt)) and the accrued interest. The aggregate amount of consumer spending
on agricultural goods is therefore given by

PCA
t = φ ×Et + ν̃

(
pA

pM

)γ

×∑
r,h

((
Eh,Y

r,t

)1−η

λ
h
r,tLr,t +

(
Eh,O

r,t

)1−η

λ
h
r,t−1Lr,t−1

)
, (17)

where Et = ∑r,h

(
Eh,Y

r,t λ h
r,tLr,t +Eh,O

r,t λ h
r,t−1Lr,t−1

)
denotes aggregate consumer spending.

Because a fraction φ of total investment spending is spent on agricultural goods and total value added (or
GDP) is given by PYt = It +PCt , the agricultural share in value added is given by

ϑA,t =
φ It +PCA

t
PYt

= φ + ν̃

(
pA

pM

)γ

×
∑r,h

((
Eh,Y

r,t

)1−η

λ h
r,tLr,t +

(
Eh,O

r,t

)1−η

λ h
r,t−1Lr,t−1

)
PYt

. (18)

Moreover, because workers receive a fraction 1−α of aggregate output, we can express aggregate GDP
as

PYt =
1

1−α
×∑

r,h
Γζ Θ

h
r,tλ

h
r,tLr,t . (19)

Equations (18) and (19) highlight two properties. First of all, for a given allocation of people across
space, both aggregate income PYt and the agricultural share ϑA,t only depend on the vector of current and
past average regional incomes

[
Θh

r,t ,Θ
h
r,t−1

]
r
. Secondly, these equations highlight the usual demand side

forces of structural change. In particular, consider an allocation where the distribution of individuals by
skill is stationary (i.e. λ h

rt = λ h
r and Lr,t = Lr) and where regional incomes Θrt grow at rate g. Because
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spending Eh,g
r,t and GDP are then proportional, (18) implies

ϑA,t = φ +ν

(
pA,t

pM,t

)γ

×Ξ×PY−η

t ,

where Ξ is an (endogenous) constant. Hence, rising aggregate income PYt will reduce the agricultural
spending share as long as demand is non-homothetic, i.e. η > 0. At the same time, changes in relative
prices will also affect ϑA,t . In our model, the spatial allocation of resources will of course not be stationary
as the economy undergoes the structural transformation. Similarly, regional incomes Θrt will also not
grow at a constant rate. These features of “unbalanced spatial growth” will also affect the agricultural
spending share directly.

Equilibrium

Given the physical environment above, we can now characterize the dynamic competitive equilibrium in
our economy. Our assumptions ensure that the analysis remains very tractable. As highlighted above, the
key properties of our theory are that (i) individual moving decisions are static and (ii) that our economy
generates an aggregate demand system as a function of regional incomes

[
Θh

rt
]

h. This implies that, for a
given path of interest rates {rr}t , we can calculate the equilibrium by simply solving a set of equilibrium
conditions.

Consider first the goods market. The market clearing condition for the agricultural good is given by

∑
h

wr,AHh
r,A = (1−α)×πrAt×ϑ

VA
A,t ×PYt , (20)

i.e. total agricultural labor earnings in region rare equal to a constant share of total agricultural revenue
in region r. This in turn is equal to region r’s share, πrAt , in aggregate spending on agricultural goods,
ϑVA

A,t ×PYt . Standard arguments imply that regional trade shares π are given by

πrAt =

(
PrAt

PAt

)1−σ

=

(
QrAt
w1−α

rAt

)σ−1

∑
R
r=1

(
QrAt
w1−α

rAt

)σ−1 , (21)

i.e. they do neither depend on the identity of the sourcing region, nor the equilibrium interest rate Rt

or the common component of productivity Zst . Rather, a region r’s agricultural competitiveness only
depends on its productivity QrAt and the equilibrium price of labor in the agricultural market. Similarly,
it is easy to verify that regional agricultural labor income is given by

∑
h

wrAtHh
rAt = LrtΓ

(
1− 1

ζ

)
wζ

rAt×∑
h

λ
h
r Ψ

h
s

(
Θ

h
r

)1−ζ

.
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Together with the spatial labor supply equation (12) and the corresponding labor market clearing condi-
tions for the non-agricultural sector, these equations directly determine the equilibrium levels of regional
income

[
Θh

rt
]

h (or alternatively the equilibrium wages).

Finally, we can also directly calculate the remaining macroeconomic aggregates, in particular the dy-
namic accumulation of capital. Because the future capital stock is only given by the savings of the young
generation, we get that

Kt+1 = (1−ψ (rt+1))×∑
r,h

Y h
r,tλ

h
r,tLr,t = (1−ψ (rt+1))(1−α)PYt . (22)

Hence, future capital is simply a fraction 1−ψ (rt+1) of aggregate labor earnings. This proportionality
between the aggregate capital stock and aggregate GDP is a consequence of the linearity of agents’
consumption policy rules.

It is worthwhile to point out that our model retains many features of the baseline neoclassical growth
model. In particular, for given initial conditions [K0,Lr,−1,wr−1] and a path of interest rates {rt}t , the
equilibrium evolution of wages and people (by skill type) are solutions to the static equilibrium conditions
highlighted above. Given these allocations, the model predicts the evolution of the capital stock according
to (22). A dynamic equilibrium requires that the set of interest rates {rt}t is consistent with the implied
evolution of the capital stock. More formally, a competitive equilibrium in our economy is defined in the
usual way.

Definition 2. Consider the economy described above. Let the capital stock K0, the initial spatial alloca-

tion of people [Lr,−1] and the vector of past wages [wr,−1] be given. A dynamic competitive equilibrium is

a set of prices [Prst ], wages [wrt ], capital rental rates [Rt ], labor and capital allocations [Lrst ,Krst ], con-

sumption and saving decisions
[
eY

rt ,e
O
rt ,srt

]
, sectoral spending shares

[
ϑY

rt ,ϑ
O
rt
]

and demands for regional

varieties [crst ] such that

1. consumers’ choices
[
eY

rt ,e
O
rt ,srt

]
maximize utility, i.e. are given by (13) and (14),

2. the sectoral allocation of spending
[
ϑY

rt ,ϑ
O
rt
]

is optimal, i.e. given by (11),

3. the demand for regional varieties follows (21) and firms’ factor demands maximize firms’ profits

4. markets clear,

5. the capital stock evolved according to (22),

6. the allocation of people across space
[
LY

r,t
]

is consistent with individuals’ migration choices in

(12).
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4 The Spatial Gap

The above model is a model of spatial structural change. It delivers a concise framework to connect
the allocation of factors across space and sectors along the structural transformation. Besides being of
interest in itself, this paper argues that novel spatial dimension of structural change can in fact explain
why agricultural productivity at the aggregate level is likely to be persistently low during the structural
transformation.

We define the agricultural productivity gap as the share of agricultural value added relative to the share
of agricultural employment. In our spatial model, this productivity gap can be written as

GAPt ≡
ϑVA

A,t

LA,t/Lt
=

∑
R
r=1 sArt× yA

rt
yrt
× yrt×Lrt

∑
R
r=1 yrt×Lrt

∑r sArt× Lrt
∑r Lrt

. (23)

Here, sA,r and Lrt denote the regional agricultural employment share and the regional population and yrt

and yA
rt denote regional average earnings and agricultural earnings, respectively, i.e.

yA
r =

λrsH
A,rΘ

H
rt +(1−λr)ΘL

r sL
A,r

sA,t
and yr = λrtΘ

H
rt +(1−λrt)Θ

L
rt ,

where all the variables are defined as above. Hence, the aggregate agricultural productivity gap depends
on the joint distribution of regional agricultural employment shares sArt , relative agricultural earnings
yA

rt/yrt , average regional earnings yrt and the size of the population Lrt . While all these ingredients are
of course endogenous to the process of structural change, we will show that the gap implied by (23) can
quantitatively go a long way to explain the aggregate productivity gap observed in the US.

To build some intuition why this is the case, suppose there was only absolute advantage but no compara-
tive advantage, i.e. µ = 1. This implies that high and low skilled earnings are proportional (ΘH

rt = q×ΘL
rt)

and that sectoral employment shares are equalized across skill groups (i.e. sH
A,r = sL

A,r = sA,r). Hence, rel-
ative agricultural earnings within regions are equalized

(
yA

rt = yrt
)

and the aggregate productivity gap in
(23) reduces to

GAPt =
∑

R
r=1 sA,r× Lryr

∑
R
r=1 Lryr

∑r sArt× Lrt
Lt

, (24)

where regional income per capita yr is given by

yr = [λr×q+(1−λr)]︸ ︷︷ ︸
Human Capital

× Θ
L
rt︸︷︷︸

MPL

, (25)

i.e. reflects both the skill composition of the regional workforce and average earnings, i.e. the marginal
productivity of labor in region r.
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These equations are instructive. In particular, they highlight that agricultural productivity is relatively
low if the cross-sectional correlation between agricultural employment shares sA,r and regional income
per capita yr is negative. Hence, the low aggregate productivity of the agricultural sector might simply
reflect the fact that agricultural intensive regions attract low-skilled individuals

(
corr

(
sA,r,λr

)
< 0
)

or
that they have low marginal productivity in all industries, i.e. a low level of productivity QA,r and QNA,r.
If yr was equalized across space, there would be no productivity gap. This would for example be the case
if all regions were symmetric.

