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Abstract

We consider identification and estimation of demand systems in models of imperfect competi-

tion. When the standard assumption of profit maximization is imposed, the resulting supply-side

restrictions allow us to correct for price endogeneity bias without the use of instruments. We show

that the biased coefficient from an ordinary least squares regression of (transformed) quantity on

price can be expressed as function of demand parameters. When combined with minimal assump-

tions about the correlations among unobservable shocks, the profit-maximization conditions are

sufficient to identify the key parameters of several models commonly used in demand estimation.

We illustrate the methodology with applications to the cement industry and the airline industry.
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1 Introduction

A central challenge of demand estimation is price endogeneity. If prices reflect demand shocks that

are not observed by the econometrician, then an ordinary least squares regression (OLS) will not

recover the casual demand curve (Working (1927)). In this paper, we reconsider whether exogenous

variation in prices is necessary to recover causal demand parameters. Starting from the standard

premise that firms set prices to maximize profits, we show that the supply-side assumptions already

maintained in many structural models dictate how prices respond to demand shocks. It is possible to

correct for endogeneity bias without relying on instruments by leveraging these assumptions in esti-

mation. Consistent estimation of empirical models has been a major focus of modern empirical and

econometric research in industrial organization (e.g., Berry et al. (1995); Berry and Haile (2014)),

which has, thus far, relied heavily on the search for instruments.

The methodology we introduce begins with an analysis of observed equilibrium variation in

prices and (possibly transformed) quantities, as summarized by OLS regression. We show that, for

many standard empirical models of imperfect competition, the bias that arises with OLS can be

quantified as a function of the data. Thus, OLS estimates are informative, as they capture a blend

of the demand curve and the endogenous response by firms. Supply-side assumptions may be used

to construct bounds on the structural parameters and, with the addition of a surprisingly weak as-

sumption, achieve point identification. Interpreted through the lens of a sufficiently tight model,

the causal relationships captured by OLS can be isolated and recovered. The methodology essen-

tially uses economic theory as a substitute for exogenous variation in prices, allowing for consistent

estimates of structural parameters without the use of instruments.

The surprisingly weak assumption needed for point identification relates to the covariance be-

tween the unobserved demand and marginal cost shocks in the model. If the econometrician has

prior knowledge of this covariance, then typically the price parameter is point identified. A rea-

sonable assumption in some settings is uncorrelatedness, i.e., that there is no covariance between

unobserved shocks. The identifying power of covariance restrictions in the context of linear systems

was pursued in early Cowles Foundation research (Koopmans et al., 1950). Despite considerable

methodological advances, including to semi-parametric and non-parametric systems (Hausman and

Taylor (1983); Matzkin (2016); Chiappori et al. (2017)), we are not aware of any previous papers

that examine the identifying power of these restrictions in models of imperfect competition.

We develop intuition using a model of a monopolist with constant marginal costs and linear

demand (Section 2). Equilibrium variation in prices and quantities (p and q) is generated by uncor-

related demand and cost shocks (ξ and η) that are unobservable to the econometrician. We prove

that consistent estimate of the price parameter, β, is given by

β̂ = −

√(
β̂OLS

)2
+
Cov(ξ̂OLS , q)

V ar(p)

where β̂OLS is the price coefficient from an OLS regression of quantities on prices, and ξ̂OLS is a

vector of the OLS residuals. The information provided by OLS regression is sufficient for the con-
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sistent identification of the structural parameter. This holds whether variation arises predominately

from demand shocks or from supply shocks—economic theory allows for the recovery of the causal

parameter regardless of the shape of the well-known “cloud” of price-quantity pairs. Our results in

this section map cleanly to the textbook treatment of the simultaneous equations bias that arises

with supply and demand (e.g., Hayashi 2000, chapter 3).

In Section 3, we obtain our main result under two common assumptions about demand and sup-

ply. We assume that demand is semi-linear in prices after a known transformation. This assumption

nests many differentiated-products demand systems, including the random coefficients logit (e.g.,

Berry et al. (1995)) and the market-specific demand curves that often are applied to homogeneous

products. On the supply side, we start with the assumption that firms compete in prices and have

constant marginal costs. We prove that the price parameter, β, solves a quadratic equation in which

the coefficients are functions of the data and Cov(ξ, η). We provide a verifiable sufficient condition

under which β is the lower root of the quadratic; if the condition holds then knowledge of Cov(ξ, η)

point identifies β. We derive a consistent “three-step” estimator from the quadratic formula that

takes the OLS coefficient and residuals as inputs. Alternatively, estimation can be conducted with

the method of moments. Monte Carlo evidence confirms that these estimators perform well in small

samples. Without exact knowledge of of Cov(ξ, η), it possible to bound β using appropriate priors,

such as Cov(ξ, η) ≥ 0. Notably, the model structure may dictate that some values of Cov(ξ, η) cannot

reconcile the data with the model, therefore generating prior-free bounds on β. The model-implied

bounds can be combined with a prior over Cov(ξ, η) to narrow the identified set.

Though the above assumptions about demand and supply are not uncommon in applications,

they are relatively strong restrictions that may be incompatible with features of the true data-

generating process. In Section 4, we discuss three such assumptions in detail. First, if marginal

costs are non-constant, then unobserved demand shocks affect prices both through markup adjust-

ments and marginal costs. We prove that the identification of β is preserved if the non-constant

portion of marginal costs can be brought into the model and estimated. Otherwise, it is more appro-

priate to proceed with a bounds approach under an assumption such as Cov(ξ, η) ≥ 0. Second, we

show that our insight and our approach are not dependent on the precise nature of the competitive

game, but instead is driven by a general result that prices can be written as costs plus a markup term.

Third, we examine the uncorrelatedness assumption itself. Of course, there are a variety of reasons

that marginal costs may be correlated with demand unobservables. In our view, uncorrelatedness

becomes relatively more palatable if these connections can be brought into the model explicitly. In

applications with panel data, fixed effects may be used to absorb product- and time-specific charac-

teristics, thus eliminating the key sources of correlation in unobservables in many settings.

To demonstrate how to apply the methodology, we conduct two empirical exercises in Sec-

tion 5. The first exercise examines the cement industry using the model and data of Fowlie et al.

(2016) [“FRR”]. We establish that identification extends to Cournot competition with homogeneous

products, and we find that our three-step estimator produces a similar elasticity to that obtained

by two-stage least squares (2SLS) estimation using the instruments of FRR. To implement our

uncorrelatedness-based estimator, we take as given the shape of FRR’s “hockey-stick” marginal cost

function, which incorporates capacity constraints in production. Because (positive) demand shocks
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induce firms to produce at higher marginal cost, leaving the “hockey stick” cost component as unob-

served would cause the uncorrelatedness assumption to fail. However, we show that the alternative

assumption Cov(ξ, η) ≥ 0 is sufficient to bound the price elasticity well away from the OLS estimate.

The second empirical exercise examines the airlines industry using the model and data of Aguir-

regabiria and Ho (2012) [“AH”]. Demand is specified as nested logit. We find that for relatively high

values of the nesting parameter, σ, smaller (less negative) values of β cannot reconcile the data with

the model, and this produces an exclusive bound on β that easily rejects the OLS estimate without

requiring any stance on uncorrelatedness. We then jointly estimate σ and β assuming uncorrelat-

edness. This requires at least one supplemental moment. Natural candidates include across-nest

correlation restrictions and higher-order restrictions, either of which allow for the joint identifica-

tion of the (β, σ) parameters without instruments. We find that both 2SLS with the AH instruments

and estimation using covariance restrictions move the parameters in the expected direction relative

to OLS.

Our final contribution is an original application to retail scanner data. [Coming soon.]

Our research builds on a number of literatures in economics. As mentioned above, the identify-

ing power of covariance restrictions in linear systems of equations was recognized in early work at

the Cowles Foundation (Koopmans et al. (1950)). Subsequently, Hausman and Taylor (1983) pro-

posed a two-stage approach for the estimation of supply and demand models of perfect competition:

First, the supply equation is estimated with 2SLS using an instrument taken from the demand-side

of the model. Second, the supply-side error term is recovered and, under the assumption of uncor-

relatedness (Cov(ξ, η) = 0), it serves as a valid instrument for the estimation of demand. Matzkin

(2016) extends this “unobserved instrument” approach to semi-parametric models; see also the con-

temporaneous research of Chiappori et al. (2017). Market power is not considered in these articles

because it would imply that the supply-side equations depend on demand parameters through un-

observed firm markups—precluding the recovery of unobserved costs via the first-stage regression.

Our methodology deals with imperfect competition by estimating supply and demand jointly and

allowing economic theory to determine the unobserved markups.

The identification challenge we address has been a major focus of modern empirical and econo-

metric research in industrial organization. Typically the challenge is case as a problem of finding

valid instruments. Many possibilities have been developed, including the attributes of competing

products (Berry et al. (1995); Gandhi and Houde (2015)), the prices of the same good in other mar-

kets (e.g., Hausman (1996); Nevo (2001)), or shifts in the equilibrium concept (e.g., Porter (1983);

Miller and Weinberg (2017)).1 Both the covariance restrictions approach and the instruments ap-

proach rely on orthogonality conditions and therefore are conceptually linked. This connection

is especially strong with the so-called “Hausman” instruments—prices of the same good in other

markets—which are valid only if unobserved demand shocks are uncorrelated across markets. An

important distinction, however, is that the instruments approach requires the econometrician to ob-

serve sufficient variation in some exogenous and excludable variable. The covariance restriction we

implement, by contrast, does not require that any exogenous variation be observed. Rather, it allows

1See also Byrne et al. (2016) for an alternative set of instruments that leverages the structure of a standard model of
discrete choice demand and differentiated-products price competition.
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the econometrician to interpret the equilibrium variation in a manner consistent with the model.

Lastly, though we focus our results on specific, widely-used assumptions about demand and

supply, we view our method as not particular to these assumptions. Rather, the main insight is

that information about supply-side behavior can be modeled to adjust the observed relationships

between quantity and price. Price can be decomposed into marginal cost and a markup; our method

provides a direct way to correct for endogeneity arising from the latter component. In a more general

sense, this insight has a similar flavor to control function estimation procedures (e.g., Heckman

(1979)). Our method may be thought of a bias correction procedure for models commonly used in

applications with imperfect competition.

2 A Motivating Example: Monopoly Pricing

We introduce the supply-side identification approach with a motivating example of monopoly pric-

ing, in the spirit of Rosse (1970). In each market t = 1, . . . , T , the monopolist faces a downward-

sloping linear demand schedule, qt = α + βpt + ξt, where qt and pt denote quantity and price,

respectively, β < 0 is the price parameter, and ξt is mean-zero stochastic demand shock. Marginal

cost is given by the function mct = γ + ηt, where γ is some constant and ηt is a mean-zero stochas-

tic cost shock. Prices are set to maximize profit. The econometrician observes vectors of prices,

p = [p1, p2, . . . , pT ]′, and quantities, q = [q1, q2, . . . , qT ]′. The markets can be conceptualized as

geographically or temporally distinct.

It well known that an OLS regression of q on p obtains an estimate of β that is biased if the

monopolist’s price reflects the unobservable demand shock, as is the case here given the assumption

of profit maximization. Formally,

β̂OLS =
Cov(p, q)

V ar(p)

p−→ β +
Cov(ξ, p)

V ar(p)
(1)

The conventional wisdom is that Cov(ξ, p) > 0, such that OLS estimates understate the price elas-

ticity of demand. Empirical studies often provides OLS estimates as a benchmark against which to

evaluate IV estimates, but treat OLS as uninformative about the true parameter (e.g., Berry et al.

(1995); Nevo (2001)). This approach can under-represent the informational content of OLS if the

maintained supply-side assumptions inform Cov(ξ, p) > 0 and thus the magnitude of of OLS bias.

In our motivating example, the monopolist’s profit-maximization conditions are such that price

is equal to marginal cost plus a markup term: pt = γ + ηt − ( dqdp )−1qt. Thus, the numerator of the

OLS bias can be decomposed into the covariance between demand shocks and markups and the

covariance between demand shocks and marginal cost shocks. As we show in this paper, the former

term may be consistently estimated. Therefore, when paired with additional knowledge about the

covariance structure of shocks, we can consistently estimate and correct for the OLS bias, obtaining

the true price parameter without the use of instruments.

In this paper, we will usually proceed under the assumption that the shocks to demand and

marginal costs are uncorrelated. Uncorrelatedness may be a reasonable assumption for many set-
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tings, especially if panel data are used to absorb product-specific and time-specific factors (e.g., as

in Nevo (2001)). Weaker assumptions, such as Cov(ξ, η) ≥ 0, are insufficient for point identification

but nonetheless allow the econometrician to place bounds on the price coefficient. We defer discus-

sion along these lines until the following section. For now, we illustrate the identification approach

using uncorrelatedness in the motivating example.

Proposition 1. Let the OLS estimates of (α, β) be (α̂OLS , β̂OLS) with probability limits (αOLS , βOLS),
and denote the residuals at the limiting values as ξOLSt = qt − αOLS − βOLSpt. When demand shocks
and cost shocks are uncorrelated, the probability limit of the OLS estimate can be expressed as a function
of the true price parameter, the residuals from the OLS regression, prices, and quantities:

βOLS ≡ plim
(
β̂OLS

)
= β − 1

β + Cov(p,q)
V ar(p)

Cov(ξOLS , q)

V ar(p)
(2)

Proof: We provide the proofs in this section for illustrative purposes; most subsequent

proofs are confined to the appendix. Reformulate equation (1) as follows:

βOLS = β +
Cov(ξ, η − 1

β q)

V ar(p)
= β − 1

β

Cov(ξ, q)

V ar(p)

The first equality holds due to the first order condition p = γ + ηt − 1
β q. The second

equality holds due to the uncorrelatedness assumption. The structure of the model also

allows for us to solve for Cov(ξ, q):

Cov(ξ, q) = Cov(ξOLS − (β − βOLS)p, q)

= Cov(ξOLS , q)− (β − βOLS)Cov(p, q)

= Cov(ξOLS , q)− 1

β

Cov(ξ, q)

V ar(p)
Cov(p, q)

Collecting terms and rearranging implies

1

β
Cov(ξ, q) =

1

β + Cov(p,q)
V ar(p)

Cov(ξOLS , q)

Plugging into the reformulation of equation (1) obtains the proposition. QED.

The proposition makes clear that, among the objects that characterize the probability limit of the

OLS estimate, only the true price parameter itself does not have a well understood sample analog.

Because the probability limit itself can be estimated consistently, this raises the possibility that the

true price parameter can be recovered from the data. Indeed, a closer inspection of equation (2)

reveals that β solves a simple quadratic equation.

