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Abstract. This paper derives conditions under which preferences and technology are

nonparametrically identified in hedonic equilibrium models, where products are differenti-

ated along more than one dimension and agents are characterized by several dimensions of

unobserved heterogeneity. With products differentiated along a quality index and agents

characterized by scalar unobserved heterogeneity, single crossing conditions on preferences

and technology provide identifying restrictions. We develop similar shape restrictions in

the multi-attribute case. These shape restrictions, which are based on optimal transport

theory and generalized convexity, allow us to identify preferences for goods differentiated

along multiple dimensions, from the observation of a single market. We thereby extend

identification results in Matzkin (2003) and Heckman, Matzkin, and Nesheim (2010) to

accommodate multiple dimensions of unobserved heterogeneity. One of our results is a

proof of absolute continuity of the distribution of endogenously traded qualities, which is

of independent interest.
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1. Introduction

Recent years have seen renewed interest in hedonic models, particularly their identifica-

tion and estimation. Hedonic models were initially introduced to analyze price responses

to quality parameters of differentiated goods. They allow to answer such questions as: (1)

Given the fact that the amenities offered by cars constantly evolve over time, how can one

construct a price index measuring the evolution of car prices and deflating improvements

in amenities? (2) How can one explain price differentiation in wine, art, luxury goods, pro-

fessional sports wages? (3) What does the correlation between the wage differentials and

the level of risk associated to a given job reveal about individuals’ valuation for their own

life? (4) How can one analyze individual preferences for environmental features?

These questions gave rise to a vast literature, which aims at modeling implicit markets

for quality differentiated products. There are two layers to this literature. The first layer

is the literature on “hedonic regressions,” i.e., regressions of prices against good attributes,

with corrections for the standard endogeneity issue that consumers with greater taste for

quality will consume more of it. The second layer has broader scope: the literature on

“hedonic equilibrium models” incorporates a supply side with differentiated productivity

over various quality parameters and studies the resulting equilibrium. This approach dates

back at least as far as Tinbergen (1956); and Rosen (1974) provides a famous two-step pro-

cedure to estimate general hedonic models and thereby analyze general equilibrium effects

of changes in buyer-seller compositions, preferences and technology on qualities traded at

equilibrium and their price. Following the influential criticism of Rosen’s strategy in Brown

and Rosen (1982) and the invalidity of supply side observable characteristics as instruments

in structural demand estimation as discussed in Epple (1987) and Bartik (1987), it was gen-

erally believed that identification in hedonic equilibrium models required data from multiple

markets, as in Epple (1987), Kahn and Lang (1988) and, more recently, Bajari and Benkard

(2005) and Bishop and Timmins (2011).

Ekeland, Heckman, and Nesheim (2004) show, however, that hedonic equilibrium models

are in fact identified from single market data, under separability assumptions, as in Eke-

land, Heckman, and Nesheim (2004), or shape restrictions, as in Heckman, Matzkin, and
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Nesheim (2010). The common underlying framework is that of a perfectly competitive mar-

ket with heterogeneous buyers and sellers and traded product quality bundles and prices

that arise endogeneously in equilibrium. Preferences are quasi-linear in price and under

mild semicontinuity assumptions, Ekeland (2010) and Chiappori, McCann, and Nesheim

(2010) show that equilibria exist, in the form of a joint distribution of product and con-

sumer types (who consumes what), a joint distribution of product and producer types (who

produces what) and a price schedule such that markets clear for each endogenously traded

product type. Equilibrium existence results are valid in hedonic markets for multi-attribute

products, but existing single market identification strategies restrict attention to a single

quality dimension and scalar unobserved heterogeneity in consumer preferences and pro-

duction technology. Ekeland, Heckman, and Nesheim (2004) require marginal utility (resp.

marginal product) to be additively separable in unobserved consumer (resp. producer) char-

acteristic. Heckman, Matzkin, and Nesheim (2010) show that demand is nonparametrically

identified under a single crossing condition and that various additional shape restrictions

allow identification of preferences without additive separability.

The objective of these papers, which is also ours, is to recover structural preference and

technology parameters from the observation of who trades what and at what price. In

the identification exercise, price is assumed known, as are the distributions characterizing

who produces and consumes which good. Since price is observed and the environment

is perfectly competitive, identification of preferences and identification of technology can

be treated independently and symmetrically. Take the consumer problem, for instance.