We can further decompose the variation in earnings ΘL
rt . In particular, individual’s sectoral labor supply

function implies that (see (6)) that
Θ

L
rt = wrA,t︸︷︷︸

Skill prices

× s−1/ζ

rAt︸ ︷︷ ︸
Selection

,

i.e. total earnings in region r could be low because agricultural skill prices are low or because the share
of workers in the agricultural sector is large. This last term is the selection effect highlighted by Lagakos
and Waugh (2011), whereby sectoral specialization reduces the average product of labor through sorting
based on comparative advantage. Because the marginal worker in the agricultural sector is worse than
the average worker, the larger the share of people working in agriculture, the lower average warnings,
holding agricultural skill prices constant.

Finally, equation (24) also highlight why it is appropriate to refer to the agricultural productivity gap
as a spatial gap: in case there is only a single region, i.e. R = 1, (24) implies that GAPt = 1, i.e.
productivity is equalized across sectors as in the baseline model of structural change. While this is
seemingly inconsistent with Lagakos and Waugh (2011), note that they look at physical productivity
across sector. The agricultural productivity gap, however, is evaluated at sectoral prices. If worker
selection takes the Frechet form, the productivity and price effect exactly cancel out.10 If, however,
there is spatial variation in the extent to which workers sort into different sectors and wages differ across
regions, the extent of selection does directly determine the agricultural productivity gap. To what extent
this spatial friction is quantitatively important depends on the calibrated model. This is where we turn
now.

5 Quantitative Exercise

We now take the framework above to the data. To do so, we exploit a novel dataset on regional economic
development of the US between 1880 and 2000. We first describe the dataset and provide three basic
empirical regularities, which suggest the importance of spatial frictions for the productivity gap in agri-
culture. After describing our calibration strategy we then turn to our two main results. First we measure
the spatial gap through the lens of the model. We then consider our counterfactual exercise, where we
gauge the importance of the costs of spatial mobility for the agricultural productivity gap.

10We show this formally in Section 9.2 in the Online Appendix.
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5.1 Data

Our main data sources are the Census of manufacturing for 1880 and 1910, the Micro Census for 1880-
2000 and County and City Data Books for 1940-2000. From these sources we construct a data set
of total workers [Lrt ]rt , average manufacturing wages [wrt ], and sectoral employment shares

[
sA,rt

]
rt

for all US counties at 30 year intervals between 1880 and 2000.11 We define the agricultural sector
to comprise agriculture, fishing and mining industries defined according to the 1950 Census Bureau
industrial classification system (outlined in Ruggles et al. (2015)). All remaining employed workers are
classified as non-agricultural workers. We construct average manufacturing wages from county level
total manufacturing payroll data and manufacturing head counts obtained from the same source.1213 In
Appendix 9.14 table 7 contains a comprehensive list of data sources.

We are interested in structural change within and across regions of the continental US economy. This
poses the question of what constitutes a meaningful spatial aggregation for local economies in the United
States, which have the potential to experience structural change within them and together cover all US
territory.14 Commuting zones as constructed by Tolbert and Sizer (1996) constitute a meaningful defini-
tion of such local economies. They partition the US economy into 741 local labor markets that in 1990
maximized commuting flows within and minimized them across. Contrary to counties all of these com-
muting zones exhibited non-zero non-agricultural employment shares in 1880 as can be seed in figure 3.
Note that in 1880 around half of the workforce is employed in agriculture in the aggregate.

To map our county data to commuting zones we use ARCGis software to construct a crosswalk be-
tween counties and 1990 commuting zones for every decade between 1880 and 2000. Using this we
re-aggregate county level data to commuting zones, employing area weights to allocate county level
allocations wherever counties are split.15

The result of this procedure is a panel data set for 717 continental commuting zones from 1880 to 2000
which features sectoral employment shares, total employment and average manufacturing wages. For the

11There are a twelve states which in 1880 were not part of the Union yet (had not obtained statehood), we list them here
and give the year of the accession to the Union: North Dakota (1889), South Dakota (1889), Montana (1889), Washington
(1889), Idaho (1890), Wyoming (1890), Utah (1896), Oklahoma (1907), New Mexico (1912), Arizona (1912), Alaska (1959)
and Hawaii (1959). We exclude Alaska, Hawaii and Washington D.C. The 1880 Census does report data for counties in all
states, even those that had not yet officially obtained statehood in 1880, with two exceptions: Oklahoma and Hawaii. We
impute 1880 data for Oklahoma’s counties using a procedure described in Appendix (9.14).

121880 wages: 1880 Census of Manufacturing; 1910 wages: 1920 Census of Manufacturing; 1940 wages: 1947 County
and City Data Book; 1970 wages: 1970 County and City Data Book; 2000 wages: 2000 County and City Data Book.

131940 is the only year for which we have wage data from the micro census and on the county level from the Census of
Manufacturing. Aggregating and averaging the former to the county level leads a worker weighted correlation coefficient of
about 0.7.

14The requirement for this is a somewhat diversified industrial structure. In the 1880 data there are counties with agricultural
employment shares of almost 1, making counties a seemingly unsuitable aggregation.

15The United States moved from 2473 counties in 1880 to 3142 counties in 2000. In this process some new counties were
created by splitting in half an existing one and other new ones created by joining together parts of others. In order to map 1880
county level data to 1990 counties and from there to commuting zones, it hence becomes necessary to work with fractions
of counties. We use area weights and the assumption of a uniform distribution of industrial activity across space for this
aggregation. More details in the Appendix.
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Manufacturing Wages across Commuting Zones 1880

Figure 3: Left Panel: Agricultural Employment Share across US Commuting Zones in 1880. Right Panel:
Ration of Local Manufacturing Wages relative to US Median across US Commuting Zones in 1880.

main calibration of the model we employ the cross-sections 1880, 1910, 1940, 1970 and 2000 only and
normalize the size of the workforce to unity in each period. We scale the level of wages to ensure that
income per capita grows at a constant rate. More details on the the construction of this panel can be found
in online Appendix 9.14.

Beyond this panel, the 1940 version of the decennial Micro Census is a data source of particular im-
portance for the paper: it is the most recent Census for which all US counties are available and it is
the first Census for which earnings and education variables are available.16 We define a skilled worker
as one with a completed high school degree.17 This pins down the skilled employment share in 1940,
λr1940. The next section demonstrates that the structure of the model together with other data inputs is
such that a single cross-section of skill shares is sufficient to infer local skill shares for the remaining
cross-sections in the sample. Finally, we use the 1940 Census to compute the US wide skill premium
and a manufacturing skilled employment premium which are used in the calibration below. To that end
we use total pre-tax annual wage and salary income together with the same sector definitions as in the
construction of the panel to construct the average annual wage of skilled workers relative non-skilled
ones. The manufacturing skilled employment premium is simply the ratio of the fraction of skilled peo-
ple working in manufacturing over the fraction of unskilled workers working in manufacturing out of all
unskilled workers.

In the model agents move once in their life time in order to choose a labor market. We use the US
decennial Census Micro data obtained from IPUMS (see Ruggles et al. (2015)) to construct an interstate
migration flow matrix for the cross-sections 1880, 1910, 1940, 1970 and 2000. In a given Census we
choose workers between 26 and 50 years of age, and compute the number of them living in a different

16We use the Public-use Micro Census data compiled and maintained Ruggles et al. (2015). In the publicly available
samples counties are censored and only become available after 70 years. As a result we cannot identify all counties in Census
cross-sections beyond 1940, which is the cross-section most recently de-censored (2010).

17We assume a direct mapping between skilled employment and education. Choosing a higher education cutoff would result
in a overall skilled worker share in the US below 0.29, which seems unrealistic. We do robustness with lower cutoffs.
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state from their state of birth. Where we use them state level wages are constructed by aggregating county
level manufacturing wages from above panel.

We use the data constructed by Alvarez-Cuadrado and Poschke (2011) on the relative price of manu-
facturing commodities to agricultural goods directly infer

[
PA,t
PM,t

]
t
from the data. To map the model more

directly to the data a combined price index for manufacturing and the service sector would be needed.
We do not know of the existence of a reliable such series.

Finally, we use micro-data on expenditure patterns from the 1930s to estimate consumer preferences.
The Consumer Expenditure Survey in 1936 (“Study of Consumer Purchases in the United States, 1935-
1936”) contains detailed information on individual expenditure and allows us to calculate the expenditure
share of food. We exploit this cross-sectional information on expenditure shares and total expenditure to
estimate the extent of non-homotheticities in demand, i.e. the parameter η .

5.2 Calibration

In this section we outline our calibration procedure. In Section 9.3 in the Appendix we describe our
calibration in much more detail. We calibrate the model such that aggregate income per capita grows
at a constant rate and that the capital-output ratio is constant. In Section 8.5 in the Appendix, we show
that this implies that interest rates are constant and have a closed form expression. For our counterfactual
analysis, interest rates will of course not be constant.

Skill Supply To parametrize the skill supply, we need values for the supply elasticity (ζ ), the compar-
ative and absolute advantage of skilled workers (q and µ) and the initial distribution of skilled workers
across space λr,1880. We define skilled individuals as workers with at least a completed high-school edu-
cation in 1940 and hold the aggregate share of skilled workers fixed. For the theory we need the spatial
distribution of skilled workers in 1880, i.e. λr,1880. In the data this object is unobserved, as the 1880 mi-
cro census only has information on literacy, but not on schooling. We calibrate this initial allocation by
requiring the model to endogenously perfectly replicate the cross-sectional distribution of skill supplies
in 1940.

The 1940 cross-section of data is the only one for which we observe average manufacturing wages,
sectoral employment and the commuting zone level skill share λr,1940. Section 9.3.1 in the Appendix
shows how these data inputs can be translated into regional sectoral wages, wrs1940, and human capital
stocks, Hrs1940, conditional on the parameters ζ ,µ,q. This in turn allows us to construct Θx

r,1940 (ζ ,µ,q)

and sx
r,s (ζ ,µ,q) for x = H,L.