Proposition 2. When demand shocks and marginal cost shocks are uncorrelated, β is point identified
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as the lower root of the quadratic equation

β2 + β

(
Cov(p, q)

V ar(p)
− βOLS

)
+

(
−Cov(ξOLS , q)

V ar(p)
− Cov(p, q)

V ar(p)
βOLS

)
= 0 (3)

and a consistent estimate of β is given by

β̂3-Step = −

√(
β̂OLS

)2
+
Cov(ξ̂OLS , q)

V ar(p)
(4)

Proof: The quadratic equation is obtained as a re-expression of equation (2). An appli-

cation of the quadratic formula provides the following roots:

−
(
Cov(p,q)
V ar(p)

− βOLS
)
+−

√(
Cov(p,q)
V ar(p)

− βOLS
)2

+ 4
(
Cov(ξOLS ,q)

V ar(p)
+
Cov(p,q)
V ar(p)

βOLS
)

2
.

In the univariate case, Cov(p,q)V ar(p) = βOLS , which cancels out terms and obtains the prob-

ability limit analog of equation (4). It is easily verified that
(
βOLS

)2
+ Cov(ξOLS ,q)

V ar(p) > 0

so both roots are real numbers. The upper root is positive, so β is point identified as

the lower root. The second equation of the proposition is the empirical analog to the

lower root. As the sample estimates of covariance terms are consistent for the limits, it

provides a consistent estimate of β.

The first part of the proposition states that β solves a quadratic equation. There are two real roots,

but only one is negative, so point identification is achieved. Further, an adjustment to OLS estimator

is sufficient to correct for bias. We label the estimator β̂3-Step for reasons that become evident with

the more general treatment later in the paper. We recognize that this estimator is somewhat novel

in the literature of industrial organization. Thus, to build confidence and intuition, we recast the

monopoly problem in terms of supply and demand in Appendix A.1, and rederive the estimator

building on Hayashi’s (2000) textbook treatment of bias with simultaneous equations.

An important observation is that OLS residuals contain information sufficient to construct a

consistent estimate of β. This is a result that generalizes to oligopoly settings and nonlinear de-

mand systems, albeit with more difficult mathematics, as we develop in the subsequent sections.

In our monopoly example, however, one additional simplification is available. Because ξOLSt =

qt − aOLS − bOLSpt, we have Cov(ξOLS
t ,q)

V ar(p) = V ar(q)
V ar(p) − βOLS Cov(p,q)V ar(p) . Plugging into equation (4)

obtains the following corollary:

Corollary 1. When demand shocks and marginal cost shocks are uncorrelated, a consistent estimate of
β is given by β̂ALT = −

√
V ar(q)
V ar(p) .

Thus, in the monopoly model, the price parameter can be estimated from the relative variation in

equilibrium prices and quantities. Regression analysis is unnecessary.

We provide a simple numerical example to help fix ideas. Let demand be given by qt = 10−pt+ξt
and let marginal cost be mct = ηt, so that (α, β, γ) = (10,−1, 0). Let the demand and cost shocks
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Figure 1: Price and Quantity in the Monopoly Model

have independent uniform distributions. The monopolist sets price to maximize profit. As is well

known, if both cost and demand variation is present then equilibrium outcomes provide a “cloud” of

data points that do not necessarily correspond to the demand curve. To illustrate this, we consider

four cases with varying degrees of cost and demand variation. In case (1), ξ ∼ U(0, 2) and η ∼
U(0, 8). In case (2), ξ ∼ U(0, 4) and η ∼ U(0, 6). In case (3), ξ ∼ U(0, 6) and η ∼ U(0, 4). In case

(4), ξ ∼ U(0, 8) and η ∼ U(0, 2). We randomly take 1,000 draws for each case and calculate the

equilibrium prices and quantities.

The data are plotted in Figure 1 along with OLS fits. The experiment represents the classic iden-

tification problem of demand estimation: the empirical relationship between equilibrium prices and

quantities can be quite misleading about the slope of the demand function. However, Proposition

2 and Corollary 1 state that the structure of the model together with the OLS estimates allow for

consistent estimates of the price parameter. Table 1 provides the required empirical objects. The

OLS estimates, β̂OLS , are negative when the cost shocks are relatively more important and positive

when the demand shocks are relatively more important, as also is revealed in the scatterplots. By

contrast, Cov(ξ̂OLS ,q)
V ar(p) is larger if the cost and demand shocks have relatively more similar support.

Incorporating this adjustment term following Proposition 1 yields estimates, β̂3-Step, that are nearly

equal to the population value of −1.00. The alternative estimator shown in Corollary 1, β̂ALT, is

similarly accurate.
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Table 1: Numerical Illustration for the Monopoly Model

(1) (2) (3) (4)

β̂OLS −0.89 −0.42 0.36 0.88
V ar(q) 1.47 1.11 1.08 1.38
V ar(p) 1.45 1.09 1.06 1.37

Cov(ξ̂OLS , q) 0.31 0.92 0.94 0.32

Cov(ξ̂OLS , q)/V ar(p) 0.21 0.85 0.89 0.24

β̂3-Step −1.004 −1.009 −1.009 −1.004

β̂ALT −1.004 −1.009 −1.009 −1.004
Notes: Based on numerically generated data that conform to the motivating example

of monopoly pricing. The demand curve is qt = 10 − pt + ξt and marginal costs

are mct = ηt, so that (β0, β, γ0) = (10,−1, 0). In column (1), ξ ∼ U(0, 2)

and η ∼ U(0, 8). In column (2), ξ ∼ U(0, 4) and η ∼ U(0, 6). In column (3),

ξ ∼ U(0, 6) and η ∼ U(0, 4). In column (4), ξ ∼ U(0, 8) and η ∼ U(0, 2).

Thus, the support of the cost shocks are largest (smallest) relative to the support of

the demand shocks in the left-most (right-most) column.

3 Differentiated-Products Bertrand Competition

3.1 Data Generating Process

Let there be j = 1, 2, . . . , J firms that set prices in each of t = 1, 2, . . . , T markets, subject to

downward-sloping demands. The econometrician observes vectors of prices, pt = [p1t, p2t, . . . , pJt]
′,

and quantities, q = [q1t, q2t, . . . , pJt]
′, corresponding to each market t, as well as a matrix of covari-

ates Xt = [x1t x2t . . . xJt]. The covariates are orthogonal to a pair of demand and marginal cost

shocks (i.e,. E[Xξ] = E[Xη] = 0) 2 that are common knowledge among firms but unobserved by

the econometrician. 3 We make the following assumptions on demand and supply:

Assumption 1 (Demand): The demand schedule of each firm is determined by the following semi-
linear form:

h(qjt;wjt) = βpjt + x′jtα+ ξjt (5)

where h(qjt; .) increases monotonically in its argument, i.e., h′(qjt; ·) > 0, and where wjt is a vector of
observables and parameters that allow the semi-linear relationship.

The demand assumption restricts attention to systems for which, after a transformation of quan-

tities, there is additive separability in prices, covariates, and the demand shock. The vector wjt
can be conceptualized as including the price and non-price characteristics of products, as well as

demand parameters. With the discrete choice demand models that support research in industrial

2The presence of endogenous covariates requires supplemental moments to obtain identification. Our focus in this paper
is on the estimation of the price parameter. It is straightforward to extend the estimator to incorporate additional restrictions.

3Another information environment consistent with this methodology is one in which each demand shock has a common
component and an independent private component, and firms commit to prices before observing those of their rivals. In
estimation, the common components may be captured by fixed effects, and then the rival firms’ prices may then be included
directly in X, as they will be orthogonal to the private demand shock for each firm.
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organization, an empirical substitution for wjt simplifies the transformation. For example, with the

logit demand system, the market share of the outside good is a sufficient statistic for wjt, such that

h(sjt;wjt) ≡ log(sjt/wjt), with wjt = s0t. With the more flexible random coefficients logit demand

system, h(qjt;wjt) can be computed numerically via the contraction mapping of Berry et al. (1995).

The demand assumption also nests monopolistic competition with linear demands (e.g., as in the

motivating example). We derive these connections in some detail in Appendix B.

Assumption 2 (Supply): Each firm sets price to maximize its profit in each market, taking as given
the prices of other firms, with knowledge of the demand schedule equation (5) and the linear constant
marginal cost schedule

mcjt = x′jtγ + ηjt. (6)

The supply assumption restricts attention to the constant marginal cost schedules that are com-

monly used in empirical industrial organization (e.g., Berry et al. (1995); Nevo (2001); Miller and

Weinberg (2017)). Non-constant marginal costs can be incorporated, as we show in Section 4.1,

but general solutions to endogenous regressors in cost function estimation lay outside the scope of

this paper. Note that supply and demand may depend on different covariates; this is captured when

non-identical components of α and γ are equal to zero. We maintain the assumption of Bertrand

competition among single-product firms largely for mathematical convenience. In the empirical

examples of Section 5 we extend results to Cournot competition and multi-product firms.

The first order conditions that must hold in equilibrium for each product j can be expressed:

pjt = mcjt −
1

β
h′(qjt;wjt)qjt. (7)

Prices are additively separable in marginal cost and a markup term. With constant marginal costs,

prices respond to the unobserved demand shock solely through markup adjustments, which are

fully determined by the price parameter, the structure of the model, and any nonlinear parameters

in wjt. This provides a basis for identification and estimation that we detail below. Lastly, we assume

throughout that markets are “in equilibrium,” in that the sense that prices are linked to an optimality

condition that can be modeled by the researcher. In principle, the presence of multiple equilibria

does not alter our results as long as the selected equilibrium can be identified by the econometrician.

3.2 Identification

We now formalize the identification argument for β, the price parameter. The model could feature

parameters in wjt that are tied to the nonlinear transformation or endogenous regressors, but these

are not our focus and we assume they are known to the econometrician.4 The linear non-price

parameters (α, γ) can be recovered trivially if β and wjt are known. We start by characterizing

4An alternative interpretation is that the econometrician is considering a candidate vector of nonlinear parameters, and
wishes to determine the values that the linear parameters must take to rationalize the data. This alternative interpretation
would apply in the nested fixed-point estimation routine of Berry et al. (1995) and Nevo (2001) for the random coefficients
logit demand system.
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the OLS estimate of the price parameter, which is obtained from a regression of h(qjt; ·) on p. The

probability limit of the estimator contains the standard bias term:

βOLS ≡ Cov(p∗, h(q))

V ar(p∗)
= β +

Cov(p∗, ξ)

V ar(p∗)
(8)

where p∗ = [I − x(x′x)−1x′]p is a vector of residuals from a regression of p on x. Our first general

result states that the probability limit of the OLS estimate depends on the true price parameter, the

covariance between unobservables, and objects that can be directly estimated from the data.

Proposition 3. Under assumptions 1 and 2, the probability limit of the OLS estimate can be written
as a function of the true price parameter, the residuals from the OLS regression, the covariance between
demand and supply shocks, prices, and quantities:

βOLS = β − 1

β + Cov(p∗,h′(q)q)
V ar(p∗)

Cov
(
ξOLS , h′(q)q

)
V ar(p∗)

+ β
1

β + Cov(p∗,h′(q)q)
V ar(p∗)

Cov(ξ, η)

V ar(p∗)
. (9)

The price parameter β solves the following quadratic equation:

0 = β2

+

(
Cov(p∗, h′(q)q)

V ar(p∗)
+
Cov(ξ, η)

V ar(p∗)
− βOLS

)
β (10)

+

(
−βOLSCov(p∗, h′(q)q)

V ar(p∗)
−
Cov

(
ξOLS , h′(q)q

)
V ar(p∗)

)
.

Proof. See appendix.

Proposition 3 provides our core identification result. There are two main implications. First, the

quadratic in equation (10) admits (at most) two solutions for a given value of Cov(ξ, η). It follows

immediately that, with prior knowledge of Cov(ξ, η), the price parameter β is set identified with

a maximum of two elements (points). Indeed, as we show below, conditions exist that guarantee

point identification. Second, if the econometrician does not have specific knowledge of Cov(ξ, η),

it nonetheless can be possible to bound β. We consider point identification first, as the intuition

behind point identification maps neatly into how to construct bounds.

Assumption 3’: The econometrician has prior knowledge of Cov(ξ, η).

Proposition 4. (Point Identification) For any value of Cov(ξ, η), the price parameter β is the lower
root of equation (10) if the following condition holds:

0 ≤ βOLSCov(p∗, h′(q)q)

V ar(p∗)
+
Cov

(
ξOLS , h′(q)q

)
V ar(p∗)

(11)
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and, furthermore, β is the lower root of equation (10) if and only if the following condition holds:

− 1

β

Cov(ξ, η)

V ar(p∗)
≤
Cov

(
p∗,− 1

β ξ
)

V ar(p∗)
+
Cov (p∗, η)

V ar(p∗)
(12)

Therefore, under assumptions 1, 2 and 3’, β is point identified if either of these conditions holds.

Proof. See appendix.

The sufficient condition is derived as a simple application of the quadratic formula: if the con-

stant term in the quadratic of equation (10) is negative then the upper root of the quadratic is

positive and β must be the lower root. The condition can be evaluated empirically using only the

data and assumptions 1 and 2. For some model specifications, it can be shown analytically from

the structure of the model alone.5 If the sufficient condition holds, then it is clear that β is point

identified with prior knowledge of Cov(ξ, η) because all the terms in equation (10) are known or

can be obtained from the data. If the condition fails, point identification of β is not guaranteed even

with prior knowledge of Cov(ξ, η), and the econometrician has reduced the identified set to two

points.

The necessary and sufficient condition is somewhat more nuanced. Even with prior knowledge

of Cov(ξ, η), condition (12) contains elements that are not observed by the econometrician. Still,

in some specifications, the condition can be verified confirmed analytically.6 When an analytical

verification is not possible, the condition holds under the standard intuition that prices tend to

increase both with demand shocks and marginal cost shocks, provided that Cov(ξ, η) is not too

positive. To see this in the equation, note that the term − 1
β ξ is the shock to the inverse demand

curve. By contrast, the condition can fail if the empirical variation is driven predominately by

demand shocks and the model dictates that prices decrease in the demand shock. This is a possibility

if demand is log-convex (e.g., Fabinger and Weyl (2014)). If neither condition can be confirmed,

then prior knowledge of Cov(ξ, η) reduces the space of candidate values of β to the two roots of the

quadratic in equation (10).

Without exact knowledge of Cov(ξ, η), equation (10) can be used to construct bounds on β.