Under a single crossing condition on the utility function (also known as Spence-Mirlees in

the mechanism design literature), the first order condition of the consumer problem yields

an increasing demand function, i.e., quality demanded by the consumer as an increasing

function of her unobserved type, interpreted as unobserved taste for quality. Assortative

matching guarantees uniqueness of demand, as the unique increasing function that maps the

distribution of unobserved taste for quality, which is specified a priori, and the distribution

of qualities, which is observed. Hence demand is identified as a quantile function, as in

Matzkin (2003). Identification, therefore, is driven by a shape restriction on the utility

function.
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We show that similar shape restrictions on the utility function also yield identification

conditions in the case of non scalar characteristics and unobserved heterogeneity. In the

special case where marginal utility is additively separable in the unobservable taste vector,

concavity yields nonparametric identification of the utility function, according to the cele-

brated Brenier Theorem of optimal transport theory (Theorem 8 in Appendix 6.1). More

generally, a generalization of the single crossing condition known as the Twist Condition in

optimal transport theory and a generalized convexity shape restriction yield identification

of the utility function in hedonic equilibrium models with multiple quality dimensions. The

distribution of unobserved heterogeneity is fully specified a priori and cannot be identified

from single market data without additional separability conditions or exclusion restrictions.

An important result we prove on hedonic equilibrium is a set of mild conditions on the

primitives under which the endogenous distribution of qualities traded at equilibrium is ab-

solutely continuous. The proof of absolute continuity of the distribution of qualities traded

at equilibrium is based on an argument from Figalli and Juillet (2008), also applied in Kim

and Pass (2014).

Related work. Beyond Ekeland, Heckman, and Nesheim (2004), Heckman, Matzkin, and

Nesheim (2010) and other contributions cited so far, this paper is closely related to the

growing literature on identification and estimation of nonlinear econometric models with

multivariate unobserved heterogeneity on the one hand, and to the empirical literature

on matching models where agents match along multiple dimensions on the other hand.

The quantile identification strategy of Matzkin (2003) was recently extended to non scalar

unobserved heterogeneity using the Rosenblatt (1952)-Knothe (1957) sequential multivari-

ate quantile transform for nonlinear simultaneous equations models in Matzkin (2013) and

bivariate hedonic models in Nesheim (2013). Chiappori, McCann, and Nesheim (2010)

derive a matching formulation of hedonic models and thereby highlight the close relation

between empirical strategies in matching markets and in hedonic markets. Galichon and

Salanié (2012) extend the work of Choo and Siow (2006) and identify preferences in mar-

riage markets, where agents match on discrete characteristics, as the unique solution of an

optimal transport problem, but unlike the present paper, they are restricted to the case
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with a discrete quality space. The strategy is extended to the set-valued case by Chiong,

Galichon, and Shum (2013), who use subdifferential calculus for identification of dynamic

discrete choice problems. Dupuy, Galichon, and Henry (2014) use network flow techniques

to identify discrete hedonic models.

Notation. Throughout the paper, we use the following notational conventions. Let f(x, y)

be a real-valued function on R
d × R

d. When f is sufficiently smooth, the gradient of f

with respect to x is denoted ∇xf , the matrix of second order derivatives with respect

to x and y is denoted D2
xyf . When f is not smooth, ∂xf refers to the subdifferential

with respect to x, from Definition 5, and ∇ap,xf refers to the approximate gradient with

respect to x, from Definition 7. The set of all Borel probability distributions on a set Z

is denoted ∆(Z). A random vector ε with probability distribution P is denoted ε ∼ P ,

and X ∼ Y means that the random vectors X and Y have the same distribution. The

product of two probability distributions µ and ν is denoted µ⊗ ν and for a map f : X 7→ Y

and µ ∈ ∆(X), ν := f#µ is the probability distribution on Y defined for each Borel subset A

of Y by ν(A) = µ(f−1(A)). For instance, if T is a map from X to Y and ν a probability

distribution on X, then µ := (id, T )#ν defines the probability distribution on X × Y

by µ(A) =
∫

X
1A(x, T (x))dµ(x) for all measurable subset A of X×Y . Given two probability

distributions µ and ν on X and Y respectively, M(µ, ν) will denote the subset of ∆(X×Y )

containing all probability distributions with marginals µ and ν. We denote the inner product

of two vectors x and y by x′y. The Euclidean norm is denoted ‖ · ‖. The notation |a| refers

to the absolute value of the real number a, whereas |A| refers to the Lebesgue measure of

set A. The set of all continuous real valued functions on Z is denoted C0(Z) and Br(x) is

the open ball of radius r centered at x. Finally, V ∗ and V ∗∗ denote the convex conjugate

and double conjugate (also called convex envelope) of a function V , as defined in (2) and

below, and V ζ and V ζζ denote the ζ-convex conjugate and double conjugate, as defined

in (2) and (7).