We calibrate the parameter ζ , i.e. the dispersion in individual productivity, to match the dispersion of
earnings in the 1940 Census data. In particular, the model implies that the variance of log earnings with
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region-skill cells is given by π2

6 ×ζ−2. We therefore identify ζ from

ζ =
π

61/2 ×var
(
ûi

rsh
)−1/2

,

where var
(
ûi

rsh

)
is the variance of the estimated residuals from a regression of log earnings on region,

sector and skill-group fixed effects.

We calibrate q and µ to match the aggregate skill premium and the aggregate relative manufacturing em-
ployment share of skilled workers in 1940. In the 1940 Micro Census data we calculate the unconditional
skill premium by taking the average yearly earnings of all individuals with at least high school education
and dividing it by the equivalent number for all workers with less than high school education, which
yields a skill premium of 1.62. We compute the relative manufacturing employment share of skilled
workers as the non-agricultural employment share of skilled workers relative to the one of unskilled
workers. Empirically, this number is equal to 1.21, i.e. high-skilled individuals are 20% more likely to
work outside of agriculture. Note that these measures already incorporate the unbalanced spatial sorting
of skilled and unskilled individuals, i.e. they take into account that skilled workers live in high-wage and
manufacturing intensive localities.

Aggregate and Local Productivities and Amenities We calibrate local productivities and amenities
[Qrst ,Art ] as structural residuals, i.e. we force the model to match the spatial data perfectly with [Qrst ,Art ]

absorbing any residual variation. In the previous section we showed how to obtain sectoral wages and
human capital conditional on regional skill shares and a range of other available data and already cali-
brated parameters. In section (9.3.1) of the appendix we show that these objects can be used to calculate
trade shares as follows:

πrst =
wr,sHr,s

∑r wr,sHr,s
.

As a result we can treat πrst as data to obtain Qrst from the expression for trade shares given in (21) which
we restate here for convenience

πrst =

(
Qrst

w1−α
rs

)σ−1

∑
R
J=1

(
Q jst

w1−α

js

)σ−1 with
R

∑
r

Qσ−1
rst = 1

Together with sectoral wages and the parameters (σ ,α), this equation along with our normalization
identifies Qrst exactly.18

18To see the role of Qrst as structural residuals more directly note we can rewrite (21) as follows:

log
πrst

π1st
= (σ −1) log(Qrst/Q1st)+(1−σ)(1−α) log(wrst/w1st)
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Recall that we only observe skill shares on the county level in 1940. It turns out the structure of the
model provides sufficient restrictions to imply skill shares, λrt , for every other cross-section given λ1940.
Skill shares and amenities are calibrated jointly using equation (12) which allows for the construction of
a useful mapping

Ak+1
rt = f ({Θh

rt ,L
h
rt ,L

h
rt−1,A

k
rt}h=L,H) with ∑

r
Ar = 0

The algorithm to jointly back out skill shares and amenities is then as follows: (1) Use 1940 skill shares
from the data to calculate Θh

rt . (2) Guess skill shares in 1910 and use worker stocks in 1910 to calculate
Lh

rt−1. Then we iterate on f to get implied amenities Art . Since these amenities are not indexed by skill
type they may imply a Lh

rt−1 that yields skill shares for 1910 different from our initial guess. We iterate
between updating skill shares and amenities until convergence. (3) We then guess skill shares for 1970
and use the f mapping forward to obtain 1970 and 2000 skill shares and amenities: this time guessing
skill shares three decades ahead, calculating implied amenities by iterating on f and then updating the
skill share guess. This procedure leaves us with a panel of skill shares and amenities for all commuting
zones and cross-sections. More details can be found in section 9.3.1 in the Appendix. In figure 14 in the
Appendix we plot the densities of the calibrated [Qrst ,Art ] for every cross-section.

Lastly, we calibrate the time series of aggregate sectoral productivities, [ZAt ,ZMt ], to match the evolution
of relative prices and a GDP growth rate of 2%. We plot these two implied series in figure 15 in the
Appendix.

Moving Costs We specify moving frictions as a quadratic function of distance as follows:

τi j =

τ if j = i

δ1di j +δ2d2
i j if j 6= i

τ > 0 corresponds to a fixed cost of moving: if a worker decides to move away from his commuting
zone of birth he forgoes the place utility τ . Additionally movers have to pay a cost, denominated in
utils, that varies with the distance travelled. We normalize di j so that the maximum distance in the US is
1. Before this normalization the largest distance between two continental commuting zone centroids is
2827.4 miles.

In the Census data we observe for every decade and for every individual her state of birth and her current
state of residence. Using this we can construct a lifetime state-to-state migration flow matrix. For our
baseline estimates we would like to choose (κ,τ,δ1,δ2) so as to match these state to state flows as
closely as possible for the 1910-1940 period, while still matching local populations, employment shares
and wages exactly.

Regressing trade shares (now observed) on wages yields the log ratio of Qrst as a structural residual. The necessity of an
additional normalization then also becomes clear. We choose ∑

R
r Qσ−1

rst = 1 since this choice helps to simplify certain analytic
expressions.
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Since our model features commuting zones while our data records state to state flows we will aggregate
commuting zone flows to the state level in the model and calibrate (κ,τ,δ1,δ2) so as to make the model
fit state to state flows as closely as possible.

Consider the flow equation from the model:

Lh
r,t = ∑

j
ρ

h
jr,t×Lh

j,t−1

where ρh
jr is given in equation 12. Also note:

ρh
j j

ρh
jr
=

exp
( 1

κ
×
(
Eh [U j

]
+ τ +A j

))
exp
(

1
κ
×
(

Eh [Ur]−δ1d jr−δ2d2
jr +Ar

))
So that the number of stayers relative to movers increases monotonically in τ for fixed Al . Note that
consth

j is independent of moving cost parameters given that we always match local labor supply exactly.
The procedure for estimating (κ,τ,δ1,δ2) is then to guess (κ,δ1,δ2), compute commuting zone flows
and aggregate them to the state level. For each guess τ is chosen so as to ensure the model matches
the aggregate interstate migration rate of 0.3 exactly. We then search over combinations of (κ,δ1,δ2) to
identify the tupel that minimizes the following objective:

Λ = ∑
i

∑
j 6=i

Li,1940×
(

logρ
DATA
i j,1940− logρ

MODEL
i j,1940 (κ,δ1,δ2)

)2

The objective function Λ is a destination population weighted sum of the percentage difference between
model and data of the inflows from all states except the destination itself. We evaluate this objective
function over a wide grid for (κ,δ1,δ2) and find that it is well behaved and in particular exhibits a unique
minimum.

Note that for any guess of (κ,δ1,δ2) we resolve for skilled employment shares in 1910 and the amenity
vector in 1940 so as to match skilled employment in 1940 as well as total populations in 1910 and 1940
exactly.

Figure 4 shows the density of state level stayers in model and data as well as the distance-flow relation-
ship. The model matches the pattern observed in the data quite well. In particular, the model matches the
cross-sectional heterogeneity in the share of stayers within a location.

Preferences I: Estimating the non-homotheticity η We use the microdata from the Consumer Expen-
diture Survey in 1936 (“Study of Consumer Purchases in the United States, 1935-1936”) to estimate the
extent of non-homotheticities. The demand system implies that expenditure shares at the individual level
are given by ϑA (e, p) = φ +ν

(
pA
pM

)γ

e−η . For φ ≈ 0, this implies that there is a log-linear relationship
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Figure 4: State-to-state migration: Model vs Data

between expenditure shares and total expenditure, i.e.

lnϑA (e, p) = f (p)−η× lne. (26)

Note that the intercept f (p) is a function of prices but does not vary in the cross-section of households.

In Figure 5 we depict the cross-sectional distribution of the expenditure share for food (left panel) and
the binned scatter plot between (the log of) expenditures and expenditure shares after taking our a set of
regional fixed effects, which are supposed to proxy for f (p). The slope of the regression line is exactly
the extent of the demand non-homotheticity η . It is clearly seen that there is substantial heterogeneity
in the expenditure share on food in the cross-section of households. Moreover, the expenditure share
is systematically declining in the level of expenditure and the cross-sectional relationship is essentially
log-linear as predicted by the theory. The slope coefficient implied that η = 0.32. In Section 9.3 in the
Appendix we also report the regression results, when we do not impose the restriction that φ = 0 and
estimate the demand function using non-linear least squares. The parameter η is precisely estimated and
- depending on the specification - between 0.3 and 0.34.

Preferences II: Estimating (φ ,ν ,γ) In contrast to η , which is estimated from the cross-sectional rela-
tionship, we use the time-series of the aggregate agricultural employment share to identify the remaining
parameters (φ ,ν ,γ). As γ determines the price elasticity of demand, we discipline γ with the elasticity of
substitution. In particular, the model implies that the elasticity of substitution of individual i is given by

σ
ES
i = 1−η− (γ−η (1−φ))(1−φ)

1−ϑA,i
+

[γ +φη ]φ

ϑA,i
.
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Figure 5: Expenditure Shares on Food in 1936

Hence, the elasticity of substitution varies across households and across time. Comin et al. (2015) esti-
mate this elasticity to be around 0.7 in post-war data for the US. We therefore chose γ so that the model
implies an average elasticity of substitution of 0.7 in the year 2000.