The model implies two possible sets of (complementary) bounds. First, suppose the econometrician

has a prior over the covariance between demand and cost shocks. For example, this can exist as a

plausible range, such as Cov(ξ, η) > 0.7 Using the mapping from each value of Cov(ξ, η) to the (one

5An example is olipogoly with a linear demand system. Then we have that

βOLS
Cov(p∗, h′(q)q)

V ar(p∗)
+
Cov

(
ξOLS , h′(q)q

)
V ar(p∗)

= βOLS
Cov(p∗, q)

V ar(p∗)
+
Cov

(
q − βOLSp∗, q

)
V ar(p∗)

= (βOLS)2 +
V ar(q)

V ar(p)
− βOLS

Cov(p∗, q)

V ar(p∗)
=
V ar(q)

V ar(p)
> 0

6Consider again the example of an oligopoly facing a linear demand system, with the assumption Cov(ξ, η) = 0. In the

proof of Proposition 4, we show that the necessary and sufficient condition is equivalent to β <
Cov(p∗,ξ)
V ar(p∗) −

Cov(p∗,h′(q)q)
V ar(p∗) .

With linear demand, we have that
Cov(p∗,h′(q)q)

V ar(p∗) =
Cov(p∗,q)
V ar(p∗) = βOLS . Thus, the right-hand-side simplifies to −β using

equation (8). Because β < 0, β < −β and the necessary and sufficient condition holds.
7In many cases, it might be natural to sign the correlation, especially if demand and supply are linked to period-specific
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or two) values for β, we can construct a posterior set for the price parameter. When equation (11)

holds, then the one-to-one mapping between the covariance and the price parameter will generate

a convex set. Recall that condition (11) does not depend on Cov(ξ, η). Likewise, one could verify

that condition (12) holds for the plausible range of the covariance values to obtain bounds over a

convex set for β.

The second set of bounds arises simply from the fact that the observed data and the data-

generating process implied by the model must be compatible. Even when the econometrician has

no prior about the covariance among unobservables, certain values of Cov(ξ, η) can be ruled out by

the data and the model structure. A necessary and sufficient condition for these bounds to bind is

that both roots of equation (10) are negative, which can be verified empirically. Formally,

Proposition 5. (Model-Implied Bounds) Under assumptions 1 and 2, if the sufficient condition for
point identification fails, i.e.,

0 > βOLS
Cov(p∗, h′(q)q)

V ar(p∗)
+
Cov

(
ξOLS , h′(q)q

)
V ar(p∗)

then it must be that Cov(ξ, η) /∈ (c1, c2) where c1 and c2 are defined by

[
c1

c2

]
=

 V ar(p∗)βOLS − Cov(p∗, h′(q)q)− 2

√
−V ar(p∗)

(
Cov(p∗, h′(q)q)βOLS + Cov(ξOLS , h′(q)q)

)
V ar(p∗)βOLS − Cov(p∗, h′(q)q) + 2

√
−V ar(p∗)

(
Cov(p∗, h′(q)q)βOLS + Cov(ξOLS , h′(q)q)

)


Proof. See appendix.

These bounds on Cov(ξ, η) are “exclusive” in the sense that values of Cov(ξ, η) that fall between

the b1 and b2 can be ruled out. Evaluating the quadratic roots at these boundary values allows

for bounds to be placed on β. Interestingly, these boundary values are available only if condition

(11) fails. Thus, the econometrician may be unable to provide bounds while showing that point

identification conditional on Cov(ξ, η) is possible.

For illustrations of how to implement these bounds, see the empirical exercises in Section 5.

3.3 Estimation

For the purposes of estimation in this paper, we proceed under the assumption that unobserved

demand shocks and marginal cost shocks are uncorrelated. We discuss empirical settings where this

may be reasonable in Section 4.3. We formalize the assumption here:

Assumption 3 (Uncorrelatedness): Cov(ξ, η) = 0.

There are two natural approaches to estimation. The first is to apply the quadratic formula directly

to equation (10). The second is to recast uncorrelatedness as a moment restriction of the form

macroeconomic shocks. To address this and achieve point identification, we suggest the use of fixed effects to account for
this when the data allow for it.
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E[ξ′η] = 0 and use the method of moments. Of these, the first is more novel, and so we open this

section with the relevant theoretical result:

Corollary 2. Under assumptions 1, 2, and 3, a consistent estimate of the price parameter β is given by

β̂3-Step =
1

2

β̂OLS − Cov (p∗, h′(q)q)

V ar(p∗)
−

√√√√(
β̂OLS +

Cov (p∗, h′(q)q)

V ar(p∗)

)2

+ 4
Cov

(
ξ̂OLS , h′(q)q

)
V ar(p∗)


if either condition (11) or condition (12) holds.

Proof: Given uncorrelatedness, it can be shown that the right-hand-side of the equation

is the empirical analog of the lower root of equation (10), and equals β under either of

the two conditions. The empirical analog is consistent because sample estimates of the

variance and covariance terms are consistent for their limits. QED.

We label the estimator β̂3-Step because there are three steps in the estimation procedure: (i)

regress h(q) on p and x with OLS, (ii) regress p on x with OLS and construct the residuals p∗, and

(iii) construct the estimator as shown.8 If condition (11) does not hold and the model does not

allow for an analytical evaluation of condition (12), then β̂3-Step remains consistent for the lower

root of equation (10), but this is not guaranteed to be β. In that case, both roots can be estimated

and evaluated as candidate parameters. Even though both are negative, the upper root still may be

possible to rule out if it requires implausible marginal costs to rationalize observed prices.

The uncorrelatedness assumption imposes the moment condition E[ξ′η] = 0. Given the main-

tained assumptions E[Xξ] = 0 and E[ξ] = 0 and the structure of marginal costs in assumption 2,

these moments can be combined into the (stronger) condition E[ξ′mc] = 0. An alternative approach

is estimation is to search numerically to find a price parameter, β̂, that satisfies the empirical moment

1

T

∑
t

1

|Jt|
∑
j∈Jt

ξjt(β̂;w,X) ·mcjt(β̂;w,X) = 0

where ξ(β̂;w,X) and mc(β̂;w,X) are computed given the data and the price parameter using equa-

tions (5)-(7). The firms present in each market t are indexed by the set Jt. Formally, this method-

of-moments estimator is defined as

β̂MM = arg min
β̃<0

 1

T

∑
t

1

|Jt|
∑
j∈Jt

ξjt(β̂;w,X) ·mcjt(β̂;w,X) = 0

2

The linear parameters (α, γ) are concentrated out of the nonlinear optimization problem. The con-

ditions for identification are identical to those of the three-step estimator. Indeed, in numerical

experiments we have confirmed that the two estimators are equivalent to numerical precision, tak-

ing care to ensure that method-of-moments converges to the lower root of equation (10).

8A more precise two-step estimator is available for special cases in which the observed cost and demand shifters are
uncorrelated. See Appendix C for details.
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Comparing the two approaches, it is clear that the three-step estimator has distinct advantages

over the method-of-moments approach. The analytic formula reduces the computational burden in

estimation. This can be especially beneficial when nested inside of a nonlinear routine for other

parameters because multi-dimensional optimization can be particularly burdensome. Additionally,

the three-step estimator reduces computational error by immediately obtaining the correct solution

and rejecting cases when no solution is possible. A method-of-moments optimizer may converge at

a local minimum, and it produces a solution even when the moment may not be set to zero (which

should reject the model).

On the other hand, the numerical approach to estimation also offers some advantages. First,

there are settings for which the three-step estimator does not generalize or is difficult to calculate.

Examples include models in which demand is not semi-linear or the first-order conditions for multi-

product firms are complicated (though see Section 5.2). The method-of-moments estimator handles

such settings without difficulty. Second, the empirical moments can be combined with more standard

exclusion restrictions to construct a generalized method-of-moments estimator. This can improve ef-

ficiency and allows for specification tests that otherwise would be unavailable to the econometrician

(e.g., Hausman (1978); Hansen (1982)). Finally, the three-step estimator requires orthogonality be-

tween the unobserved demand shock and all the regressors. The method-of-moments approach can

be pursued under a weaker assumption that allows for correlation between the unobserved demand

shock and regressors that enter the cost function only. In this case, one would replace E[ξ′mc] = 0

with E[ξ′η] = 0 in the objective function.9

3.4 Small-Sample Properties

We generate Monte Carlo results to examine the small sample properties of the estimators. We

consider a profit-maximizing monopolist that prices against a logit demand curve and has a constant

marginal cost technology:

h(qt;wt) ≡ log(qt)− log(1− qt) = −βpt + ξt

mct = xt + ηt

For simplicity, we set β = 1 and simulate data for x, ξ, η using independent U [0, 1] distributions.

For each draw of the data, we compute profit-maximizing prices and quantities. The mean price

and margin are 2.20 and 0.56, respectively, and the mean price elasticity of demand is −1.86. We

construct samples with 25, 50, 100, and 500 observations and estimate demand with each. We

repeat this exercise 1,000 times and examine the average and standard deviation of the estimates.

The estimators are the 3-Step estimator, 2SLS using xt as an instrument, a method-of-moments

(“MM”) estimator based on the alternative moment E[ξ′η] = 0, and OLS.

Table 2 summarizes the results. The bias present in 3-Step, 2SLS, and MM is small even with

the smallest sample sizes. However, 3-Step more consistently provides accurate estimates than 2SLS

9Finite-sample numerical experiments suggest that estimation based on E[ξ′η] = 0 tends to produce greater bias and
mean squared error than estimation based on E[ξ′mc] = 0, if both assumptions are valid. This reflects that the latter
moment incorporates the additional restriction mct = Xtγ + ηt.
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Table 2: Small Sample Properties of Estimators

Panel A: Average Estimates (Truth is β = −1.00)
Sample Size 3-Step 2SLS MM OLS

25 -1.002 -1.008 -1.005 -0.885
50 -1.004 -1.012 -1.002 -0.889

100 -1.004 -1.006 -1.005 -0.891
500 -1.000 -1.001 -0.999 -0.887

Panel B: Standard Deviation of Estimates
Sample Size 3-Step 2SLS MM OLS

25 0.160 0.276 0.208 0.168
50 0.109 0.182 0.141 0.114

100 0.078 0.123 0.101 0.082
500 0.035 0.053 0.045 0.037

Notes: The moments used for 3-Step, 2SLS, MM, and OLS areE[ξ′mc],

E[ξ′x], E[ξ′η], and E[ξ′y], respectively. The methods-of-moments

(“MM”) estimator is implemented with a one-dimensional grid search.

and MM, as evidenced by the smaller standard deviation of the estimates. The reason is that 3-

Step utilizes orthogonality between unobserved demand and marginal cost, whereas 2SLS and MM

exploit the relationship between unobserved demand and marginal cost shifters—either observed

(xt) or unobserved (ηt)—which provide noisy signals about marginal cost. One might be tempted

to run a "first-stage" regression to test for the power of the different cost components to predict

prices. However, such a test has no bearing on the asymptotic properties of the 3-Step and MM

estimators. This is an important conceptual observation: with 3-Step and MM, exogenous supply-

side variation need not be observed by the econometrician and indeed need not even exist. Recall the

monopoly experiments of Section 2, in which the price parameter was be recovered from the data

even if all the variation in data arise from the demand-side. This is both a strength and a weakness:

relaxing the requirement of observed exogenous variation comes at the cost of a greater reliance on

assumptions about how firms set prices in equilibrium.

4 Discussion and Robustness

Our estimation approaches developed above rely on an accurate model of the data-generating pro-

cess and some relatively strong (though somewhat widespread) restrictions on the form of demand

and supply. Some of these assumptions can be relaxed with relative ease, and we explore particular

extensions–such as Cournot competition and multi-product firms–in our empirical analysis. Here,

we consider three assumptions worthy of discussion in more detail: constant marginal costs, specific

forms of competition, and uncorrelatedness itself.

15



4.1 Non-Constant Marginal Costs

If marginal costs are not constant in output, then unobserved demand shocks affect price both

through markup adjustments and via their impacts on marginal cost. For example, consider a special

case in which marginal costs take the form:

mcjt = x′jtγ + g(qjt;λ) + ηjt (13)

Here g(qjt;λ) is some potentially nonlinear function that may (or may not) be known to the econo-

metrician. Maintaining Bertrand competition and the baseline demand assumption, the first order

conditions of the firm are:

pjt = x′jtγ + g(qjt;λ) + ηjt︸ ︷︷ ︸
Marginal Cost

+

(
− 1

β
h′(qjt;wjt)qjt

)
︸ ︷︷ ︸

Markup

.

The OLS regression of h(qjt;wjt) on price and covariates now yields a price coefficient with the

following probability limit:

plim(β̂OLS) = β − 1

β

Cov(ξ, h′(q)q)

V ar(p∗)
+
Cov(ξ, g(q))

V ar(p∗)

Provided g′(·;λ) 6= 0, it no longer is the case that the relationship between prices and unobserved

demand shocks are fully determined by the price parameter, the structure of the model, and any

nonlinear parameters in wjt. This precludes identification of β using the results of the preceding

section, unless some knowledge of g(qjt;λ) can be brought to bear on the problem.

There are two ways to make progress. First, if g′(·;λ) can be signed then it is possible to bound the

price parameter, β, even if point identification remains infeasible. A lead example is that of capacity

constraints, for which it might be reasonable to assume that Cov(ξ, η) = 0 and g′(·;λ) ≥ 0, and thus

that Cov(ξ, η∗) ≥ 0 where η∗jt = ηjt + g(qjt;λ) is a composite error term. Applying Cov(ξ, η∗) ≥ 0

to the lower root of the quadratic in equation (10) then can tighten the set of candidate price

parameters. Second, the econometrician may be able to estimate g(qjt;λ), either in advance of or

simultaneously with the price coefficient. Our main theoretical result of the section is that prior

knowledge of Cov(ξ, η) is sufficient to at least set identify β in such a situation.

Proposition 6. Under assumptions 1 and 3 and a modified assumption 2 such marginal costs take the
semi-linear form of equation (13), the price parameter β solves the following quadratic equation:

0 =

(
1− Cov(p∗, g(q))

V ar(p∗)

)
β2

+

(
Cov(p∗, h′(q)q)

V ar(p∗)
+
Cov(ξ, η)

V ar(p∗)
− β̂OLS +

Cov(p∗, g(q))

V ar(p∗)
β̂OLS +

Cov(ξ̂OLS , g(q))

V ar(p∗)

)
β

+

(
−Cov(p∗, h′(q)q)

V ar(p∗)
β̂OLS − Cov(ξ̂OLS , h′(q)q)

V ar(p∗)

)
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where β̂OLS is the OLS estimate and ξ̂OLS is a vector containing the OLS residuals.

Proof. See appendix.

With the above quadratic in hand, the remaining results of Section 3 extend naturally. Although the

estimation of g(qjt;λ) is not our focus, we note that a 3-Step estimator of β could be obtained for

any candidate parameters in λ, thereby facilitating computational efficiency.