Organization of the paper. The remainder of the paper is organized as follows. Section 2

sets the hedonic equilibrium framework out. Section 3 gives an account of the main results

on nonparametric identification of preferences in single attribute hedonic models, mostly
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drawn from Ekeland, Heckman, and Nesheim (2004) and Heckman, Matzkin, and Nesheim

(2010). Section 4 is the main section of the paper and shows how these results and the

shape restrictions that drive them can be extended to the case of multiple attribute hedonic

equilibrium markets. The last section discusses future research directions. Proofs of the

main results are relegated to the appendix, as are necessary background results on optimal

transport theory and hedonic equilibrium theory. We classify assumptions according to

their type and function. Assumptions EC (equilibrium concept) and H (unobserved het-

erogeneity) refer to the model structure. Assumptions R1, R2 and R3 are nested regularity

assumptions on the primitives of the model. Assumptions S1, S2 and S3 are shape restric-

tions on the utility function, and Assumptions C2 and C3 are shape restrictions on the

consumer potential, from Definition 1.

2. Hedonic equilibrium and the identification problem

We consider a competitive environment, where consumers and producers trade a good or

contract, fully characterized by its type or quality z. The set of feasible qualities Z ⊆ R
dz

is assumed compact and given a priori, but the distribution of the qualities actually traded

arise endogenously in the hedonic market equilibrium, as does their price schedule p(z).

Producers are characterized by their type ỹ ∈ Ỹ ⊆ R
dỹ and consumers by their type

x̃ ∈ X̃ ⊆ R
dx̃ . Type distributions Px̃ on X̃ and Pỹ on Ỹ are given exogenously, so that entry

and exit are not modelled. Consumers and producers are price takers and maximize quasi-

linear utility U(x̃, z)−p(z) and profit p(z)−C(ỹ, z) respectively. Utility U(x̃, z) (respectively

cost C(ỹ, z)) is upper (respectively lower) semicontinuous and bounded and normalized to

zero in case of nonparticipation. In addition, the set of qualities Z(x̃, ỹ) that maximize the

joint surplus U(x̃, z)−C(ỹ, z) for each pair of types (x̃, ỹ) is assumed to have a measurable

selection. Then, Ekeland (2010) and Chiappori, McCann, and Nesheim (2010) show that an

equilibrium exists in this market, in the form of a price function p on Z, a joint distribution

Px̃z on X̃ × Z and Pỹz on Ỹ × Z such that their marginal on Z coincide, so that market

clears for each traded quality z ∈ Z. Uniqueness is not guaranteed, in particular prices

are not uniquely defined for non traded quantities in equilibrium. Purity is not guaranteed

either: an equilibrium specifies a conditional distribution Pz|x̃ (respectively Pz|ỹ) of qualities
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consumed by type x̃ consumers (respectively produced by type ỹ producers). The quality

traded by a given producer-consumer pair (x̃, ỹ) is not uniquely determined at equilibrium.

Ekeland (2010) and Chiappori, McCann, and Nesheim (2010) further show that a pure

equilibrium exists and is unique, under the additional assumption that type distributions Px̃

and Pỹ are absolutely continuous and gradients of utility and cost, ∇x̃U(x̃, z) and ∇ỹC(ỹ, z)

exist and are injective as functions of quality z. The latter condition, also known as the

Twist Condition in the optimal transport literature, ensures that all consumers of a given

type x̃ (respectively all producers of a given type ỹ) consume (respectively produce) the

same quality z at equilibrium.

The identification problem consists in the recovery of structural features of preferences

and technology from observation of traded quantities and their prices in a single market.

The solution concept we impose in our identification analysis is the following feature of

hedonic equilibrium, i.e., maximization of surplus generated by a trade.

Assumption EC. [Equilibrium concept] The joint distribution γ of (X̃, Z, Ỹ ) and the

price function p form an hedonic equilibrium, i.e., they satisfy the following. The joint

distribution γ has marginals Px̃ and Pỹ and for γ-almost all (x̃, z, ỹ),

U(x̃, z)− p(z) = max
z′∈Z

(

U(x̃, z′)− p(z′)
)

,

p(z)− C(ỹ, z) = max
z′∈Z

(

p(z′)− C(ỹ, z)
)

.

In addition, observed qualities z ∈ Z(x̃, ỹ) maximizing joint surplus U(x̃, z) − C(ỹ, z) for

each x̃ ∈ X̃ and ỹ ∈ Ỹ , lie in the interior of the set of feasible qualities Z and Z(x̃, ỹ)

is assumed to have a measurable selection. The joint surplus U(x̃, z) − C(ỹ, z) is finite

everywhere.