Given our calibration strategy for the underlying distribution of productivity and amenity fundamentals,
internal consistency requires us to match these four agricultural employment shares exactly. As we
discuss in detail in Section 9.13 in the Appendix, the income effects as implied from the cross-sectional
spending-food relationship displayed in Figure 5 are not strong enough to explain the entire decline in
agricultural employment in the time-series.19 We therefore allow the parameter φ to be time-specific to
fully account for the residual decline in agricultural employment and chose ν to minimize the required
time-variation in φt . Intuitively, ν is chosen for the model to explain as much of the aggregate process of
structural change as possible, given the income and price elasticities η and γ . Note that φ does not enter
the household’s decision problem directly. This strategy, which we explain in detail in Section 9.10 of
the Appendix, yields parameter estimates, which are reported in Table 1.

Endogenous Amenities In our counterfactuals we allow amenities to be a function of local population
Lr. In particular we assume that the overall amenity in location r can be written as:

Ar,t = ρLθ
r,t + Ār,t (27)

where Ār is the exogenous component of the amenity inherent to location r and ρ,θ ∈ R flexibly param-
eterize the endogenous effect of local population on amenities. It is natural to think about a congestive

19This discrepancy between the cross-section and time-series is not particular to our application. For example, the results
reported in Comin et al. (2015) also imply different estimates for the income elasticity stemming from the cross-section and
the time-series. While reconciling this discrepancy between the cross-section and the time-series is an important open research
question, it is not the main focus or our paper.
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effect of local population on local amenities as in Ahlfeldt et al. (2015) and Allen and Arkolakis (2014)
and our estimates will imply this.

Similar to Ahlfeldt et al. (2015), notice that for each set of parameters of the model, there is a unique
vector Ar,t for each t = 1910,1940,1970,2000 such that the observed vectors of wages, local populations
and employment shares in each cross-section are an equilibrium of the model. This result is independent
of (ρ,θ). In order to estimate (ρ,θ) we first fit the model to the data and back out the full panel of
amenities Ar,t for t = 1910,1940,1970,2000. We then rewrite 27 in differences:

∆Ar,t = ρ∆Lθ
r,t +∆Ār,t (28)

In equation 28 {∆Ar,t ,∆Lr,t}r=1,...,R,t=1910(30)2000 are observed independently of (ρ,θ). With an instru-
ment ϕr,t for ∆Lθ

r,t that induces variation in local population inflows between t and t − 1 orthogonal to
∆Ār,t the two parameters (ρ,θ) could be obtained by minimizing the sample equivalent of the following
moment condition:

E
[
ϕr,t∆Ār,t

]
= E

[
ϕr,t

(
∆Ar,t−ρ∆Lθ

r,t

)]
= 0

To construct such an instrument we turn to a Model Implied Optimal IV (MOIV) general equilibrium
estimator as recently proposed by Adao et al. (2017). We simulate the model for a given guess of (ρ,θ)
holding the implied Ār,1880 fixed throughout but letting all other fundamentals vary as calibrated. This
generates a series of population changes ∆Lr(∆Qr,s,t ,∆Ār,t = 0,∆Zs,t | θ ,ρ) which is by construction
orthogonal to changes in Ār,t .

Λ = ∑
t=1940,1970,2000

[
1
N ∑

r
∆Lr,t(∆Qr,s,t ,∆Ār,t = 0,∆Zs,t | θ ,ρ)∆Ārt

]2

Other parameters Finally, we need values of the capital share α , the rate of depreciation δ , the pref-
erence parameter σ and the consumers’ discount rate β . For (α,σ ,δ ) we we take central values from the
literature. We take a capital share of 1/3. This implies that our model is consistent with the aggregate
labor share of 2/3, which is relatively constant during our time-period. We assume an annual rate of
depreciation of 8%. Finally, we chose σ = 4. We also target an investment rate of 15% and a growth
rate of 2%, both of which are consistent with the aggregate US experience in the 20th century. These
moments directly determine β .

5.3 Calibration Results

In Table 1 we report the calibrated parameters and the main targeted moment, both in the data and the
model. Naturally, the parameters are calibrated jointly.

An important part of our calibration strategy is that we calibrate the cross-sectional distribution of sectoral
productivities

{
QA,rt ,QNA,rt

}
r and amenities {Art}r as structural residuals. Hence, given the remaining
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Dependent Variable
log Pop. (lnLr) Agr. empl. share (sA,r) log manufac. earnings

Productivity (lnQNA,r) 0.522∗∗∗ -0.019∗∗∗ 0.138∗∗∗

(0.032) (0.004) (0.007)

Comparative Adv. (lnQA,r/QNA,r) -0.042 0.022∗∗∗ 0.038∗∗∗

(0.036) (0.004) (0.007)

Amenities (Ar) 0.567∗∗∗ 0.007 -0.164∗∗∗

(0.080) (0.011) (0.017)

Year FE Yes Yes Yes
Observations 2580 2580 2580
R2 0.916 0.783 0.995

Notes: Robust standard errors in parentheses with ∗∗∗, ∗∗ and ∗ respectively denoting significance at the 1%, 5% and 10% levels. The dependent variables
are the structural residuals “productivity” (lnQNA,r), “comparative advantage (lnQA,r/QNA,r)” and “Amenities” (Art ), which are inferred from the calibrated
model. The regressions are run for the years 1910, 1940, 1970 and 2000.

Table 2: Fundamentals and Endogenous Outcomes

parameters reported in Table 1, the model matches the population distribution, the regional agricultural
employment shares and average manufacturing earnings exactly. In Table 2 we report three descriptive
regressions to illustrate the model’s mapping form unobserved fundamentals to observed endogenous
outcomes. In particular, we run regression of the form

yrt = δt + γ× lnQNA,rt +β × ln
(

QA,rt

QNA,rt

)
+α×Art +urt ,

where yrt denotes the endogenous outcomes at the regional level, i.e. population size, agricultural em-
ployment shares or manufacturing earnings. For ease of interpretation, we project these outcomes on
the level of productivity

(
QNA,rt

)
, the comparative advantage in agriculture and regional amenities. We

find that (i) regional size is mostly driven by the level of productivity and regional amenities, that (ii) a
regions’ agricultural employment share is negatively correlated with regional productivity and positively
correlated with comparative advantage in agriculture and that (iii) manufacturings earnings are positively
correlated with productivity and comparative advantage but negatively correlated with amenities.

6 Results

With the calibrated model at hand, we can now answer the two questions we set out to address. In Section
6.1 we ask to what extent the calibrated model can account for the observed agricultural productivity gap
at the aggregate level. We also provide a decomposition into the different regional fundamentals. In
Section 6.2 we then quantify the importance of spatial mobility costs. In particular, we show that the
spatial gap would not have been markedly lower in the absence of moving costs and we also explain why
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Notes: The figure shows the agricultural productivity gap as implied by the calibrated model (red line), the agricultural productivity gap from the aggregate
data (blue line) and the “naive spatial gap”, which we calculate as GAPNaivs

t =
(

∑r sA,rt × eM
rt Lrt

∑r eM
rt Lrt

)
/LA,t , where eM

rt denotes the average manufacturing
earnings from the data.

Figure 6: The Spatial Agricultural Productivity Gap in the US from 1880 - 1910

this is the case.

6.1 The Spatial Gap in the US from 1880 to 2000

With the quantitative model we can now calculate the implied spatial gap by evaluating (23). The result
is contained in Figure 6 below. In red we display the implied agricultural gap by the model. It is seen
that the model implies that value added per worker is substantially lower in agriculture than in non-
agriculture, even though there are - by construction - no sectoral labor frictions. For comparison we also
depict the productivity gap as measured in the aggregate data (and reported in Figure 1) as the blue line.
Hence, Figure 6 shows that our model can comfortably explain between 50% and 70% of productivity
differences between sectors without resorting to frictions across industries.

Because our model is calibrated to perfectly rationalize the data on employment shares and manufacturing
earnings, the question is to what extent Figure 6 is informative about the mechanism of the model. To
see that the model indeed adds explanatory power for the implied agricultural gap, the black line in
Figure 6 shows the implied productivity gap from a “naive” exercise, which abstracts from human capital
differences and treats observed manufacturing earning as skill-adjusted wages.In particular, suppose one
calculates the productivity gap

GAPNaive
t =

∑r sA,rt× eM
rt Lrt

∑r eM
rt Lrt

∑r sA,rt× Lrt
∑r Lrt

, (29)

where eM
rt denotes the observed average manufacturing earnings in region r. Note that (29) can be cal-

culated directly from the data. As can be seen from Figure 6, the implied productivity gap is much
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1880 1910 1940 1970 2000
Full Spatial Gap 0.63 0.70 0.62 0.69 0.70
No Change in Spatial Fundamentals

Constant Amenities 0.63 0.70 0.59 0.65 0.68
Constant Productivities 0.63 0.60 0.54 0.48 0.48

Notes: In the first row we report the spatial gap as implied from our baseline calibration displayed in Figure 6. In the second
row we report the implied spatial gap if we kept all spatial fundamentals, i.e. amenities Art and regional productivities Qsrt
constant at their 1880 level. In row three (four) we keep amenities A (productivities Q) constant and only vary productivities
(amenities).

Table 3: Decomposing the Spatial Gap

lower. This implies that the correlation between observed manufacturing earnings and agricultural em-
ployment shares understates the required one with skill-adjusted wages substantially. In particular, the
model generates a negative correlation between skill shares and agricultural employment across space,
allows for differences in comparative advantage, where by skilled individuals sort into the manufacturing
sector and accounts for selection effects, whereby sectoral specialization reduces average physical labor
productivity.