4.2 Various Forms of Competition

Though our main results are presented using Bertrand-Nash competition in prices, our method is

robust to any form of competition where price can be expressed as the marginal cost plus a markup

term. This general form for equilibrium prices, p = c + µ, is obtained under a broad set of assump-

tions. Consider, for example, Nash competition among profit-maximizing firms that have a single

choice variable, a, and constant marginal costs. The individual firm’s objective function is:

max
aj |ai,i6=j

(pj(a)− cj)qj(a).

The first-order condition, holding fixed the actions of the other firms, is given by:

pj(a) = cj −
pj
′(a)

qj ′(a)
qj(a).

Thus, in a generalized form that nests Betrand (a = p) and Cournot (a = q), prices are of the form

p = c + µ, where the µ incorporates the structure of demand and key parameters. Importantly,

marginal costs and the markup are additively separable. Additively separability in this context

provides a helpful restriction on how prices move with demand shocks, aiding identification. The

bias from OLS estimates can be decomposed into additively separable components consisting of how

(residualized) prices covary with marginal costs and how prices covary with the markup.

For any competition specification that results in the additively separable components, it is straight-

forward to extend our three-step results, as the semi-linear demand schedule will produce a 1/β term

in the markup. In addition to the single-action Nash form considered above, additive separability

(and our three-step method) translate to competition in quantities with increasing marginal costs,

multi-product firms, and certain forms of non-Nash competition. We explore the first two extensions

in Section 5.

4.3 Uncorrelatedness

Finally, we turn to the uncorrelatedness assumption itself. There are a variety of reasons that

marginal costs may be correlated with demand unobservables. For instance, unobserved quality

is more costly to supply and also increases demand. Additionally, firms may be induced to produce

further along an upward-sloping marginal cost schedule if demand is stronger. In many cases, how-

ever, econometric adjustments such as the incorporation of fixed effects may capture the primary

factors that drive this correlation, rendering the uncorrelatedness assumption more palatable.
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To illustrate, consider the following generalized demand and cost functions:

h(qjt;wjt) = βpjt + x′jtα+Dj + Ft + Ejt

mcjt = g(qjt, vjt;λ) + x′jtγ + Uj + Vt +Wjt

Let the unobserved demand shocks be ξjt = Dj + Ft + Ejt and the unobserved costs be ηjt =

Uj + Vt + Wjt. Further assume that the h(·) and g(·) functions are known (up to parameters). If

products with higher quality have higher marginal costs then Cov(Uj , Dj) > 0. With panel data,

the econometrician can account for the relationship by estimating Dj for each firm. The residual

ξ∗jt = ξjt − Dj is uncorrelated with Uj so that uncorrelatedness applies. Similarly, if costs are

higher (or lower) in markets with high demand then Ft can be estimated with panel data such that

uncorrelatedness applies.

Thus, if panel data permit the inclusion of product and market fixed effects then the remaining

unobserved correlation, Cov(Wjt, Ejt), involves firm-specific demand and cost deviations within a

market, and the assumption of uncorrelatedness may become reasonable across a wide range of

applications. This is not to argue that uncorrelatedness is universally valid. Even in the presence of

product and market fixed effects, a number of mechanisms could create an empirical relationship

between the unobserved demand and cost shocks. The assumption would be violated if some firms

offer temporary per-unit incentives to sales representatives, or if market power in input markets

creates a relationship between demand and input prices. If such mechanisms are left outside the

model then the estimators derived above do not provide consistent estimates of demand. However,

it still may be possible to sign the correlation between unobserved terms, in which case it may be

possible to construct bounds on the demand parameters.

5 Empirical Examples

5.1 The Portland Cement Industry

Our first empirical example uses the setting and data of Fowlie et al. (2016) [“FRR”], which ex-

amines market power in the cement industry and its effects on the efficacy of environmental regu-

lation. The model features Cournot competition among cement plants facing capacity constraints.

Our theoretical results apply with minor modifications. We find that our three-step estimator with

uncorrelatedness produces similar demand elasticities to 2SLS with instruments, so long as capacity

constraints are accounted for on the supply-side. If, instead, the impact of capacity constraints on

marginal costs is unknown a priori then it is possible to bound the demand elasticities.

We begin with the theoretical extension. Let j = 1, . . . , J firms produce a homogeneous product

demanded by consumers according to h(Q;w) = βp+ x′γ + ξ, where Q =
∑
j qj , and p represents a

price common to all firms in the market. Marginal costs are semi-linear, as in equation (13), possibly

reflecting capacity constraints. Working with aggregated first order conditions, it is possible to show
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that the OLS regression of h(Q;wjt) on price and covariates yields:

plim(β̂OLS) = β − 1

β

1

J

Cov(ξ, h′(Q)Q)

V ar(p∗)
+
Cov(ξ, g)

V ar(p∗)

where J is the number of firms in the market and g = 1
J

∑J
j=1 g(qj ;λ) is the average contribution of

g(q, λ) to marginal costs. Bias arises due to markup adjustments and the correlation between unob-

served demand and marginal costs generated through g(q;λ).10 The identification result provided

in 4.1 for models with non-constant marginal costs extends naturally.

Corollary 3. In the Cournot model, the price parameter β solves the following quadratic equation:

0 =

(
1− Cov(p∗, g)

V ar(p∗)

)
β2

+

(
1

J

Cov(p∗, h′(Q)Q)

V ar(p∗)
+
Cov(ξ, η)

V ar(p∗)
− β̂OLS +

Cov(p∗, g)

V ar(p∗)
β̂OLS +

Cov(ξ̂OLS , g)

V ar(p∗)

)
β

+

(
− 1

J

Cov(p∗, h′(Q)Q)

V ar(p∗)
β̂OLS − 1

J

Cov(ξ̂OLS , h′(Q)Q)

V ar(p∗)

)
The derivation tracks exactly the proof of Proposition 6. For the purposes of empirical exercise, we

compute the 3-Step estimator as the empirical analog to the lower root of this quadratic.

We turn now to the empirical setting. Let the demand curve in each market have a logit form:

h(Qrt;w) ≡ ln(Qrt)− ln(Mr −Qrt) = αr + βprt + ξrt

where r and t denote region and time, respectively, and Mr is the size of the region. We assume

Mr = 2×maxt{Qrt} for simplicity. Marginal costs take a “hockey stick” form:

mcjrt = γ + g(qjrt) + ηjrt

g(qjrt) = 2λ21{qjrt/kjr > λ1}(qjrt/kjr − λ1)

where kjr and qjrt/kjr are capacity and utilization, respectively. Marginal costs are constant if

utilization is less then the threshold λ1 ∈ [0, 1], and increasing linearly at rate determined by λ2 ≥ 0

otherwise.11 The assumption Cov(ξ, η) = 0 is reasonable because the model incorporates explicitly

how capacity constraints affect marginal cost.

Table 3 summarizes the results of demand estimation. The 3-Step estimator is implemented

taking as given the nonlinear cost parameters obtained in FRR: λ1 = 0.869 and λ2 = 803.65. In

principle, these could be estimated simultaneously via the method of moments, provided some de-

mand shifters can be excluded from marginal costs, but that is not our focus. As shown, the mean
10Bias due to markup adjustments dissipates as the number of firms grows large. Thus, if marginal costs are constant

then the OLS estimate is likely to be close to the population parameter in competitive markets. While this explicit analytical
result is particular to the Cournot model, we find that a similar effect arises in Monte Carlo experiments based on Bertrand
competition and logit demand.

11We specify a logit demand curve rather than the constant elasticity demand curve of FRR because it more easily conforms
to our framework. The 2SLS results are unaffected by the choice. Similarly, the 3-Step estimator with logit obtains virtually
identical results as a method-of-moments estimator with constant elasticity demand that imposes uncorrelatedness.
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Table 3: Point Estimates for Cement with Uncorrelatedness

Estimator: 3-Step 2SLS OLS

Elasticity -1.15 -1.07 -0.47
of Demand (0.18) (0.19) (0.14)

Notes: The sample includes 520 region-year ob-
servations over 1984-2009. Bootstrapped stan-
dard errors are based on 200 random samples
constructed by drawing regions with replacement.

price elasticity of demand obtained with the 3-Step estimator under uncorrelatedness is -1.15. This

is statistically indistinguishable from the 2SLS elasticity estimate of -1.07, which is obtained using

the FRR instruments: coal prices, natural gas prices, electricity prices, and wage rates. Both 3-Step

and 2SLS move the elasticities in the expected direction relative to OLS.12

If the econometrician does not know (and cannot identify) the nonlinear parameters in the cost

function, then consistent estimates cannot be obtained with our methodology. Some progress can

be made nonetheless. Defining the composite marginal cost shock, η∗jrt = g(qjrt) + ηjrt, we have

Cov(ξ, η∗) ≥ 0 if Cov(ξ, η) = 0. This is sufficient to bound on the demand elasticity below -0.69.

The OLS estimate thus can be ruled out, by a fair margin.13 Finally, we examine the sensitivity of

the point estimates to the uncorrelatedness assumption. Table 4 provides the correlation coefficients

(i.e., Cor(ξalt, η)) and elasticities obtained for different levels of Cov(ξalt, η). As the (imposed) co-

variance term becomes more negative, the price parameter converges to zero and the correlation

coefficient converges to approximately -0.37. As the covariance becomes more positive, the price

parameter converges to −∞ and the correlation coefficient converges to approximately 0.56. If the

researcher believes that the correlation between unobservables is small, say under 0.10 in magni-

tude, then the implied demand elasticities remain reasonably close to the point estimates.

5.2 The Airline Industry

Our second empirical exercise uses the setting and data of Aguirregabiria and Ho (2012) [“AH”],

which explores why airlines form hub-and-spoke networks.14 The model features differentiated-

products Bertrand competition among multi-product firms facing a nested logit demand system.

Our theoretical results extend to multi-product firms in this context with minor modifications. We

show that some negative values of the price parameter, β, cannot be rationalized given the model

and data if the nesting parameter, σ ∈ [0, 1), is relatively large. We provide identifying conditions—

building on uncorrelatedness—under which σ can be identified without instruments. Finally, we

estimate the model with and without instruments, and compare results.

12Under uncorrelatedness and constant marginal costs (λ2 = 0) the estimated mean price elasticity is -0.79, near the
midpoint between the 3-Step and OLS estimates reported in Table 3. Both markup adjustments and non-constant marginal
costs both contribute meaningfully to bias in OLS.

13We obtain this point by computing the lower root of the quadratic in Corollary 3 under the assumptions that Cov(ξ, η) =
0 and λ1 = λ2 = 0. We confirm that this provides an upper bound by examining the lower root under the alternative
assumption that Cov(ξ, η) is positive.

14We thank Victor Aguirregabiria for providing the data. Replication is not exact because the sample differs somewhat from
what is used in the AH publication and because we employ a different set of fixed effects in estimation.
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Table 4: Sensitivity of Point Estimates for Cement

Correlation Interval Elasticity Interval

(-0.02,0.02) (-1.10, -1.20)
(-0.05,0.05) (-1.03, -1.29)
(-0.10,0.10) (-0.91, -1.44)
(-0.20,0.20) (-0.70, -1.81)
(-0.30,0.30) (-0.51, -2.34)

...
...

(-0.35,0.56) (0.00, −∞)
Notes: The model is estimated using a modified 3-
Step estimator that imposes Cov(ξ, η) = s, where
s takes discrete values in [-100,100]. For each s
we calculate the correlation coefficient and elastic-
ity. The correlation coefficients are bounded even
though the covariance is not.

To provide context, we first formulate the nested logit demand system, following Berry (1994)

and Cardell (1997). Inverting the market share equation yields

h(sj ;w) ≡ ln sj − ln s0 − σ ln sj|g = βpj + x′jα+ ξj (14)

where sj is the market share and sj|g = sj/
∑
k∈g sk is the conditional market share, i.e., the choice

probability of product j given that its “group” of products, g, is selected. The outside good is indexed

as j = 0. Higher values of σ increase within-group consumer substitution relative to across-group

substitution. We now provide the theoretical extension to multi-product firms.

Assumption 4: The derivatives of the transformation parameters with respect to prices, dwkt

dpjt
, are linear

in β.

The assumption applies with the nested logit model because (s0, sj|g, σ) are sufficient statistics for

w and it can be verified that ∂s0
∂pj

and ∂sj|g
∂pj

are linear in β. Under assumption 4, the first order

conditions extend tractably to the multi-product setting. Letting h̃ be the multi-product analog for

h′(q)q, we obtain a quadratic in β, and the remaining results of Section 3 then obtain easily:

Proposition 7. Under assumptions 1, 2, 3, and 4, the price parameter β solves the following quadratic
equation:

0 = β2

+

(
Cov(p∗, h̃)

V ar(p∗)
+
Cov(ξ, η)

V ar(p∗)
− β̂OLS

)
β

+

(
−Cov(p∗, h̃)

V ar(p∗)
β̂OLS − Cov(ξ̂OLS , h̃)

V ar(p∗)

)

where h̃ is constructed from the first-order conditions of multi-product firms.
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Proof. See appendix.

The data are drawn from the Airline Origin and Destination Survey (DB1B) survey, a ten percent

sample of airline itineraries, for the four quarters of 2004. Markets are directional round trips

between origin and destination cities in a particular quarter. Products are nonstop or one-stop

itineraries from a particular airline. Thus, each airline can have zero, one, or two products per

market. The nesting parameter, σ, governs consumer substitution across three product groups:

nonstop flights, one-stop flights, and the outside good. Marginal costs are linear in accordance with

equation (6). Following AH, the covariates include an indicator for nonstop itineraries, the distance

between the origin and destination cities, and a measure of the airline’s “hub sizes” at the origin and

destination cities. We also include airline fixed effects and route×quarter fixed effects. The latter

expands on the city×quarter fixed effect used in AH. Market size, which determines the market

share of the outside good, is equal to the total population in the origin and destination cities.

We start with an analysis of model-implied bounds, based on Proposition 5, which does not

require assumptions on Cov(ξ, η). Panel A of Figure 2 shows that some intermediate values of

Cov(ξ, η) can be rejected if σ ≥ 0.62. Uncorrelatedness is rejected with σ ≥ 0.69 and, as σ → 1, it

must be that Cov(ξ, η) ≤ −0.64 or Cov(ξ, η) ≥ 0.35. Panel B provides the corresponding bounds on

β. As σ becomes larger, a more negative β is required to rationalize the data within the context of

the model. If σ = 0.80 then it must be that β ≤ −0.11. The panel also plots the 3-Step estimator,

β̂3−Step(σ), over its supported range. Unlike the bounds, the estimator assumes that Cov(ξ, η) = 0.

As σ converges to 0.69 from below, the 3-Step estimator approaches both the bound on β and the

upper root of the Proposition 7 quadratic. The upper root can be ruled out as an estimate of β even

when it is negative because it violates the model-implied bounds.15

In the nested logit model, conditional shares respond to the unobserved demand shock, which

creates a second endogenous variable in addition to price. Thus, uncorrelatedness must be supple-

mented with an additional moment if both β and σ are to be estimated. Intuitively, the three-step

estimator is consistent for β conditional on transformation parameters (i.e., σ), but it does not re-

cover the transformation parameters themselves. If instruments are available, estimation can be

done with the method-of-moments, pairing the orthogonality conditions E[ξ′η] = 0 and E[Zξ] = 0.