Remark 1. An important implication of Assumption EC is that traded quality z maximizes

the joint surplus U(x̃, z) − C(ỹ, z). This observation is the basis for the equivalent charac-

terization of hedonic models as transferable utility matching models in Chiappori, McCann,

and Nesheim (2010).
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Remark 2. We assume full participation in the market. The possibility of non participation

can modelled by adding isolated points to the sets of types and renormalizing distributions

accordingly (see Section 1.1 of Chiappori, McCann, and Nesheim (2010) for details).

Remark 3. Under Assumption EC, we will denote throughout the projections of γ on X̃×Z

and Ỹ × Z by Px̃z and Pỹz, respectively. The projections on X̃, Ỹ and Z will be de-

noted Px̃, Pỹ and Pz, respectively.

Given observability of prices and the fact that producer type ỹ (respectively consumer

type x̃) does not enter into the utility function U(x̃, z) (respectively cost function C(ỹ, z))

directly, we may consider the consumer and producer problems separately and symmetri-

cally. We focus on the consumer problem and on identification of utility function U(x̃, z).

Under assumptions ensuring purity and uniqueness of equilibrium, the model predicts a

deterministic choice of quality z for a given consumer type x̃. We do not impose such as-

sumptions, but we need to account for heterogeneity in consumption patterns even in case

of unique and pure equilibrium. Hence, we assume, as is customary, that consumer types x̃

are only partially observable to the analyst. We write x̃ = (x, ε), where x ∈ X ⊆ R
dx is the

observable part of the type vector, and ε ∈ R
dz is the unobservable part, whose dimension

is the same as the dimension of good quality z. We shall make a separability assumption

that will allow us to specify constraints on the interaction between consumer unobservable

type ε and good quality z in order to identify interactions between observable type x and

good quality z.

Assumption H. [Unobservable heterogeneity] Consumer type x̃ is composed of observable

type x with distribution Px on X ⊆ R
dx and unobservable type ε with a priori speci-

fied conditional distribution Pε|x on R
dz . The utility of consumers can be decomposed

as U(x̃, z) = Ū(x, z) + ζ(x, ε, z), where the functional form of ζ is known, but that of Ū

is not.

Remark 4. Despite the notation used, Ū should not necessarily be interpreted as mean

utility, since we allow for a general choice of ζ and Pε|x. If this interpretation is desirable

in a particular application, ζ and Pε|x can be chosen in such a way that E[ζ(x, ε, z)|x] = 0.
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Remark 5. Specification of Pε|x is a necessary normalization, which also arises in quantile

identification strategies.

We shall work throughout under the following regularity condition on the primitives of

the hedonic equilibrium model.

Assumption R1. [Regularity of preferences and technology] The functions U(x̃, z), C(ỹ, z)

and ζ(x, ε, z) are twice continuously differentiable with respect to all their arguments.

The object of inference is the deterministic component of utility Ū(x, z).

Definition 1. For each (x, z) ∈ X × Z, we shall denote V (x, z) := p(z)− Ū(x, z) and call

it the consumer’s potential.

We focus on identification of the function V , since under observability of price, it is

equivalent to identification of the function Ū(x, z), which is our objective.

We shall work in stages, recalling first existing identification results in case of scalar z

and clarifying which features we intend to extend and how. The guiding principle will be

the characterization of shape restrictions on the function V that extend single crossing and

monotonicity restrictions in the scalar case and remain just identifying in the multi-attribute

case.

3. Single market identification with scalar attribute

In this section, we recall and reformulate results of Heckman, Matzkin, and Nesheim

(2010) on identification of single attribute hedonic models. Suppose, for the purpose of this

section, that dz = 1, so that unobserved heterogeneity is scalar, as is the quality dimension.

Suppose further (for ease of exposition) that ζ is twice continuously differentiable in z and ε

(as in Assumption R1) and that V is twice continuously differentiable in z. Consumers take

price schedule p(z) as given and choose quality z to maximize ζ(x, ε, z)−V (x, z). We impose

a single crossing condition on ζ.

Assumption S1. [Spence-Mirlees] Dimension dz of Z is 1 and ζεz(x, ε, z) > 0 for all x, ε, z.
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The first order condition of the consumer problem yields

ζz(x, ε, z) = Vz(x, z), (1)

which, under Assumption S1, implicitly defines an inverse demand function z 7→ ε(x, z),

which specifies which unobserved type consumes quality z. Combining the second or-

der condition ζzz(x, ε, z) < Vzz(x, z) and further differentiation of (1), i.e., ζzz(x, ε, z) +

ζεz(x, ε, z)εz(x, z) = Vzz(x, z), yields

εz(x, z) =
Vzz(x, z)− ζzz(x, ε, z)

ζεz(x, ε, z)
> 0.