To see the relative importance of the different sources of spatial heterogeneity, we report a simple decom-
position of the spatial gap displayed in Figure 6 in Table 3. In the first row we report the implied spatial
gap from our baseline model. As shown in Figure 6, our model predicts the relative value added share
in the agricultural sector to be between 60% and 70%. The remaining rows calculate this gap when shut
down the variation in the different regional fundamentals.

The Importance of Spatial Heterogeneity

In Section 4 we showed that for a special case of our model there would be no agricultural productivity
gap in the absence of space. In particular, if there were only differences in absolute advantage between
workers so that skills were “sector-neutral”, value added per worker would be equalized across sectors.
Hence, in this case, our model reduces to a standard macroeconomic model of the structural transforma-
tion.

Quantitatively, we find that skills are not sector-neutral. In particular, skilled individuals are more likely to
work in the manufacturing sector. Such sectoral sorting, would also generate an agricultural productivity
gap in the “space-less economy”, where R = 1. In particular, the expression in (23) implies that the
implied productivity gap in the space-less economy is given by

GAPNo Space
t =

sH
A,t

sA,t
(λ ×SPt)+

sL
A,t

sA,t
(1−λ )

(λ ×SPt +(1−λ ))
, (30)

where SPt is the skill-premium, i.e. average earnings of skilled individuals relative to unskilled individu-
als, λ is the aggregate share of skilled individuals and s j

A,t and sA,t denote the skill-specific and aggregate

32



0

.2

.4

.6

.8

1

1.2

Th
e 

Ag
. P

ro
du

ct
iv

ity
 G

ap

1880 1910 1940 1970 2000
Year

Spaceless Economy
Spatial Economy

Notes: The figure shows the agricultural productivity gap for the spatial model (red line) and the spaceless economy (blue
line). As explained in the text, both models are calibrated to the same aggregate time-series data.

Figure 7: The Importance of Space

agricultural employment shares. Hence, if high skilled individuals have higher earnings (SPt > 1) and
are less likely to work in agriculture, there will be a gap as relative value added per worker in agriculture
is relatively low. Again that there would be no gap if sectoral employment shares were equalized across
skill-groups.

It is useful to express the skill-specific relative agricultural employment shares as a function of the share
of skilled individuals λ , the aggregate agricultural share sA,r and the manufacturing share of high-skilled
individual relative to low-skilled individuals. As we show in Section 9.12 in the Appendix, this yields

sL
A,t

sA,t
=

sA,t +λ × (MSHt−1)
(λ ×MSHt +(1−λ ))sA,t

and
sH

A,t

sA,t
=

sA,t− (1−λ )(MSHt−1)
(λ ×MSHt +(1−λ ))sA,t

, (31)

where MSHt = sH
NA,t/sL

NA,t is the relative non-agricultural employment share of high-skilled individuals.
Hence, the productivity gap in the space-less economy is fully determined by

{
sA,r,SPt ,MSHt

}
t .

To calculate the implied spatial gap in the spaceless economy, we calculate GAPNo Space
t given the model-

implied skill premium and relative manufacturing share from our spatial economy. Hence, the spatial
and the spaceless economy are calibrated to the exact same data. In Figure 7 we compare the implied
productivity gap of the spatial model with the spaceless economy. The red line is again the spatial
gap depicted in Figure 6. The blue line shows the productivity gap in the spaceless economy, which is
calibrated to the exact same aggregate time-series moments as the spatial economy. As Figure 7 clearly
shows: the implied productivity gap from the spaceless economy is only half as large as the one implied
by the spatial economy. Hence, the spatial gap displayed in Figure 6 is to a large extent due to space and
not only a function of the sectoral skill-composition.
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Notes: In the left panel we show the interstate migration rate in the baseline model (blue line) and in an economy without
costs of spatial mobility (red line). In the left panel we display the spatial gap in the baseline model (blue line) and in an
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Figure 8: The (Non)-Importance of Spatial Mobility Costs

6.2 The Importance of Spatial Moving Costs

The results above highlight that differences in factor prices across space are highly persistent, i.e. that
there is little spatial arbitrage between agricultural-intensive and manufacturing-intensive locations. A
natural culprit of such wage gaps are the existence of moving costs, MC jr. To analyze to what extent
such moving costs are the fundamental driver of the low productivity in agriculture, we now consider a
counterfactual exercise and calculate the agricultural productivity gap, if spatial mobility was free (i.e.
τ = δ = 0).

Doing so naturally increases the amount of spatial mobility substantially. In particular, the share of
individuals, who do not change their location after birth drops essentially to zero. This is natural: in the
presence of idiosyncratic regional taste shocks and with more than 700 locations to choose from, it is
very unlikely that any given individual considers her original location the preferred one. One implication
of these patterns of spatial mobility is a sharp increase in the interstate migration rate. In the left panel of
Figure 8, we show the time-series of the interstate migration rate in the baseline economy (blue line) and
in counterfactual economy without moving costs - if there were no moving costs, the interstate migration
rate was close to 100%.

In the right panel of Figure 8 we display the implied spatial gap. Again we superimpose the results of the
baseline calibration for comparison. These lines are strikingly similar. Hence, the sharp increase in spatial
mobility does not raises relative agricultural productivity. This was only the case if spatial net flows
tended to be negatively correlated with agricultural employment as such flows will increase agricultural
wages relative to non-agricultural wages holding the fundamentals fixed. In our counterfactual economy
with free mobility this does not occur in equilibrium.
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Why do not lower moving costs reduce the spatial gap?

The underlying explanation for the patterns shown in Figure 8 is simple: in our economy (as apparently
in the data) there are ample reasons move other than wage differences induced by differences in the
sectoral structure. In particular, idiosyncratic tastes and regional amenities are powerful determinants
of individual location choices. If mobility was costless, these consideration would still be powerful and
dissociate the equilibrium net flow of people from the extent of agricultural specialization.

To see this more clearly, consider a streamlined version of our model. In particular, suppose (i) that
there are no amenity differences (Art = 0 for all r, t), (ii) that there is no skill heterogeneity (q = µ = 1),
(iii) that regional productivity is constant at its 1880 level (Qs,r,t = Qs,r,1880) and (iv) that moving costs
are only parametrized by the fixed costs of moving τ (δ = 0). This structure implies that individuals’
mobility incentives are determined from the fixed costs of moving (τ) and the dispersion of idiosyncratic
preference shocks (κ). While the former parametrizes the ease of moving, the latter determines the
direction of flows conditional on moving, i.e. the correlation between wage differences and regional
flows.20

In Figure 9 we show the implied spatial gap for the case of free mobility (i.e. τ = 0) and the estimated
value of the fixed moving costs if individuals mostly care about earnings rather than locations per se, i.e.
for κ ≈ 0. Figure 9 clearly shows that in such environments, spatial mobility is an arbitraging force. If
mobility was free, the agricultural gap would indeed decline. In fact, without spatial mobility acting as
a balancing force, relative agricultural productivity would decrease along the structural transformation.
This pattern is closely related to the pattern in the spaceless economy shown in Figure 7 above. As the
structural transformation in itself is an aggregate force that puts pressure on agricultural regions through a
decline in the demand for agricultural products, spatial mobility is an important margin for the aggregate
economy to adjust.

However, empirically, individuals have locational preferences other than regional factor prices and our
structural estimation reveals that these considerations are important. Hence, the empirically relevant
case is the one of κ > 0. If, however, such considerations are important, spatial mobility is no longer
an arbitraging force. To see this concretely, consider the case of Memphis County. In 1880, Memphis
County has a workforce of about 800.000 individuals, 75% of which worked in the agricultural sector. At
the time, this put Memphis County at 67 percentile of the distribution of agricultural employment shares
in the US.

How do migration patterns of the model-residents in Memphis county in 1880 look like? In Figure 10

20To see this formally, note that the share of people from skill group h moving from j to r, ρh
jr, satisfies

ρ jr

1−ρ j j
=

exp
(

1
κ

(
Γη/ζ

η
ψ (rt+1)

η−1 (
Θh

r
)η
))

∑l 6=r exp
(

1
κ

(
Γη/ζ

η
ψ (rt+1)

η−1 (
Θh

l

)η
)) ,

i.e. the probability of moving from j to r conditional only depends on κ .
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Figure 10: Mobility Out of Memphis County in 1880

we depict these patterns as a function of the importance of the idiosyncratic shock κ for the estimated
level of fixed costs τ∗. The blue line displays the share of young residents of Memphis County who move
to a new location. It is clearly seen that mobility out of Memphis County increases in the dispersion of
idiosyncratic tastes. At the same time, less movers from Memphis County actually move towards regions,
with a smaller agricultural sector. As the red line shows, for small levels of κ , everyone who leaves
Memphis County heads towards a less agricultural location. As κ increases, more people move and more
of these actually relocate to regions with a higher agricultural employment share. Our structural estimates
suggest that the US in the 20th century resembled much more a high-κworld, where the correlation
between net population flows and agricultural employment shares is small. In such a world, spatial
arbitrage is limited and lower costs of moving are unlikely generate large economic gains of reallocation.
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7 Conclusion

The process of structural change is characterized by two salient regularities: a marked decline in the
agricultural employment share and a persistent agricultural productivity gap, whereby agricultural value
added per worker is consistently lower than in the non-agricultural sector. These facts are inconsistent
with the vast majority of models of structural change. Moreover, the persistence of the agricultural pro-
ductivity gap despite the fact that the structural transformation induces a large reallocation of production
factors, suggests that sectoral frictions might not be the major culprit.