The econometrician could search numerically over the parameters spaces of β and σ simultaneously,

minimizing a weighted sum of the moments (squared). Alternatively, the econometrician could con-

duct a single-dimensional search, obtaining β̂3−Step(σ̃) for each candidate transformation parameter

σ̃ while minimizing the supplemental modments E[Zξ] = 0. We implement the latter approach, the

presence of two exogenous variables that appear in the AH marginal cost function but are excluded

from the AH demand function.16 These supplemental moments differ from the AH instruments

included in 2SLS estimation, which we describe below.

An alternative path to the joint estimation of β and σ is available if the notion of uncorrelatedness

can be extended to grouped moments or higher-order moments. This approach does not require

15It possible that the upper root can always be ruled out on this basis. We are working to generalize the result.
16In the demand equation, hub size of any given city-airline pair is the sum of population in other cities that the airline

connects with direct itineraries from the city. In the supply equation, this is replaced with an analogous measure based on
the number of connections rather than population.
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Figure 2: Model-Implied Bounds for Airlines

Table 5: Application to U.S. Airlines

Parameter 3-Step-I 3-Step-II 3-Step-III 2SLS OLS

β -0.182 -0.153 -0.131 -0.189 -0.106
(0.042) (0.031) (0.031) (0.053) (0.004)

σ 0.525 0.599 0.639 0.822 0.891
(0.110) (0.113) (0.140) (0.087) (0.003)

Notes: The first two columns of results use the three-step methodology with dif-
ferent supplemental moments. The next column use 2SLS and OLS, respectively,
following Aguirregabiria and Ho (2012). Standard errors are constructed via sub-
samples of 100 market-periods. There are 93,199 observations and 11,474 market-
periods in the full sample.

the econometrician to be able to isolate exogenous variation in prices and conditional shares. We

implement with two supplementary assumptions:

• Cov(ξ, η) = 0 where ξgt = 1
|g|
∑
j∈g ξjt and ηgt = 1

|g|
∑
j∈g ηjt are the mean demand and cost

shocks within a group-market pair. This is a simple refinement of uncorrelatedness: the mean

shocks within a product group are uncorrelated across groups and markets.

• Cov(ξ2, η) = 0 and Cov(ξ, η2) = 0. These identifying assumptions state that the variance of

one shock is uncorrelated with the level of the other shock.

Note that the latter assumption does not provide independent identifying power if (ξ, η) are jointly

normal distribution, because then it is implied by uncorrelatedness.

Table 5 summarizes the results of estimation. The left three columns are obtained with the

three-step methodology sketched above, using first E[Zξ] = 0 as a supplemental moment, then

using Cov(ξ, η) = 0, and finally using Cov(ξ2, η) = 0 and Cov(ξ, η2) = 0. The fourth column is
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obtained with 2SLS using the AH instruments that are not absorbed by route×period fixed effects:

the average hub-sizes (origin and destination) of all other airlines on the route and the average value

of the nonstop indicator for all the other carriers on the route. The final column is obtained with

OLS. The 3-Step estimators and 2SLS all move the parameters in the expected direction relative to

OLS. A cross-check with the bounds analysis above confirms that each set of bias-corrected estimates

can be rationalized within the model, but that the OLS estimates are inconsistent with the model for

any covariance structure and are rejected. Comparing the estimates, 3-Step produces less negative

price parameters and smaller nesting parameters than 2SLS. We do not seek to ascertain which set

of estimates is more in line with real-world behavior.17

6 Empirical Application

Coming soon.

7 Conclusion

The objective of this paper is to develop and evaluate the conditions under which supply-side as-

sumptions typically made in empirical models of imperfect competition can be used to address the

econometric problem of price endogeneity. The main result is that a covariance restriction between

the unobserved demand and marginal cost components often is sufficient to obtain point identifi-

cation. The empirical exercises we offer demonstrate the practicality of this approach in settings

where uncorrelatedness is a reasonable assumption. While the identifying power of such covariance

restrictions has previously been demonstrated in a number of models, this has not been extended

to models of imperfect competition, which feature the complication that structural parameters from

one side of the model (demand) enter the other side of the model (supply) through markups. We

speculate that this complication explains why covariance restrictions of the kind we propose are not

currently part of the standard industrial organization “toolkit.”

Our main result has a number of interesting implications. Chief among these is that identification

does not require a source of exogenous variation if the econometrician has a sufficiently tight model

of the data generating process. Because the literature of industrial organization has long couched the

identification challenge in terms of exogenous variation and the search for instruments, we conclude

with a short set of observations about the two approaches. First, the reasonableness of covariance

restriction between unobservables should be evaluated in light of the institutional details of the ap-

plication, receiving a similar level of scrutiny currently place on orthogonality assumptions between

instruments and unobservables. Second, for some applications, valid instruments are unavailable or

difficult to find, and this may lead researchers to discard projects in promising areas. Covariance

restrictions could enable research to progress in such settings. Finally, covariance restrictions could

be employed in conjunction with instruments in many applications. One example is the case of the

17Ciliberto et al. (2016) partially identify a correlation coefficient of Cor(ξ, η) ∈ [0.38, 0.40] based on similar data from
2012, and this potentially calls into question the reasonableness of the uncorrelatedness assumption in the airlines industry.
Alternatively, their result could be an artifact of the demand specification, which does not incorporate fixed effects.
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random coefficients logit demand, for which the covariance restriction could be used to estimate the

price parameter conditional on the nonlinear demographic parameters, while instruments that vary

consumer choice sets could serve to identify the nonlinear demographic parameters. Another ex-

ample would arise if the covariance restriction allows for over-identification, in which specification

tests become available to the econometrician.
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A Linear Models of Supply and Demand

In this appendix we recast the monopoly model of Section 2 in terms of supply and demand, and
provide and alternative proof for Proposition 2 that builds explicitly on Hayashi’s (2000, chapter 3)
canonical textbook treatment of simultaneous equation bias in supply and demand models. We then
develop the case of perfect competition with linear demand and marginal costs—which has many
similarities to monopoly and one critical difference. The model was a primary focus of previous
articles addressing demand identification using covariance restrictions (e.g., Koopmans et al. (1950);
Hausman and Taylor (1983); Matzkin (2004)).

A.1 Intuition from Simultaneous Equations: A Link to Hayashi

To start, given the first order conditions of the monopolist, pt + ( dqdp )−1qt = γ + ηt for dq
dp = β,

equilibrium in the model can be characterized as follows:

qdt = α+ βpt + ξt (demand)

qst = βγ − βpt + νt (supply) (A.1)

qdt = qst (equilibrium)

where νt ≡ βηt. The only distinction between this model and that of Hayashi is that slope of the
supply schedule is determined (solely) by the price parameter of the demand equation, rather than
by the increasing marginal cost schedules of perfect competitors.18

If market power is the reason that the supply schedule slopes upwards, as it is with our monopoly
example, then uncorrelatedness suffices for identification because the model fully pins down how
firms adjust prices with demand shocks. Repeating the steps of Hayashi, we have:

βOLS ≡ plim
(
β̂OLS

)
= β

(
V ar(ν)− V ar(ξ)
V ar(ν) + V ar(ξ)

)
(A.2)

If variation in the data arises solely due to cost shocks (i.e., V ar(ξ) = 0) then the OLS estimator is
consistent for β. If instead variation arises solely due to demand shocks (i.e., V ar(ν) = 0) then the
OLS estimator is consistent for −β. A third special case arises if the demand and cost shocks have
equal variance (i.e., V ar(ν) = V ar(ξ)). Then βOLS = 0, exactly halfway between the demand slope
(β) and the supply slope (−β). Thus the adjustment required to bring the OLS coefficient in line
with either the demand or supply slope is maximized, in terms of absolute value.

It is when variation in the data arises due both cost and demand shocks that the OLS estimate
is difficult to interpret. With uncorrelatedness, however, the OLS residuals provide the information
required to correct bias. A few lines of algebra obtain:

Lemma A.1. Under uncorrelatedness, we have

β2 =
(
βOLS

)2
+
Cov(q, ξOLS)

V ar(p)
. (A.3)

and

Cov(q, ξOLS) =
V ar(ν)V ar(ξ)

V ar(ν) + V ar(ξ)
. (A.4)

18A implication of equation (A.1) is that it can be possible to estimate demand parameters by estimating the supply-side
of the model, taking as given the demand system and the nature of competition. We are aware of precisely one article that
employs such a method: Thomadsen (2005) estimates a model of price competition among spatially-differentiated duopolists
with (importantly) constant marginal costs.
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Proof: See appendix D.

The first equation is a restatement of Proposition 2. The second equation expresses the correction
term as function of V ar(ν) and V ar(ξ). Notice that the correction term equals zero if variation in the
data arises solely due to either cost or demand shocks—precisely the cases for which OLS estimator
obtains β and −β, respectively. Further, the correction term is maximized if V ar(ν) = V ar(ξ) which,
as developed above, is when the largest adjustment is required because βOLS = 0.

A.2 Perfect Competition

As a point of comparison, consider perfect competition with linear demand and supply curves. The
model is used elsewhere to illustrate the identifying power of covariance restrictions (e.g., Koopmans
et al. (1950); Hausman and Taylor (1983); Matzkin (2004)). Let marginal costs be given by mc =
x′γ + λq + η. Firms are price-takers and each has a first order condition given by p = x′γ + λq + η.
The firm-specific supply curve is qs = − 1

λx
′γ + 1

λp−
η
λ . Aggregating across firms and assuming with

linearity in demand, we have the following market-level system of equations:

QD = βp+ x′α+ ξ (Demand)

QS =
J

λ
p− J

λ
x′γ − J

λ
η (Supply) (A.5)

QD = QS (Equilibrium)

whereQD andQS represent market quantity demanded and supplied, respectively. The supply slope
depends on the number of firms and the slope of the marginal costs—in stark relief to the monopoly
problem in which the supply slope was fully determined by the demand parameter (equation (A.1)).

In this setting, uncorrelatedness allows for the consistent estimation of the price coefficient, but
only if the supply slope J

λ is known. This mimics our result for oligopoly with constant marginal
costs, which, in the limit of perfect competition, yields a flat supply curve. Hausman and Taylor
(1983) propose the following methodology: (i) estimate the supply-schedule using an exclusion re-
striction γ[k] = 0 for some k; (ii) recover estimates of the supply-side shock; (iii) use these estimated
supply-side errors as instruments in demand estimation. Under uncorrelatedness these supply-side
errors are orthogonal to demand-shock. (Though it is now understood that a method-of-moments
estimator that combines uncorrelatedness with the exclusion restriction would be more efficient.)
Matzkin (2004) proposes a similar procedure but relaxes the assumption of linearity.

It is possible demonstrate identification using the methods developed above for models with
market power. Indeed, this can be seen as an extension of Corollary 3 because Cournot converges
to perfect competition as J →∞. The OLS estimation of demand yields:

βOLS ≡ plim(β̂OLS) = β +
Cov(ξ, p∗)

V ar(p∗)

Tracing the steps provided in Section 2 for the monopoly model, uncorrelatedness implies

Cov(ξ,Q) = Cov(ξOLS , Q) +
λ

J

Cov(ξ,Q)

V ar(p∗)
Cov(p∗, Q)

where ξOLS is a vector of OLS residuals. Solving for Cov(ξ,Q) and plugging into the probability
limit of the OLS estimator yields

β = βOLS − 1
J
λ − βOLS

Cov(ξOLS , Q) (A.6)
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It follows that β is point identified if the supply slope J
λ is known. With an exclusion restriction,

γ[k] = 0, an estimator could be developed using equation (A.6). It would be asymptotically equiva-
lent to the Hausman and Taylor (1983) estimator, and less efficient than the corresponding method-
of-moments estimator.

B Generality of Demand

The demand system of equation (5) is sufficiently flexible to nest monopolistic competition with
linear demands (e.g., as in the motivating example) and the discrete choice demand models that
support much of the empirical research in industrial organization. We illustrate with some typical
examples:

1. Nested logit demand: Following the exposition of Cardell (1997), let the firms be grouped into
g = 0, 1, . . . , G mutually exclusive and exhaustive sets, and denote the set of firms in group
g as Jg. An outside good, indexed by j = 0, is the only member of group 0. Then the
left-hand-side of equation (5) takes the form

h(qjt;wjt) ≡ ln(qjt/q0j)− σ ln(sj|g,t)

where sj|g,t =
∑
j∈Jg

qjt∑
j∈Jg

qjt
is the market share of firm j within its group. The parameter,

σ ∈ [0, 1), determines the extent to which consumers substitution disproportionately among
firms within the same group. Our second application, developed in Section 5.2, examines this
model. If the uncorrelatedness is combined with a supplemental moment, then the full set of
parameters can be recovered.

• add h′ for nested logit.

2. Random coefficients logit demand: Modifying slightly the notation of Berry (1994), let the
indirect utility that consumer i = 1, . . . , I receives from product j be

uij = βpj + x′jα+ ξj +

[∑
k

xjkσkζik

]
+ εij

where xjk is the kth element of xj , ζik is a mean-zero consumer-specific demographic char-
acteristic, and εij is a logit error. We have suppressed market subscripts for notational sim-
plicity. Decomposing the RHS of the indirect utility equation into δj = βpj + x′jα + ξj and
µij =

∑
k xjkσkζik, the probability that consumer i selects product j is given by the standard

logit formula

sij =
exp(δj + µij)∑
k exp(δk + µik)

Integrating yields the market shares: sj = 1
I

∑
i sij . Berry et al. (1995) prove that a contraction

mapping recovers, for any candidate parameter vector σ̃, the vector δ(s, σ̃) that equates these
market shares to those observed in the data. This “mean valuation” is h(sj ; σ̃) in our notation.
The three-step estimator can be applied to recover the price coefficient, again taking as given
σ̃. This requires an expression for h′(s, σ̃), which takes the form

h′(sj ; σ̃) =
1

1
I

∑
i sij(1− sij)

.

Thus, uncorrelatedness assumption can recover the linear parameters given the candidate pa-
rameter vector σ̃. The identification of σ is a distinct issue that has received a great deal of
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attention from theoretical and applied research (e.g., Romeo (2010); Berry and Haile (2014);
Gandhi and Houde (2015); Miller and Weinberg (2017)).