In this paper, we argue that the agricultural productivity gap could in fact be a spatial gap. If regions
differ in their comparative advantage, individuals need to spatially relocate as the economy develops and
aggregate spendings shifts away from agriculture. If this process of spatial reallocation is costly, spatial
wage gaps emerge. In particular, manufacturing-intensive regions will have to pay higher wages to attract
agricultural workers from afar. This spatial correlation between agricultural specialization and equilib-
rium directly implies a sectoral productivity gap. Moreover, if agricultural specialization is only weakly
correlated with net population outflows, this spatial agricultural productivity might be very persistent,
even though the marginal product of labor might be equalized across sectors within a location at each
point in time.

We show that this mechanism can go a long way to explain the agricultural productivity gap quantita-
tively. On the theoretical side, we introduce a novel model of spatial structural change by embedding an
economic geography model with costly labor mobility into a dynamic, neoclassical model of the struc-
tural transformation. We rely on a non-homothetic demand system of the PIGL class as considered in
Boppart (2014). Combined with the canonical Frechet-structure of skill heterogeneity, this preference
structure remains highly tractable, despite falling outside the Gorman class.

As our application, we study the growth experience of the US between 1880 and 2000. Using a novel
dataset on earnings, sectoral employment shares and the number of workers across US commuting zones,
we find that the model can comfortably explain 50% of the agricultural productivity gap observed in the
aggregate data. Because the sectoral reallocation of production factors takes place almost entirely within
localities, this implies that the macroeconomic gains from worker reallocation are much more modest
than the agricultural productivity gap as inferred from aggregate data suggests.
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8 Appendix

8.1 Proof of Lemma 1

Suppose that the indirect utility function falls in the PIGL class, i.e. V (e,P) = 1
η

(
e

B(p)

)η

+C (P)− 1
η

.
The maximization problem is

U i
r = max

[et ,et+1,s]
{V (et ,Pt)+βV (et+1,Pt+1)} ,

subject to

et + st pI,t = yi
rt

et+1 = (1+ rt+1)st pI,t+1.

Substituting for et+1 yields

U i
r = max

et

{
V (et ,Pt)+βV

(
(1+ rt+1)

(
yi

rt− et
) pI,t+1

pI,t
,Pt+1

)}
.

The optimal allocation of spending is determined from the Euler equation

∂V (et ,Pt)

∂e
= β (1+ rt+1)

pI,t+1

pI,t

∂V (et+1,Pt+1)

∂e
.

From above (33) we get that this equation is

eη−1
t B(pt)

−η = β (1+ rt+1)
pI,t+1

pI,t
eη−1

t+1 B(pt+1)
−η

= β

(
(1+ rt+1)

pI,t+1

pI,t

)η ((
yi

rt− et
))η−1

B(pt+1)
−η

This yields

yi
rt− et

et
=

((
1

1+ rt+1

B(pt+1)/B(pt)

pI,t+1/pI,t

)η 1
β

) 1
η−1

,

so that

et =
1

1+
(

φ
η

t,t+1
1
β

) 1
η−1
× yi

rt

et+1 =
(1+ rt+1) pI,t+1

pI,t

(
φ

η

t,t+1
1
β

) 1
η−1

1+
(

φ
η

t,t+1
1
β

) 1
η−1
× yi

rt
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where
φt,t+1 ≡

1
1+ rt+1

B(pt+1)/B(pt)

pI,t+1/pI,t
.

Hence, (7) implies that

U jr = Vjr (et ,Pt)+βVjr (et+1,Pt+1)

= A jr
1
ε

(
et

B(pt)

)ε

+C (Pt)−
1
ε
+β

(
A jr

1
ε

(
et+1

B(pt+1)

)ε

+C (Pt+1)−
1
ε

)

= A jr
1
ε

wε
rt

B(pt)
−ε

(
1+
(

1
β

φ
ε
t,t+1

) 1
ε−1
)1−ε

+C (Pt)+βC (Pt+1)−
1+β

ε
.

This can be written as
U jr = A jrwε

rtΦt,t+1 +Λt,t+1,

where

Φt,t+1 =
1
ε

B(pt)
−ε

(
1+
(

1
β

φ
ε
t,t+1

) 1
ε−1
)1−ε

Λt,t+1 = C (Pt)+βC (Pt+1)−
1+β

ε
.

For our specification we have that ε = η and B(pt) = pφ

A,t p1−φ

NA,t = 1. Hence,

φt,t+1 ≡
B(pt+1)

B(pt)(1+ rt+1)
=

1
1+ rt+1

= φt+1

and

Φt,t+1 =
1
η

1+
(

1
β

(
1

1+ rt+1

)η) 1
η−1

1−η

=
1
η

(
1+β

1
1−η (1+ rt+1)

η

1−η

)1−η

.

Note also that
et =

1

1+
(

φ
η

t,t+1
1
β

) 1
η−1
×wt =

1

1+β
1

1−η (1+ rt+1)
η

1−η

×wt .

This proves the results for Lemma 1.

8.2 Consumption expenditure shares

We can derive the expenditure shares from the indirect utility function Vjr (e, p) in (10) from Roy’s
identity. The indirect utility function is defined by

V (p,e(p,u)) = u.
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Hence,
∂V (p,e(p,u))

∂ p j
+

∂V (p,e(p,u))
∂e

∂e(p,u)
∂ p j

= 0.

The expenditure function is given by

e(p,u) = min
x ∑ p jx s.t. u(x)≥ u.

Hence,
∂e(p,u)

∂ p j
= x j (p,u) ,

where x j (p,u) is the Hicksian demand function. We also have that the Hicksian and the Marshallian
demands are linked via

xH (p,u) = xM (p,e(p,u)) .

Hence,
∂V (p,e(p,u))

∂ p j
+

∂V (p,e(p,u))
∂e

xM
j (p,e(p,u)) = 0

Rearranging terms yields

xM
j (p,e(p,u)) =−

∂V (p,e(p,u))
∂ p j

∂V (p,e(p,u))
∂e

.

The expenditure share on good j is therefore given by

ϑ j (e, p) = xM
j (p,e)×

p j

e
=−

∂V (p,e(p,u))
∂ p j

p j

∂V (p,e(p,u))
∂e e

. (32)

We consider an indirect utility function from the PIGL class

V (e,P) =
1
ε

(
e

B(p)

)ε

+C (P)− 1
ε
.

We get that

∂Vr j

∂e
= eε−1B(p)−ε (33)

∂Vr j

∂ p j
= −eεB(p)−ε−1 ∂B(p)

∂ p j
+

∂C (p)
∂ p j

.
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(32) therefore implies that

ϑ j (e, p) =
eεB(p)−ε−1 ∂B(p)

∂ p j
p j− ∂C(p)

∂ p j
p j

eε−1B(p)−ε e

=
∂B(p) p j

∂ p jB(p)
−

∂C (p) p j

∂ p jC (p)
C (p)

(
e

B(p)

)−ε

= η
B
j −η

C
j ×
(

e
B(p)

)−ε

C (p) ,

where ηB
j and ηC

j are the price elasticities of the B and C function respectively.

The specification we consider is

V (e,P) =
1
η

(
e

pφ

A p1−φ

M

)η

− ν

γ

(
pA

pM

)γ

− 1
η
+

ν

γ
.

Hence, we have that

∂V
∂e

=

(
e

pφ

A p1−φ

M

)η

1
e

∂V
∂ pA

= −φ

(
e

pφ

A p1−φ

M

)η

1
pA
−ν

(
pA

pM

)γ 1
pA

.

Hence,

xA (e, p) = φ
e
pA

+ν

(
pA

pM

)γ 1
pA

(
pφ

A p1−φ

M

)η

e1−η . (34)

The expenditure share is

ϑA (e, p) =
xA (e, p) pA

e
= φ +ν

(
pA

pM

)γ
(

e

pφ

A p1−φ

M

)−η

.

8.3 Earning, Expected Earnings and Aggregate Demand

Consider individual i in region r. Given her optimal occupational choice, the earnings of individual i are
given by

yi = max
s

{
ws,rzi

s
}
.

We assumed that individual productivities are Frechet Distributed, i.e.

Fh
zi

s
(z) = e−Ψh

s×z−ζ

, (35)
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where Ψh
s parametrizes the average level of productivity of individuals of skill h in region r in sector s

and ζ the dispersion of skills. Hence, the distribution of sectoral earning yi
sr ≡ ws,r× zi

s is also Frechet
and given by

Fyi
sr
(y) = P

(
z≤ y

ws,r

)
= e−Ψh

s wζ
s,r×y−ζ

.

Using standard arguments about the max stability of the Frechet, the distribution of total earnings yi is
also Frechet and given by

Fh
yi

r
(y) = e−(Θh

r)
ζ×y−ζ

= e
−
(

y
Θh

r

)−ζ

(36)

where

Θ
h
r =

(
∑
s

Ψ
h
s wζ

s,r

)1/ζ

=
(

Ψ
h
Awζ

A,r +Ψ
h
NAwζ

NA,r

)1/ζ

.

Hence, average earnings of individual i with skill type h in region r are given by

E
[
yi

r,h

]
= Γ

(
1− 1

ζ

)
×Θ

h
r .

From (36) we can derive the distribution of y1−η . As η < 1, we have that

Fy1−η (q) = P
(
y1−η ≤ q

)
= P

(
y≤ q1/(1−η)

)
= e

−Θζ×
(

q
1

1−η

)−ζ

= e−
(

q
Θ1−η

)− ζ

1−η

.

Hence, y1−η is still Frechet. Therefore

∫
i
y1−η

i di = Lh
r ×E

[
y1−η

i

]
= Lh

r ×Γ

(
1− 1−η

ζ

)
×
(

Θ
h
r

)1−η

= Lh
r ×Γ

(
1+

η−1
ζ

)
×
(

Θ
h
r

)1−η

.

8.4 Agricultural Demand

In the main text we derived

ϑ
VA
A,t =

φ It +PCA
t

PYt
= φ + ν̃

(
pA

pM

)γ

×
∑r,h

((
Eh,Y

r,t

)1−η

λ h
r,tLr,t +

(
Eh,O

r,t

)1−η

λ h
r,t−1Lr,t−1

)
1

1−α
×∑r,hY h

rtλ
h
r,tLr,t

where
Eh,Y

t = ψt+1×Γ

(
1− 1

ζ

)
Θ

h
r,t = ψt+1×Y h

rt .
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it is also that case that

Eh,O
t = (1+ rt)(1−ψt)×Y h

rt−1 = (1+ rt)(1−ψt)
1
ψt
×Eh,Y

t−1.

Hence, note that

∑r,h

((
Eh,Y

r,t

)1−η

λ h
r,tLr,t+

(
Eh,O

r,t

)1−η

λ h
r,t−1Lr,t−1

)
1

1−α
×∑r,h Y h

rtλ
h
r,tLr,t

= 1
(1−α)−1

(
ψ

1−η

t+1 ∑r,h
(
Y h

rt
)−η Y h

rtλ
h
r,tLr,t

∑r,h Y h
rtλ

h
r,tLr,t

+[(1+ rt)(1−ψt)]
1−η

∑r,h
(
Y h

rt−1
)−η Y h

rt−1λ h
r,t−1Lr,t−1

∑r,h Y h
rtλ

h
r,tLr,t

)
= 1

(1−α)−1

(
ψ

1−η

t+1 ∑r,h
(
Y h

rt
)−η Y h

rtλ
h
r,tLr,t

∑r,h Y h
rtλ

h
r,tLr,t

+[(1+ rt)(1−ψt)]
1−η (1+gt)

−1
∑r,h

(
Y h

rt−1
)−η Y h

rt−1λ h
r,t−1Lr,t−1

∑r,h Y h
rt−1λ h

r,t−1Lr,t−1

)
= 1

(1−α)−1

(
ψ

1−η

t+1 ∑r,h
(
Y h

rt
)−η

ωh
rt +[(1+ rt)(1−ψt)]

1−η (1+gt)
−1

∑r,h
(
Y h

rt−1
)−η

ωh
rt−1

)
.

This is the expression in the main text.

8.5 Balanced Growth Path Relationships

Consider a dynamic allocation where GDP grows at a constant rate and the capital output ratio is constant.
Static optimality requires that

Rt =
αPYt

Kt
= α

1
1−α ∑

R
r=1 wr,tLr,t

Kt
. (37)

Hence, a constant capital output ratio directly implies that the return to capital Rt has to be constant.
Hence, the real interest on saving is also constant and given by r = R− δ . This also implies that the
consumption rate in (16) is constant and given by

ψ =
(

1+β
1

1−η (1+ r)
η

1−η

)−1
. (38)

To solve for the interest rate, note that (22) and (37) imply that

Kt+1

Kt
=

(1−ψ)(1−α)PYt

αPYt/R
= (1−ψ)

(1−α)

α
(r+δ ) .

A constant capital output ratio implies that

Kt+1

Kt
=

PYt

PYt
= 1+g,
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where g is the growth rate of the economy. Hence,

1+g = (1−ψ)
(1−α)

α
(r+δ ) =

(
β

1
1−η (1+ r)

η

1−η

1+β
1

1−η (1+ r)
η

1−η

)
(1−α)

α
(r+δ ) . (39)

This equation determines r as a function of parameters.

Along the BGP the consumption and investment rate is equal to

PCt = ψ (1−α)PYt +αPYt +(1−δ )
α

R
PYt

PIt = (1−ψ)(1−α)PYt− (1−δ )
α

R
PYt .

Using (39) yields
PIt
PYt

= (g+δ )
α

R
and

PCt

PYt
= 1− (g+δ )

α

R
.

From (39) we also get that

ψ = 1− α

1−α

1+g
R

. (40)

8.6 Regularity Conditions for the preferences to be well-defined

In our model, expenditure share on the two goods are given by

ϑA (e, p) = φ +ν

(
pA

pM

)γ

e−η

ϑNA (e, p) = 1−φ −ν

(
pA

pM

)γ

e−η .

For these expenditure shares to be positive, we need that

ϑA (e, p)≥ 0⇒ eη ≥−ν

φ

(
pA

pM

)γ

, (41)

and

ϑNA (e, p)≥ 0⇒ eη ≥ ν

1−φ

(
pA

pM

)γ

.

Note first that (41) is trivially satisfied as long as ν > 0. Also note that satisfying both of these restrictions
automatically implies that ϑs (e, p)≤ 1. In addition, as we show in Section 10.1 in the Online Appendix,
for the Slutsky matrix to be negative semi definite, we need that

ν (1−η)

(
pA

pM

)γ

− (1−φ)φ

ν

(
pA

pM

)−γ

e2η ≤ (1−2φ − γ)eη .
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Hence, for our preferences to be well-defined, we require that

eη ≥ ν

1−φ

(
pA

pM

)γ

(42)

(1−2φ − γ)eη +
(1−φ)φ

ν

(
pA

pM

)−γ

e2η ≥ ν (1−η)

(
pA

pM

)γ

. (43)

Lemma 3. A sufficient condition for (42) to be satisfied is that (43) holds and that

γ > (1−φ)η . (44)

Proof. Equation (43) can be written as

eη − ν

1−φ

(
pA

pM

)γ

+
(1−φ)φ

ν

(
pA

pM

)−γ

e2η ≥ ν (1−η)

(
pA

pM

)γ

+(2φ + γ)eη − ν

1−φ

(
pA

pM

)γ

 eη

ν

1−φ

(
pA
pM

)γ −1

 ν

1−φ

(
pA

pM

)γ

+φ
eη

ν

1−φ

(
pA
pM

)γ eη ≥ [(1−φ)(1−η)−1]
ν

1−φ

(
pA

pM

)γ

+(2φ + γ)eη

 eη

ν

1−φ

(
pA
pM

)γ −1

+φ
eη

ν

1−φ

(
pA
pM

)γ

eη

ν

1−φ

(
pA
pM

)γ ≥ [(1−φ)(1−η)−1]+ (2φ + γ)
eη

ν

1−φ

(
pA
pM

)γ .

Letting x = eη

ν

1−φ

(
pA
pM

)γ , this yields

(x−1)+(φx− (2φ + γ))x≥−(1− (1−φ)(1−η)) .

Now let h(x) = (x−1)+(φx− (2φ + γ))x. Hence, h is strictly concave with a minimum at

h′ (x∗) = 1+φx∗− (2φ + γ)+φx∗ = 0.

Hence,
x∗ = 1− 1− γ

2φ
< 1.

Also note that
h(0) =−1 <−(1− (1−φ)(1−η)) .

Hence, for (43) to be satisfied, it has to be the case that x > x∗ = 1− 1−γ

2φ
. Hence, condition (43) implies

(42) if

and
h(1) = φ −2φ − γ <−(1− (1−φ)(1−η)) .

Rearranging terms yields (1−φ)η < γ , which is (44).
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Hence, the preferences are well defined as long (43) is satisfied and (44) holds. Because the RHS of (43)
is increasing in e in the relevant range, i.e. as long as (43) is satisfied, this implies that the preferences
are well defined as long as e is high enough.

Now note that eit = ψt+1× yit , where yit denotes total earnings of individual i. From (36) we know that

P(eit ≤ κ) = P
(

yit ≤
κ

ψt+1

)
= e−(Θh

r ψt+1)
ζ

κ−ζ

,

where

(
Θ

h
r ψt+1

)ζ

=
(

Ψ
h
Awζ

A,r +Ψ
h
NAwζ

NA,r

)
×ψ

ζ

t+1 >
(

Ψ
h
Awζ

A,r +Ψ
h
NAwζ

NA,r

)
×
(

1
η

(
1+β

1
1−η

)1−η
)ζ

.

Hence, as long as aggregate productivity is high enough, we can make P(eit ≤ κ) arbitrarily small.

8.7 Agricultural Specialization and Population growth

In Figure 2 we showed that the decline in the agricultural employment share in not driven by population
mobility away from agricultural locations. In this section we provide further evidence for this (non-
)relationship between past agricultural specialization and subsequent population growth. In particular,
we consider a regression of the form

g1880−2000
L,r = α +β × s1880

A,r +ur,

where g1880−2000
L,r denotes regional population growth between 1880 and 2000 and s1880

A,r denotes the agri-
cultural employment share in 1880. The results are contained in Table 4. Columns 1 to 3 show that there
is no significant relationship between agricultural specialization in 1880 and population growth between
1880 and 2000. Columns 2 and 3 weigh each regression by their initial population in 1880. In column
4 we include a whole set of twenty fixed effects of the initial agricultural share quantiles. While these
fixed effects are jointly statistically significant, their explanatory power is still very small. Figure 11
shows this relationship graphically. While population growth tends to be slightly smaller in regions with
a high agricultural employment share in 1880, the relationship is not particularly strong and certainly not
monotone.