3. Constant elasticity demand: With a substitution of f(pjt) for pjt into equation (5), the con-
stant elasticity of substitution (CES) demand model of Dixit and Stiglitz (1977) also can be
incorporated:

ln(qjt/qt) = α+ β ln

(
pjt
Πt

)
+ ξjt

where qt is an observed demand shifter, Πt is a price index, and β provides the constant
elasticity of demand. This model is often used in empirical research on international trade and
firm productivity (e.g., De Loecker (2011); Doraszelski and Jaumandreeu (2013)). Due to the
constant elasticity, profit-maximization generates Cov(p, ξ) = 0, and OLS produces unbiased
estimates of the demand parameters. Indeed, this is an excellent illustration of our basic
argument: so long as the data generating process is sufficiently well understood, it is possible
to characterize the bias of OLS estimates. We opt to focus on semi-linear demand throughout
this paper for analytical tractability.

Some demand systems are more difficult to reconcile with equation (5). Consider the linear demand
system, qjt = αj +

∑
k βjkpk + ξjt, which sometimes appears in identification proofs (e.g., Nevo

(1998)) but is seldom applied empirically due to the large number of price coefficients. In principle,
the system could be formulated such that h(qjt;wjt) ≡ qjt −

∑
k 6=j βjkpk and uncorrelatedness

assumptions could be used to identify the βjj and αj coefficients. This would require, however, that
the econometrician have other sources of identification for the βjk (j 6= k) coefficients, which seems
unlikely. The same problem arises with the almost ideal demand system of Deaton and Muellbauer
(1980).

C Two-Step Estimation

In the presence of an additional restriction, we can produce a more precise estimator that can be
calculated in one fewer step. When the observed cost and demand shifters are uncorrelated, there
is no need to project the price on demand covariates when constructing a consistent estimate, and
one can proceed immediately using the OLS regression. We formalize the additional restriction and
the estimator below.

Assumption 5: Let the parameters α(k) and γ(k) correspond to the demand and supply coefficients for
covariate k in X. For any two covariates k and l, Cov(α(k)x(k), γ(l)x(l)) = 0.

Proposition C.1. Under assumptions 1-3 and 5, a consistent estimate of the price parameter β is given
by

β̂2-Step =
1

2

β̂OLS − ˆCov (p, h′(q)q)

ˆV ar(p)
−

√√√√√(β̂OLS +
ˆCov (p, h′(q)q)

ˆV ar(p)

)2

+ 4

ˆCov
(
ξ̂OLS , h′(q)q

)
ˆV ar(p)

 (C.1)

when the auxiliary condition, β < Cov(p∗,ξ)
V ar(p∗)

V ar(p)
V ar(p∗) −

Cov(p∗,h′(q)q)
V ar(p∗) , holds.

The estimator can be expressed entirely in terms of the data, the OLS coefficient, and the OLS
residuals. The first step is an OLS regression of h(q; ·) on p and x, and the second step is the
construction of the estimator as in equation (C.1). Thus, we eliminate the step of projecting p on
x. This estimator will be consistent under the assumption that any covariate affecting demand does
not covary with marginal cost. The auxiliary condition parallels that of the three-step estimator, and
we expect that it will hold in typical cases.
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D Proofs

Proof of Proposition 3 (Set Identification)

From the text, we have β̂OLS
p−→ β + Cov(p∗,ξ)

V ar(p∗) . The general form for a firm’s first-order condition
is p = c + µ, where c is the marginal cost and µ is the markup. We can write p = p∗ + p̂, where p̂
is the projection of p onto the exogenous demand variables, X. By assumption, c = Xγ + η. If we
substitute the first-order condition p∗ = Xγ + η + µ− p̂ into the bias term from the OLS regression,
we obtain

Cov(p∗, ξ)

V ar(p∗)
=
Cov(ξ,Xγ + η + µ− p̂)

V ar(p∗)

=
Cov(ξ, η)

V ar(p∗)
+
Cov(ξ, µ)

V ar(p∗)

where the second line follows from the exogeneity assumption (E[Xξ] = 0). Under our demand
assumption, the unobserved demand shock may be written as ξ = h(q) − xα − βp. At the proba-
bility limit of the OLS estimator, we can construct the unobserved demand shock as ξ = ξOLS +(
βOLS − β

)
p∗.19 From the prior step in this proof, βOLS − β = Cov(ξ,η)

V ar(p∗) + Cov(ξ,µ)
V ar(p∗) . Therefore,

ξ = ξOLS +
(
Cov(η,ξ)
V ar(p∗) + Cov(µ,ξ)

V ar(p∗)

)
p∗. This implies

Cov (ξ, µ)

V ar(p∗)
=
Cov

(
ξOLS , µ

)
V ar(p∗)

+

(
Cov(ξ, η)

V ar(p∗)
+
Cov (ξ, µ)

V ar(p∗)

)
Cov(p∗, µ)

V ar(p∗)

Cov (ξ, µ)

V ar(p∗)

(
1− Cov(p∗, µ)

V ar(p∗)

)
=
Cov

(
ξOLS , µ

)
V ar(p∗)

+
Cov(ξ, η)

V ar(p∗)

Cov(p∗, µ)

V ar(p∗)

Cov (ξ, µ)

V ar(p∗)
=

1

1− Cov(p∗,µ)
V ar(p∗)

Cov
(
ξOLS , µ

)
V ar(p∗)

+
1

1− Cov(p∗,µ)
V ar(p∗)

Cov(ξ, η)

V ar(p∗)

Cov(p∗, µ)

V ar(p∗)

When we substitute this expression in for βOLS , we obtain

βOLS = β +
Cov(ξ, η)

V ar(p∗)
+

1

1− Cov(p∗,µ)
V ar(p∗)

Cov
(
ξOLS , µ

)
V ar(p∗)

+

Cov(p∗,µ)
V ar(p∗)

1− Cov(p∗,µ)
V ar(p∗)

Cov(ξ, η)

V ar(p∗)

βOLS = β +
1

1− Cov(p∗,µ)
V ar(p∗)

Cov
(
ξOLS , µ

)
V ar(p∗)

+
1

1− Cov(p∗,µ)
V ar(p∗)

Cov(ξ, η)

V ar(p∗)

Thus, we obtain an expression for the OLS estimator in terms of the OLS residuals, the residualized
prices, the markup, and the correlation between unobserved demand and cost shocks. If the markup
can be parameterized in terms of observables and the correlation in unobserved shocks can be
calibrated, we have a method to estimate β from the OLS regression. Under our supply and demand
assumptions, µ = − 1

βh
′(q)q, and plugging in obtains the first equation of the proposition:

βOLS = β − 1

β + Cov(p∗,h′(q)q)
V ar(p∗)

Cov
(
ξOLS , h′(q)q

)
V ar(p∗)

+ β
1

β + Cov(p∗,h′(q)q)
V ar(p∗)

Cov(ξ, η)

V ar(p∗)
.

The second equation in the proposition is obtained by rearranging terms. QED.

19For a proof, see a subsequent section in the Appendix.
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Proof of Proposition 4 (Point Identification)

Part (1). We first prove the sufficient condition, i.e., that under assumptions 1 and 2, β is the lower
root of equation (10) if the following condition holds:

0 ≤ βOLSCov(p∗, h′(q)q)

V ar(p∗)
+
Cov

(
ξOLS , h′(q)q

)
V ar(p∗)

(D.1)

Consider a generic quadratic, ax2+bx+c. The roots of the quadratic are 1
2a

(
−b±

√
b2 − 4ac

)
. Thus,

if 4ac < 0 and a > 0 then the upper root is positive and the lower root is negative. In equation (10),
a = 1, and 4ac < 0 if and only if equation (D.1) holds. Because the upper root is positive, β < 0
must be the lower root, and point identification is achieved given knowledge of Cov(ξ, η). QED.

Part (2). In order to prove the necessary and sufficient condition for point identification, we first
state and prove a lemma:

Lemma D.1. The roots of equation (10) are β and Cov(p∗,ξ)
V ar(p∗) −

Cov(p∗,h′(q)q)
V ar(p∗) − Cov(ξ,η)

V ar(p∗) .

Proof of Lemma D.1. We first provide equation (10) for reference:

0 = β2

+

(
Cov(p∗, h′(q)q)

V ar(p∗)
+
Cov(ξ, η)

V ar(p∗)
− βOLS

)
β

+

(
−βOLSCov(p∗, h′(q)q)

V ar(p∗)
−
Cov

(
ξOLS , h′(q)q

)
V ar(p∗)

)

To find the roots, begin by applying the quadratic formula

(r1, r2) =
1

2

(
−B ±

√
B2 − 4AC

)
=

1

2

(
βOLS −

Cov(p∗, h′(q)q)

V ar(p∗)
−
Cov(ξ, η)

V ar(p∗)

±

√(
βOLS −

Cov(p∗, h′(q)q)

V ar(p∗)
−
Cov(ξ, η)

V ar(p∗)

)2

+ 4βOLS
Cov(p∗, h′(q)q)

V ar(p∗)
+ 4

Cov (ξOLS , h′(q)q)

V ar(p∗)


=

1

2

[
βOLS −

Cov(p∗, h′(q)q)

V ar(p∗)
−
Cov(ξ, η)

V ar(p∗)

±
((

βOLS −
Cov(p∗, h′(q)q)

V ar(p∗)

)2

+

(
Cov(ξ, η)

V ar(p∗)

)2

− 2
Cov(ξ, η)

V ar(p∗)

(
βOLS −

Cov(p∗, h′(q)q)

V ar(p∗)

)

+4βOLS
Cov(p∗, h′(q)q)

V ar(p∗)
+ 4

Cov
(
ξOLS , h′(q)q

)
V ar(p∗)

) 1
2
]

=
1

2

(
βOLS −

Cov(p∗, h′(q)q)

V ar(p∗)
−
Cov(ξ, η)

V ar(p∗)
(D.2)

±

√(
βOLS +

Cov(p∗, h′(q)q)

V ar(p∗)

)2

+ 4
Cov (ξOLS , h′(q)q)

V ar(p∗)
+

(
Cov(ξ, η)

V ar(p∗)

)2

− 2
Cov(ξ, η)

V ar(p∗)

(
βOLS −

Cov(p∗, h′(q)q)

V ar(p∗)

)
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Looking inside the radical, consider the first part:
(
βOLS + Cov(p∗,h′(q)q)

V ar(p∗)

)2
+ 4

Cov(ξOLS ,h′(q)q)
V ar(p∗)(

βOLS +
Cov(p∗, h′(q)q)

V ar(p∗)

)2

+ 4
Cov

(
ξOLS , h′(q)q

)
V ar(p∗)

=

(
βOLS +

Cov(p∗, h′(q)q)

V ar(p∗)

)2

+ 4
Cov

(
ξ − p∗(βOLS − β), h′(q)q

)
V ar(p∗)

=

(
βOLS +

Cov(p∗, h′(q)q)

V ar(p∗)

)2

+ 4
Cov (ξ, h′(q)q)

V ar(p∗)
− 4

Cov(p∗, ξ)

V ar(p∗)

Cov (p∗, h′(q)q)

V ar(p∗)

=

(
βOLS +

Cov(p∗, h′(q)q)

V ar(p∗)

)2

+ 4
Cov (ξ, h′(q)q)

V ar(p∗)
− 4

(
Cov(ξ, η)

V ar(p∗)
+
Cov(ξ,− 1

β
h′(q)q)

V ar(p∗)

)
Cov (p∗, h′(q)q)

V ar(p∗)

=

(
βOLS +

Cov(p∗, h′(q)q)

V ar(p∗)

)2

+ 4
Cov (ξ, h′(q)q)

V ar(p∗)

(
1 +

1

β

Cov (p∗, h′(q)q)

V ar(p∗)

)
− 4

Cov(ξ, η)

V ar(p∗)

Cov (p∗, h′(q)q)

V ar(p∗)
(D.3)

To simplify this expression, it is helpful to use the general form for a firm’s first-order condition,
p = c+ µ, where c is the marginal cost and µ is the markup. We can write p = p∗ + p̂, where p̂ is the
projection of p onto the exogenous demand variables, X. By assumption, c = Xγ+η. It follows that

p∗ = Xγ + η + µ− p̂

= Xγ + η − 1

β
h′(q)q − p̂

Therefore
Cov(p∗, ξ) = Cov(ξ, η)− 1

β
Cov(ξ, h′(q)q)

and

Cov(ξ, h′(q)q) = −β (Cov(p∗, ξ)− Cov(ξ, η))

Cov(ξ, h′(q)q)

V ar(p∗)
= −β

(
Cov(p∗, ξ)

V ar(p∗)
− Cov(ξ, η)

V ar(p∗)

)
(D.4)
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Returning to equation (D.3), we can substitute using equation (D.4) and simplify:(
βOLS +

Cov(p∗, h′(q)q)

V ar(p∗)

)2

+ 4
Cov (ξ, h′(q)q)

V ar(p∗)

(
1 +

1

β

Cov (p∗, h′(q)q)

V ar(p∗)

)
− 4

Cov(ξ, η)

V ar(p∗)

Cov (p∗, h′(q)q)

V ar(p∗)

=
(
βOLS

)2
+

(
Cov (p∗, h′(q)q)

V ar(p∗)

)2

+ 2βOLS
Cov (p∗, h′(q)q)

V ar(p∗)
− 4

Cov(ξ, η)

V ar(p∗)

Cov (p∗, h′(q)q)

V ar(p∗)

+ 4
Cov (ξ, h′(q)q)

V ar(p∗)
+ 4

1

β

Cov (ξ, h′(q)q)

V ar(p∗)

Cov (p∗, h′(q)q)

V ar(p∗)

=

(
β +

Cov (p∗, ξ)

V ar(p∗)

)2

+

(
Cov (p∗, h′(q)q)

V ar(p∗)

)2

+ 2

(
β +

Cov (p∗, ξ)

V ar(p∗)

)
Cov (p∗, h′(q)q)

V ar(p∗)
− 4

Cov(ξ, η)

V ar(p∗)

Cov (p∗, h′(q)q)

V ar(p∗)

− 4β

(
Cov(p∗, ξ)

V ar(p∗)
−
Cov(ξ, η)

V ar(p∗)

)
− 4

(
Cov(p∗, ξ)

V ar(p∗)
−
Cov(ξ, η)

V ar(p∗)

)
Cov (p∗, h′(q)q)

V ar(p∗)

=

(
β +

Cov (p∗, ξ)

V ar(p∗)

)2

+

(
Cov (p∗, h′(q)q)

V ar(p∗)

)2

+ 2

(
β +

Cov (p∗, ξ)

V ar(p∗)

)
Cov (p∗, h′(q)q)

V ar(p∗)

− 4β

(
Cov(p∗, ξ)

V ar(p∗)

)
− 4

(
Cov(p∗, ξ)

V ar(p∗)

)
Cov (p∗, h′(q)q)

V ar(p∗)
+ 4β

Cov(ξ, η)

V ar(p∗)