8.8 Urbanization within and across commuting zones

In Figure 2 we showed that the secular decrease in agricultural employment is a within commuting zone
phenomenon. The same pattern holds true for the process of urbanization. The left panel in Figure 12
shows the increase in urbanization since 1880. The share of people living in urban areas (i.e. cities with
more than 2500 inhabitants) increases from just shy of 20% in 1850 to more than 50% of the population
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Dep. variable: Population growth 1880 - 2000
Agricultural share 1880 -26.241 -3.702∗

(40.829) (1.917)

log Agricultural share 1880 -0.548
(0.658)

Ag quantile FE No No No Yes

Weights No Yes Yes Yes
Observations 717 717 717 717
R2 0.000 0.002 0.000 0.014

Notes: Robust standard errors in parentheses with ∗∗∗, ∗∗ and ∗ respectively denoting significance at the 1%, 5% and 10% levels. Column 4 contains a whole
set of 20 fixed effects for the different quantiles of agricultural employment shares.

Table 4: Agricultural Specialization in 1880 and Population growth 1880-2000
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Figure 11: Agricultural Specialization in 1880 and Population growth 1880-2000
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, where ur,1880 is the urban share in 1880.

Figure 12: Urbanization within and across commuting zones

in 1940. A different measure, the share of people living in metropolitan areas, shows a similar pattern. In
the right panel we again decompose this time-series evolution into a within and across commuting zone
component. In particular, we calculate the counterfactual urbanization as

uCF
t = ∑

r
ur,1880×

Lrt

∑r Lrt
,

where ur,1880 is the urbanization rate in commuting zone r in 1880. If the increase in urbanization
stemmed from individuals migrating into high-urbanization commuting zone, this counterfactual urban-
ization rate would be close to the actual time series. Figure 12 shows that this is not the case - as for
the agricultural employment share, the cross-commuting zone population flows explain a minor share of
actual increase observed in the data.

To see this within-commuting zone patter of urbanization more directly, consider Figure 13. In the left
panel we depict the “extensive” margin of urbanization, i.e. the share of counties, which have no urban
centers. Expectedly, this number is declining. Similarly, the right panel shows the distribution of the
share of the urban population across commuting zones conditional on this share being positive. As for
the patterns of agricultural employment depicted in Figure 2 these densities shift to the right, indicating
that urbanization takes place in all regions in the US.
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Figure 13: Urbanization within commuting zones

9 Online Appendix

9.1 Additional derivations on the model with selection

In this section we derive some other properties of the selection model, which are convenient. Recall from
(3) that the distribution of individual skills is given by

Fh
zi

s
(z) = e−Ψh

s×z−ζ

, (45)

where Ψh
s parametrizes the average level of productivity of individuals of skill h in region r in sector s

and ζ the dispersion of skills. The following result will turn out to be useful

Lemma 4. Let [xi]
n
i=1 be distributed iid according to

Fxi (x) = e−Ai×x−ζ

.

Then

E
[

xi|xi = max
i

[xi]

]
= Γ

(
1− 1

ζ

)
×

(
n

∑
i=1

Ai

)1/ζ

. (46)

Note that this object does not depends on i.

Proof. Suppose that i = 1 and let us derive the conditional distribution of x1, conditional that x1 is the
highest

[
x j
]

j. The joint distribution of
[
x j
]

j is given by

F (x1,x2, ...,x3) =
n

∏
j=1

F (xi) (47)
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because of independence. Hence, we get that

P
(

x1 ≤ m|x1 = max
j

[
x j
])

=
1

P
(
x1 = max j

[
x j
]) ×∫ m

0

n

∏
j=2

P
(
x j < x

)
dFx1 (x)

=
1

P
(
x1 = max j

[
x j
]) ×∫ m

0

n

∏
j=2

e−A j×x−ζ

×A1ζ x−ζ−1e−A1×x−ζ

dx

=
A1

P
(
x1 = max j

[
x j
]) ×∫ m

0
ζ x−ζ−1

n

∏
j=1

e−A j×x−ζ

dx

=
A1

P
(
x1 = max j

[
x j
]) ×∫ m

0
ζ x−ζ−1e−(∑ j A j)×x−ζ

dx.

Now let us derive P
(
x1 = max j

[
x j
])

. We get that

P
(

x1 = max
j

[
x j
])

= P
(
x j ≤ x1 for all j ≥ 2

)
=
∫

x1

∂F
∂x1

(x1,x1,x1, ..)dx1.

Using (47), we get that

∂F (x1,x2, ...,x3)

∂x1
=

∂F (x1)

∂x1
×

(
n

∏
j=2

F (xi)

)
= e−A1×x−ζ

A1ζ x−ζ−1
1 ×

(
n

∏
j=2

e−Ai×x−ζ

j

)

= A1ζ x−ζ−1
1 ×

(
n

∏
j=1

e−Ai×x−ζ

i

)
= A1ζ x−ζ−1

1 × e−∑
n
i Ai×x−ζ

i .

Hence,∫
x1

∂F
∂x1

(x1,x1,x1, ..)dx1 =
∫

x1

A1ζ x−ζ−1
1 × e−(∑

n
i Ai)×x−ζ

1 dx1

=
A1

∑
n
i Ai

∫
x1

ζ

(∑n
i Ai)

1/ζ

(
x1

(∑n
i Ai)

1/ζ

)−ζ−1

× e
−

 x1

(∑
n
i Ai)

1/ζ

−ζ

dx1

=
A1

∑
n
i Ai

.

Substituting this above yields

P
(

x1 ≤ m|x1 = max
j

[
x j
])

=

(
n

∑
i

Ai

)
×
∫ m

0
ζ x−ζ−1e−(∑ j A j)×x−ζ

dx

=
∫ m

0

ζ

κ

( x
κ

)−ζ−1
e−(

x
κ )
−ζ

dx,
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where κ =
(
∑ j A j

)1/ζ . This is a Frechet distribution with shape ζ and scale κ , i.e.

Fx1|x1=max j[x j] (m) = e
−

 x

(∑ j A j)
1/ζ

−ζ

= e−(∑ j A j)×x−ζ

.

This implies (46)

Lemma 4 is useful because it allows us to calculate sectoral earnings and the sectoral supply of efficiency
units. Consider first sectoral earnings. Let yi,h

sr = wrs× zi,h
s be the earnings of individual i of skill h in

region r working in sector s. The distribution of earnings is

P
(

yi,h
sr < y

)
= P

(
zi,h

s <
y

wrs

)
= e−Ψh

s×(
y

wrs )
−ζ

= e−Ψh
s wζ

rs×y−ζ

.

Hence, Lemma 4 implies that

E
[
yi,h

sr |yi,h
sr = max

s

{
yi,h

sr

}]
= Γ

(
1− 1

ζ

)
×
(

∑
s

Ψ
h
s wζ

rs

)1/ζ

.

Similarly, the average labor supply in sector s is given by

E
[
zi,h

s |yi,h
sr = max

s

{
yi,h

sr

}]
= E

[
zi,h

s |wrs× zi,h
s = max

s

{
wrs× zi,h

s

}]
= E

[
zi,h

s |zi,h
s = max

k

{
wrk

wrs
× zi,h

k

}]

= Γ

(
1− 1

ζ

)
×

(
Ψ

h
s + ∑

k 6=s
Ψ

h
k

(
wrk

wrs

)ζ
)1/ζ

= Γ

(
1− 1

ζ

)
× 1

wrs
×
(

∑
s

Ψ
h
s wζ

rs

)1/ζ

.

Also, the share of people working in sector s is given by

sh
s,r = P

(
yi,h

sr = max
k

{
yi,h

kr

})
=

Ψh
s wζ

rs

∑s Ψh
s wζ

rs

= Ψ
h
s ×

 wrs(
∑s Ψh

s wζ
rs

)1/ζ


ζ

.

It is useful to define the endogenous scalar of average earning of skill group h in region ras

Θ
h
r =

(
∑
s

Ψ
h
s wζ

rs

)1/ζ

.
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Then we can write the sectoral employment share of skill group h, sh
sr, as

sh
sr = Ψ

h
s ×
(

wrs

Θh
r

)ζ

,

the aggregate amount of sectoral earnings of skill group h, wrsHh
rs, as

wrsHh
rs = Lrλ

h
r ×P

(
yi,h

sr = max
k

{
yi,h

kr

})
×E

[
yi,h

sr |yi,h
sr = max

s

{
yi,h

sr

}]
= Lrλ

h
r Γ

(
1− 1

ζ

)
×
(

sh
srΘ

h
r

)
.

Note that we can write
sh

srΘ
h
r = Ψ

h
s ×wζ

rs

(
Θ

h
r

)1−ζ

.

Hence,

wrsHh
rs = LrΓ

(
1− 1

ζ

)
wζ

rs×
(

λ
h
r Ψ

h
s

(
Θ

h
r

)1−ζ
)
.

Note that the aggregate level of aggregate human capital of individuals of skill h working in sector s in
region r is given by

Hh
rh = LrΓ

(
1− 1

ζ

)
wζ−1

rs ×
(

λ
h
r Ψ

h
s

(
Θ

h
r

)1−ζ
)

= LrΓ

(
1− 1

ζ

)
×

(
λ

h
r Ψ

h
s

(
wrs

Θh
r

)ζ−1
)

= LrΓ

(
1− 1

ζ

)
×

λ
h
r Ψ

h
s

(
sh

sr

Ψh
s

) ζ−1
ζ


= LrΓ

(
1− 1

ζ

)
×
(

λ
h
r

(
Ψ

h
s

) 1
ζ sh

sr

ζ−1
ζ

)
.

This also implies that total earnings in sector s in region r are given by

Yrs = ∑
h

wrsHh
rs = LrΓ

(
1− 1

ζ

)
wζ

rs×∑
h

λ
h
r Ψ

h
s

(
Θ

h
r

)1−ζ

.
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