=β2 +

(
Cov (p∗, ξ)

V ar(p∗)

)2

+

(
Cov (p∗, h′(q)q)

V ar(p∗)

)2

+ 2β
Cov (p∗, h′(q)q)

V ar(p∗)

− 2β
Cov (p∗, ξ)

V ar(p∗)
− 2

Cov (p∗, ξ)

V ar(p∗)

Cov (p∗, h′(q)q)

V ar(p∗)
+ 4β

Cov(ξ, η)

V ar(p∗)

=

((
β +

Cov (p∗, h′(q)q)

V ar(p∗)

)
−
Cov (p∗, ξ)

V ar(p∗)

)2

+ 4β
Cov(ξ, η)

V ar(p∗)

Now, consider the second part inside of the radical in equation (D.2):(
Cov(ξ, η)

V ar(p∗)

)2

− 2
Cov(ξ, η)

V ar(p∗)

(
βOLS −

Cov(p∗, h′(q)q)

V ar(p∗)

)
=

(
Cov(ξ, η)

V ar(p∗)

)2

− 2
Cov(ξ, η)

V ar(p∗)

(
β +

Cov(ξ, η)

V ar(p∗)
−

1

β

Cov(ξ, h′(q)q)

V ar(p∗)
−
Cov(p∗, h′(q)q)

V ar(p∗)

)
=

(
Cov(ξ, η)

V ar(p∗)

)2

− 2β
Cov(ξ, η)

V ar(p∗)
− 2

(
Cov(ξ, η)

V ar(p∗)

)2

+ 2
1

β

Cov(ξ, η)

V ar(p∗)

Cov(ξ, h′(q)q)

V ar(p∗)
+ 2

Cov(ξ, η)

V ar(p∗)

Cov(p∗, h′(q)q)

V ar(p∗)

=−
(
Cov(ξ, η)

V ar(p∗)

)2

− 2β
Cov(ξ, η)

V ar(p∗)
− 2

Cov(ξ, η)

V ar(p∗)

(
Cov(p∗, ξ)

V ar(p∗)
−
Cov(ξ, η)

V ar(p∗)

)
+ 2

Cov(ξ, η)

V ar(p∗)

Cov(p∗, h′(q)q)

V ar(p∗)

=

(
Cov(ξ, η)

V ar(p∗)

)2

− 2
Cov(ξ, η)

V ar(p∗)
β − 2

Cov(ξ, η)

V ar(p∗)

Cov(p∗, ξ)

V ar(p∗)
+ 2

Cov(ξ, η)

V ar(p∗)

Cov(p∗, h′(q)q)

V ar(p∗)

Combining yields a simpler expression for the terms inside the radical of equation (D.2):((
β +

Cov (p∗, h′(q)q)

V ar(p∗)

)
− Cov (p∗, ξ)

V ar(p∗)

)2

+ 4β
Cov(ξ, η)

V ar(p∗)

+

(
Cov(ξ, η)

V ar(p∗)

)2

− 2
Cov(ξ, η)

V ar(p∗)
β − 2

Cov(ξ, η)

V ar(p∗)

Cov(p∗, ξ)

V ar(p∗)
+ 2

Cov(ξ, η)

V ar(p∗)

Cov(p∗, h′(q)q)

V ar(p∗)

=

((
β +

Cov (p∗, h′(q)q)

V ar(p∗)

)
− Cov (p∗, ξ)

V ar(p∗)

)2

+

(
Cov(ξ, η)

V ar(p∗)

)2

+ 2β
Cov(ξ, η)

V ar(p∗)
− 2

Cov(ξ, η)

V ar(p∗)

Cov(p∗, ξ)

V ar(p∗)
+ 2

Cov(ξ, η)

V ar(p∗)

Cov(p∗, h′(q)q)

V ar(p∗)

=

(
β +

Cov (p∗, h′(q)q)

V ar(p∗)
− Cov (p∗, ξ)

V ar(p∗)
+
Cov(ξ, η)

V ar(p∗)

)2
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Plugging this back into equation (D.2), we have:

(r1, r2) =
1

2

(
βOLS − Cov(p∗, h′(q)q)

V ar(p∗)
− Cov(ξ, η)

V ar(p∗)

±

√(
β +

Cov (p∗, h′(q)q)

V ar(p∗)
− Cov (p∗, ξ)

V ar(p∗)
+
Cov(ξ, η)

V ar(p∗)

)2


=
1

2

(
β +

Cov (p∗, ξ)

V ar(p∗)
− Cov(p∗, h′(q)q)

V ar(p∗)
− Cov(ξ, η)

V ar(p∗)

±

√(
β +

Cov (p∗, h′(q)q)

V ar(p∗)
− Cov (p∗, ξ)

V ar(p∗)
+
Cov(ξ, η)

V ar(p∗)

)2


The roots are given by

1

2

(
β +

Cov (p∗, ξ)

V ar(p∗)
− Cov(p∗, h′(q)q)

V ar(p∗)
− Cov(ξ, η)

V ar(p∗)
+ β +

Cov (p∗, h′(q)q)

V ar(p∗)
− Cov (p∗, ξ)

V ar(p∗)
+
Cov(ξ, η)

V ar(p∗)

)
=β

and

1

2

(
β +

Cov (p∗, ξ)

V ar(p∗)
− Cov(p∗, h′(q)q)

V ar(p∗)
− Cov(ξ, η)

V ar(p∗)
− β − Cov (p∗, h′(q)q)

V ar(p∗)
+
Cov (p∗, ξ)

V ar(p∗)
− Cov(ξ, η)

V ar(p∗)

)
=
Cov (p∗, ξ)

V ar(p∗)
− Cov(p∗, h′(q)q)

V ar(p∗)
− Cov(ξ, η)

V ar(p∗)

which completes the proof of the intermediate result. QED.

Part (3). Consider the roots of equation (10), β and Cov(p∗,ξ)
V ar(p∗) −

Cov(p∗,h′(q)q)
V ar(p∗) − Cov(ξ,η)

V ar(p∗) . The price
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parameter β may or may not be the lower root.20 However, β is the lower root iff

β <
Cov(p∗, ξ)

V ar(p∗)
− Cov(p∗, h′(q)q)

V ar(p∗)
− Cov(ξ, η)

V ar(p∗)

β < −β
Cov(p∗,− 1

β ξ)

V ar(p∗)
+ β

Cov(p∗,− 1
βh
′(q)q)

V ar(p∗)
− Cov(ξ, η)

V ar(p∗)

β < −β
Cov(p∗,− 1

β ξ)

V ar(p∗)
+ β

Cov(p∗, p∗ −mc)
V ar(p∗)

− Cov(ξ, η)

V ar(p∗)

β < β
V ar(p∗)

V ar(p∗)
− β

Cov(p∗,− 1
β ξ)

V ar(p∗)
− βCov(p∗, η)

V ar(p∗)
− Cov(ξ, η)

V ar(p∗)

0 < −β
Cov(p∗,− 1

β ξ)

V ar(p∗)
− βCov(p∗, η)

V ar(p∗)
− Cov(ξ, η)

V ar(p∗)

0 <
Cov(p∗,− 1

β ξ)

V ar(p∗)
+
Cov(p∗, η)

V ar(p∗)
+

1

β

Cov(ξ, η)

V ar(p∗)

The third line relies on the expression for the markup, p − mc = − 1
βh
′(q)q. The final line holds

because β < 0 so −β > 0. It follows that β is the lower root of (10) iff

− 1

β

Cov(ξ, η)

V ar(p∗)
≤
Cov

(
p∗,− 1

β ξ
)

V ar(p∗)
+
Cov (p∗, η)

V ar(p∗)

in which case β is point identified given knowledge of Cov(ξ, η). QED.

Proof of Proposition 5 (Prior-Free Bounds)

The proof is again an application of the quadratic formula. Any generic quadratic, ax2 + bx+ c, with
roots 1

2

(
−b±

√
b2 − 4ac

)
, admits no solution in real numbers if b2 < 4ac. Given the formulation of

(10), there are no real solutions if(
Cov(p∗, h′(q)q)

V ar(p∗)
+
Cov(ξ, η)

V ar(p∗)
− βOLS

)2

< 4

(
−βOLSCov(p∗, h′(q)q)

V ar(p∗)
−
Cov

(
ξOLS , h′(q)q

)
V ar(p∗)

)

This is equivalent to

±
(
Cov(p∗, h′(q)q)

V ar(p∗)
+
Cov(ξ, η)

V ar(p∗)
− βOLS

)
< 2

√(
−βOLSCov(p∗, h′(q)q)

V ar(p∗)
− Cov (ξOLS , h′(q)q)

V ar(p∗)

)
20Consider that the first root is the upper root if

β +
Cov (p∗, h′(q)q)

V ar(p∗)
−
Cov (p∗, ξ)

V ar(p∗)
+
Cov(ξ, η)

V ar(p∗)
> 0

because, in that case,√(
β +

Cov (p∗, h′(q)q)

V ar(p∗)
−
Cov (p∗, ξ)

V ar(p∗)
+
Cov(ξ, η)

V ar(p∗)

)2

= β +
Cov (p∗, h′(q)q)

V ar(p∗)
−
Cov (p∗, ξ)

V ar(p∗)
+
Cov(ξ, η)

V ar(p∗)

When β +
Cov(p∗,h′(q)q)

V ar(p∗) − Cov(p∗,ξ)
V ar(p∗) +

Cov(ξ,η)
V ar(p∗) < 0, then

√(
β +

Cov(p∗,h′(q)q)
V ar(p∗) − Cov(p∗,ξ)

V ar(p∗) +
Cov(ξ,η)
V ar(p∗)

)2
=

−
(
β +

Cov(p∗,h′(q)q)
V ar(p∗) − Cov(p∗,ξ)

V ar(p∗) +
Cov(ξ,η)
V ar(p∗)

)
, and the first root is then the lower root (i.e., minus the negative value).
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Solving for Cov(ξ, η) we obtain Cov(ξ, η) < c1 and Cov(ξ, η) > c2, where c1 and c2 are defined as

[
c1
c2

]
=

 V ar(p∗)βOLS − Cov(p∗, h′(q)q)−
√
−V ar(p∗) (Cov(p∗, h′(q)q)βOLS + Cov(ξOLS , h′(q)q))

V ar(p∗)βOLS − Cov(p∗, h′(q)q) +
√
−V ar(p∗) (Cov(p∗, h′(q)q)βOLS + Cov(ξOLS , h′(q)q))


These bounds exist in real numbers if the expression inside the radicals is positive, which is the case
if and only if the sufficient condition for point identification from Proposition 4 fails. By observation,
we have c1 < c2, so that values of Cov(ξ, η) ∈ (c1, c2) can be ruled out. QED.

Proof of Proposition 6 (Non-Constant Marginal Costs)

Under the semi-linear marginal cost schedule of equation (13), the plim of the OLS estimator is
equal to

plimβ̂OLS = β +
Cov(ξ, g(q))

V ar(p∗)
− 1

β

Cov (ξ, h′(q)q)

V ar(p∗)
.

This is obtain directly by plugging in the first–order condition for p: Cov(p∗, ξ) = Cov(g(q) +
η − 1

βh
′(q)q − p̂, ξ) = Cov(ξ, g(q)) − 1

βCov(ξ, h′(q)q)under the assumptions. Next, we re-express
the terms including the unobserved demand shocks in in terms of OLS residuals. The unobserved
demand shock may be written as ξ = h(q) − xβx − βp. The estimated residuals are given by

ξOLS = ξ +
(
β − βOLS

)
p∗. As β − βOLS = 1

β

Cov(ξ,h′(q)q)
V ar(p∗) − Cov(ξ,g(q))

V ar(p∗) , we obtain ξOLS = ξ +(
1
β

Cov(ξ,h′(q)q)
V ar(p∗) − Cov(ξ,g(q))

V ar(p∗)

)
p∗. This implies

Cov
(
ξOLS , h′(q)q

)
=

(
1 +

1

β

Cov(p∗, h′(q)q)

V ar(p∗)

)
Cov(ξ, h′(q)q)− Cov(p∗, h′(q)q)

V ar(p∗)
Cov(ξ, g(q))

Cov
(
ξOLS , g(q)

)
=

1

β

Cov(p∗, g(q))

V ar(p∗)
Cov (ξ, h′(q)q) +

(
1− Cov(p∗, g(q))

V ar(p∗)

)
Cov(ξ, g(q))

We write the system of equations in matrix form and invert to solve for the covariance terms that
include the unobserved demand shock:[

Cov(ξ, h′(q)q)
Cov(ξ, g(q))

]
=

[
1 + 1

β
Cov(p∗,h′(q)q)

V ar(p∗) −Cov(p
∗,h′(q)q)

V ar(p∗)
1
β
Cov(p∗,g(q))
V ar(p∗) 1− Cov(p∗,g(q))

V ar(p∗)

]−1 [
Cov(ξOLS , h′(q)q)
Cov(ξOLS , g(q))

]
where [

1 + 1
β
Cov(p∗,h′(q)q)

V ar(p∗) −Cov(p
∗,h′(q)q)

V ar(p∗)
1
β
Cov(p∗,g(q))
V ar(p∗) 1− Cov(p∗,g(q))

V ar(p∗)

]−1
=

1

1 + 1
β
Cov(p∗,h′(q)q)

V ar(p∗) − Cov(p∗,g(q))
V ar(p∗)

[
1− Cov(p∗,g(q))

V ar(p∗)
Cov(p∗,h′(q)q)

V ar(p∗)

− 1
β
Cov(p∗,g(q))
V ar(p∗) 1 + 1

β
Cov(p∗,h′(q)q)

V ar(p∗)

]
.

38



Therefore, we obtain the relations

Cov(ξ, h′(q)q) =

(
1− Cov(p∗,g(q))

V ar(p∗)

)
Cov(ξOLS , h′(q)q) + Cov(p∗,h′(q)q)

V ar(p∗) Cov(ξOLS , g(q))

1 + 1
β
Cov(p∗,h′(q)q)

V ar(p∗) − Cov(p∗,g(q))
V ar(p∗)

Cov(ξ, g(q)) =
− 1
β
Cov(p∗,g(q))
V ar(p∗) Cov(ξOLS , h′(q)q) +

(
1 + 1

β
Cov(p∗,h′(q)q)

V ar(p∗)

)
Cov(ξOLS , g(q))

1 + 1
β
Cov(p∗,h′(q)q)

V ar(p∗) − Cov(p∗,g(q))
V ar(p∗)

.

In terms of observables, we can substitute in for Cov(ξ, g(q)) − 1
βCov (ξ, h′(q)q) in the plim of the

OLS estimator and simplify:(
1 +

1

β

Cov(p∗, h′(q)q)

V ar(p∗)
− Cov(p∗, g(q))

V ar(p∗)

)(
Cov(ξ, g(q))− 1

β
Cov (ξ, h′(q)q)

)
=− 1

β

Cov(p∗, g(q))

V ar(p∗)
Cov(ξOLS , h′(q)q) +

(
1 +

1

β

Cov(p∗, h′(q)q)

V ar(p∗)

)
Cov(ξOLS , g(q))

− 1

β

(
1− Cov(p∗, g(q))

V ar(p∗)

)
Cov(ξOLS , h′(q)q)− 1

β

Cov(p∗, h′(q)q)

V ar(p∗)
Cov(ξOLS , g(q))

=Cov(ξOLS , g(q))− 1

β
Cov(ξOLS , h′(q)q).

Thus, we obtain an expression for the probability limit of the OLS estimator,

plimβ̂OLS = β −
Cov(ξOLS ,h′(q)q)

V ar(p∗) − β Cov(ξ
OLS ,g(q))

V ar(p∗)

β + Cov(p∗,h′(q)q)
V ar(p∗) − β Cov(p

∗,g(q))
V ar(p∗)

,

and the following quadratic β.

0 =

(
1− Cov(p∗, g(q))

V ar(p∗)

)
β2

+

(
Cov(p∗, h′(q)q)

V ar(p∗)
− β̂OLS +

Cov(p∗, g(q))

V ar(p∗)
β̂OLS +

Cov(ξOLS , g(q))

V ar(p∗)

)
β

+

(
−Cov(p∗, h′(q)q)

V ar(p∗)
β̂OLS − Cov(ξOLS , h′(q)q)

V ar(p∗)

)
.

QED.

Proof of Lemma A.1

The proof is by construction. Note that model has the solutions p∗t = 1
2

(
−αβ −

ξt
β + γ + νt

β

)
and

q∗t = 1
2 (α+ ξt + βγ + νt), where again νt ≡ βηt. The following objects are easily derived:

Cov(p, ξ) = − 1

2β
V ar(ξ) Cov(p, ν) =

1

2β
V ar(ν)2

V ar(p) =
V ar(ν) + V ar(ξ)

(2β)2
V ar(q) =

1

4
(V ar(ξ) + V ar(ν))
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Using the above, we have

Cov(p, q) = Cov(p, α+ βp+ ξ) = βV ar(p) + Cov(p, ξ) = β
V ar(ν) + V ar(ξ)

(2β)2
− 2β

(2β)2
V ar(ξ)

=
βV ar(ν) + βV ar(ξ)− 2βV ar(ξ)

(2β)2
= β

V ar(ν)− V ar(ξ)
(2β)2

And that obtains equation (A.2):

plim
(
β̂OLS

)
≡ βOLS =

Cov(p, q)

V ar(p)
= β

V ar(ν)− V ar(ξ)
V ar(ν) + V ar(ξ)

Equation (A.4) requires an expression for Cov(q, ξOLS). Define

plim(ξ̂OLS) ≡ ξOLS = q − αOLS − βOLSp

Then, plugging into Cov(q, ξOLS) using the objects derived above, we have

Cov(q, ξOLS) = Cov(q, q − βOLSp)
= V ar(q)− βOLSCov(p, q)

=
1

4
(V ar(ξ) + V ar(ν))−

(
β
V ar(ν)− V ar(ξ)
V ar(ν) + V ar(ξ)

)(
β

(V ar(ν)− V ar(ξ))
(2β)2

)
=

1

4

(
[V ar(ξ) + V ar(ν)]2 − [V ar(ν)− V ar(ξ)]2

V ar(ν) + V ar(ξ)

)
=

V ar(ξ)V ar(ν)

V ar(ν) + V ar(ξ)

We turn now to equation (A.3). Based on the above, we have that

Cov(q, ξOLS)

V ar(p)
=

(
V ar(ξ)V ar(ν)

V ar(ν) + V ar(ξ)

)
(2β)2

V ar(ν) + V ar(ξ)
= (2β)2

V ar(ξ)V ar(ν)

[V ar(ν) + V ar(ξ)]2

and now only few more lines of algebra are required:

(βOLS)2 +
Cov(q, ξOLS)

V ar(p)
= β2

[
V ar(ν)− V ar(ξ)
V ar(ν) + V ar(ξ)

]2
+ (2β)2

V ar(ξ)V ar(ν)

[V ar(ν) + V ar(ξ)]2

=
β2[V ar2(ν) + V ar2(ξ)− 2V ar(ν)V ar(ξ)] + 4β2V ar(ν)V ar(ξ)

[V ar(ν) + V ar(ξ)]2

=
β2[V ar2(ν) + V ar2(ξ) + 2V ar(ν)V ar(ξ)]

[V ar(ν) + V ar(ξ)]2

= β2 [V ar(ν) + V ar(ξ)]2

[V ar(ν) + V ar(ξ)]2
= β2

QED.

Proof of Proposition 7 (Multi-Product Firms)

Under assumption 4, define dwk

dpj
= βfkj . The market subscript, t, is omitted to simplify notation. Let

Km denote the set of products owned by multi-product firm m. When the firm sets prices on each of
its products to maximize joint profits, there are |Km| first-order conditions, which can be expressed
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as ∑
k∈Km

(pk − ck)
∂qk
∂pj

= −qj ∀j ∈ Km.

For demand systems satisfying assumptions 1 and 4,

∂qj
∂pj

= β
1

dh/dqj

(
1− dh

dwj
fjj

)
and

∂qk
∂pj

= −β 1

dh/dqk

dh

dwk
fkj

Therefore, the set of first-order conditions can be written as∑
k∈Km

(pk − ck)
1

∂h/∂qk

(
1[j = k]− ∂h

∂wk
fkj

)
= − 1

β
qj ∀j ∈ Km.

Stack the first-order conditions, writing the LHS as the product of a vector of markups (pj−cj) and a
matrixAm of loading components, Ami(j),i(k) = 1

dh/dqk
(1[j = k]− dh

dwk
fkj), where i(·) indexes products

within a firm. Next, invert the loading matrix to solve for markups as function of the loading
components and − 1

βq
m, where qm is a vector of the multi-product firm’s quantities. Equilibrium

prices equal costs plus a markup, where the markup is determined by the inverse of Am ((Am)−1 ≡
Λm), quantities, and the price parameter:

pj = cj −
1

β
(Λmqm)i(j) . (D.5)

Here, (Λmqm)i(j) provides the entry corresponding to product j in the vector Λmqm. As the matrix
Λm is not a function of the price parameter after conditioning on observables, this form of the
first-order condition allows us to solve for β using a quadratic three-step solution analogous to that
in equation (2).21 With the modified first-order conditions of equation (D.5), the quadratic in the
proposition can be derived following the proof of Proposition 2. QED.

Proof of Proposition C.1 (Two-Step Estimator)

Suppose that, in addition to assumptions 1-3, that marginal costs are uncorrelated with the exoge-

nous demand factors (Assumption 5). Then, the expression 1

β+
Cov(p,h′(q)q)

V ar(p)

Cov(ξOLS ,h′(q)q)
V ar(p) is equal to

1

β+
Cov(p∗,h′(q)q)

V ar(p∗)

Cov(ξOLS ,h′(q)q)
V ar(p∗) .

21At this point, the reader may be wondering where the prices of other firms are captured under the adjusted first-order
conditions for multi-product ownership. As is the case with single product firms, we expect prices of other firm’s products to
be included in wj , which is appropriate under Bertrand price competition.
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Assumption 4 implies Cov(p̂, c) = 0, allowing us to obtain

Cov(p̂, β(p̂+ p∗ − c)) = βV ar(p̂)

Cov(p− p∗, β(p̂+ p∗ − c)) = βV ar(p)− βV ar(p∗)
V ar(p)β + Cov (p, h′(q)q) = V ar(p∗)β + Cov (p∗, h′(q)q)(

β +
Cov (p, h′(q)q)

V ar(p)

)
1

V ar(p∗)
=

(
β +

Cov (p∗, h′(q)q)

V ar(p∗)

)
1

V ar(p)

1

β + Cov(p∗,h′(q)q)
V ar(p∗)

Cov
(
ξOLS , h′(q)q

)
V ar(p∗)

=
1

β + Cov(p,h′(q)q)
V ar(p)

Cov
(
ξOLS , h′(q)q

)
V ar(p)

.

Therefore, the probability limit of the OLS estimator can be written as:

plimβ̂OLS = β − 1

β + Cov(p,h′(q)q)
V ar(p)

Cov
(
ξOLS , h′(q)q

)
V ar(p)

.

The roots of the implied quadratic are:

1

2

βOLS − Cov (p, h′(q)q)

V ar(p)
+−

√(
βOLS +

Cov (p, h′(q)q)

V ar(p)

)2

+ 4
Cov (ξOLS , h′(q)q)

V ar(p)


which are equivalent to the pair

(
β, β

(
1− V ar(p∗)

V ar(p)

)
+ Cov(p∗,ξ)

V ar(p∗) −
Cov(p∗,h′(q)q)

V ar(p)

)
. Therefore, with

the auxiliary condition β < Cov(p∗,ξ)
V ar(p∗)

V ar(p)
V ar(p∗) −

Cov(p∗,h′(q)q)
V ar(p∗) , the lower root is consistent for β. QED.

E A Consistent and Unbiased Estimate for ξ

The following proof shows a consistent and unbiased estimate for the unobserved term in a linear
regression when one of the covariates is endogenous. Though demonstrated in the context of semi-
linear demand, the proof also applies for any endogenous covariate, including when (transformed)
quantity depends on a known transformation of price, as no supply-side assumptions are required.
For example, we may replace p with ln p everywhere and obtain the same results.

We can construct both the true demand shock and the OLS residuals as:

ξ = h(q)− βp− x′α
ξOLS = h(q)− βOLSp− x′αOLS

where this holds even in small samples. Without loss of generality, we assume E[ξ] = 0. The
true demand shock is given by ξ0 = ξOLS + (βOLS − β)p + x′(αOLS − α). We desire to show
that an alternative estimate of the demand shock, ξ1 = ξOLS + (βOLS − β)p∗, is consistent and
unbiased. (This eliminates the need to estimate the true α parameters). It suffices to show that
(βOLS − β)p∗ → (βOLS − β)p+ x′(αOLS − α). Consider the projection matrices

Q = I − P (P ′P )−1P ′

M = I −X(X ′X)−1X ′,

where P is an N × 1 matrix of prices and X is the N × k matrix of covariates x. Denote Y ≡ h(q) =
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Pβ +Xα+ ξ. Our OLS estimators can be constructed by a residualized regression

αOLS = ((XQ)′QX)
−1

(XQ)
′
Y

βOLS = ((PM)′MP )
−1

(PM)
′
Y.

Therefore

αOLS = (X ′QX)
−1

(X ′QPβ +X ′QXα+X ′Qξ)

=α+ (X ′QX)
−1
X ′Qξ.

Similarly,

βOLS = (P ′MP )
−1

(P ′MPβ + P ′MXα+ P ′Mξ)

=β + (P ′MP )
−1
P ′Mξ.

We desire to show
P ∗(βOLS − β)→ P (βOLS − β) +X(αOLS − α).

Note that P ∗ = MP . Then

P ∗(βOLS − β)→P (βOLS − β) +X(αOLS − α)

MP (P ′MP )
−1
P ′Mξ →P (P ′MP )

−1
P ′Mξ +X (X ′QX)

−1
X ′Qξ

−X(X ′X)−1X ′P (P ′MP )
−1
P ′Mξ →X (X ′QX)

−1
X ′Qξ

−X(X ′X)−1X ′P (P ′MP )
−1
P ′
[
I −X(X ′X)−1X ′

]
ξ →X (X ′QX)

−1
X ′
[
I − P (P ′P )−1P ′

]
ξ

−X(X ′X)−1X ′P (P ′MP )
−1
P ′ξ →X (X ′QX)

−1
X ′ξ

+X(X ′X)−1X ′P (P ′MP )
−1
P ′X(X ′X)−1X ′ξ −X (X ′QX)

−1
X ′P (P ′P )−1P ′ξ.

We will show that the following two relations hold, which proves consistency and completes the
proof.

1. X(X ′X)−1X ′P (P ′MP )
−1
P ′ξ = X (X ′QX)

−1
X ′P (P ′P )−1P ′ξ

2. X(X ′X)−1X ′P (P ′MP )
−1
P ′X(XX (X ′QX)

−1
X ′X)−1X ′ξ → X (X ′QX)

−1
X ′ξ
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Part 1: Equivalence

It suffices to show that X(X ′X)−1X ′P (P ′MP )
−1

= X (X ′QX)
−1
X ′P (P ′P )−1.

X(X ′X)−1X ′P (P ′MP )
−1

=X (X ′QX)
−1
X ′P (P ′P )−1

X(X ′X)−1X ′P =X (X ′QX)
−1
X ′P (P ′P )−1 (P ′MP )

X(X ′X)−1X ′P =X (X ′QX)
−1
X ′P (P ′P )−1 (P ′P )

−X (X ′QX)
−1
X ′P (P ′P )−1

(
P ′X(X ′X)−1X ′P

)
X(X ′X)−1X ′P =X (X ′QX)

−1
X ′P

−X (X ′QX)
−1
X ′ [I −Q]X(X ′X)−1X ′P

X(X ′X)−1X ′P =X (X ′QX)
−1
X ′P

−X (X ′QX)
−1
X ′X(X ′X)−1X ′P

+X (X ′QX)
−1
X ′QX(X ′X)−1X ′P

X(X ′X)−1X ′P =X(X ′X)−1X ′P

QED.

Part 2: Consistency (and Unbiasedness)

Because X(X ′X)−1X ′P = X (X ′QX)
−1
X ′P (P ′P )−1 (P ′MP ), as shown above:

X(X ′X)−1X ′P (P ′MP )
−1
P ′X(X ′X)−1X ′ξ → X (X ′QX)

−1
X ′ξ

X (X ′QX)
−1
X ′P (P ′P )−1P ′X(X ′X)−1X ′ξ → X (X ′QX)

−1
X ′ξ

X (X ′QX)
−1
X ′ [I −Q]X(X ′X)−1X ′ξ → X (X ′QX)

−1
X ′ξ

X (X ′QX)
−1
X ′X(X ′X)−1X ′ξ → X (X ′QX)

−1
X ′ξ

−X(X ′X)−1X ′ξ

X (X ′QX)
−1
X ′ξ −X(X ′X)−1X ′ξ → X (X ′QX)

−1
X ′ξ

X(X ′X)−1X ′ξ → 0.

The last line, where the projection of ξ onto the exogenous covariates X converges to zero, holds
by assumption. We say that two vectors converge if the mean absolute deviation goes to zero as the
sample size gets large. Note that also E[X(X ′X)−1X ′ξ] = 0, so ξ1 is both a consistent and unbiased
estimate for ξ0. QED.
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