Hence the inverse demand is increasing and is therefore identified as the unique increasing

function that maps the distribution Pz|x to the distribution Pε|x, namely the quantile trans-

form. Denoting F the cumulative distribution function corresponding to the distribution P ,

we therefore have identification of inverse demand according to the strategy put forward in

Matzkin (2003) as:

ε(x, z) = F−1
ε|x

(

Fz|x(z|x)
)

.

The single crossing condition of Assumption S1 on the consumer surplus function ζ(x, ε, z)

yields positive assortative matching, as in the Becker (1973) classical model. Consumers

with higher taste for quality ε will choose higher qualities in equilibrium and positive as-

sortative matching drives identification of demand for quality. The important feature of

Assumption S1 is injectivity of ζz(x, ε, z) relative to ε and a similar argument would have

carried through under ζzε(x, ε, z) < 0, yielding negative assortative matching instead.

Once inverse demand is identified, the consumer potential V (x, z), hence the utility func-

tion Ū(x, z), can be recovered up to a constant by integration of the first order condition (1):

Ū(x, z) = p(z)− V (x, z) = p(z)−

∫ z

0
ζz(x, ε(x, z

′), z′)dz′.

We summarize the previous discussion in the following identification statement, originally

due to Heckman, Matzkin, and Nesheim (2010).

Proposition 1. Under Assumptions EC, H, R1, S1, Ū(x, z) is nonparametrically identified,

in the sense that z 7→ Ūz(x, z) is the only marginal utility function compatible with the

pair (Pxz, p), i.e., any other marginal utility function coincides with it, Pz|x almost surely.
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Unlike the demand function, which is identified without knowledge of the surplus func-

tion ζ, as long as the latter satisfies single crossing (Assumption S1), identification of the

preference function Ū(x, z) does require a priori knowledge of the function ζ. This includes

existing results in this literature. Ekeland, Heckman, and Nesheim (2004) cover the case

where ζ(x, ε, z) = zε and do so without assuming that the distribution of unobserved het-

erogeneity Pε|x is known. In that case, ε(x, z) increasing in z, maximizes E[zε|x] among all

joint distributions for (z, ε), subject to the marginal restrictions that z ∼ Pz|x and ε ∼ Pε|x.

This follows from the classical Hardy, Littlewood, and Pólya (1952) inequalities. This opti-

mization formulation is dimension free and is the key to our extension of the identification

argument to the case of a vector of qualities z. The maximization of E[zε|x] has a natural

extension in the multivariate case ζ(x, ε, z) = z′ε, where quality z and taste for quality ε

are conformable vectors. We shall examine the case ζ(x, ε, z) = z′ε in the next section,

before moving to the general extension with arbitrary surplus function ζ(x, ε, z), allowing

marginal utility to be nonlinear in unobserved taste, hence allowing interactions between

consumer and good characteristics in the utility.

4. Single market identification with multiple attributes

4.1. Marginal utility linear in unobserved taste. We now turn to the main objective

of the paper, which is to derive identifying shape restrictions in the multi-attribute case of

quality z ∈ R
dz and unobserved taste ε ∈ R

dz , with dz > 1. We start with the case where

marginal utility is linear in unobserved taste.

Assumption S2. The surplus function is ζ(x, ε, z) = z′ε.

Remark 6. A natural interpretation of this specification is that to each quality dimension zj

is associated a specific unobserved taste intensity εj for that particular quality dimension.

Under Assumption S2, the consumer maximization problem is that of finding

sup
z∈Z

{Ū(x, z) + z′ε− p(z)} = sup
z∈Z

{z′ε− V (x, z)} := V ∗(x, ε). (2)

For each fixed x ∈ X, the function ε 7→ V ∗(x, ε) defined in (2) is called the convex con-

jugate (also known as Legendre-Fenchel transform) of z 7→ V (x, z). Still for fixed x, the
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convex conjugate z 7→ V ∗∗(x, ε) := supε∈Rdz {z′ε − V ∗(x, ε)} is called the double conjugate

of the potential function z 7→ V (x, z). According to convex duality theory (see for instance

Rockafellar (1970), Theorem 12.2 page 104), the double conjugate of V is V itself if and

only if z 7→ V (x, z) is convex and lower-semi-continuous, as a function of z. Under suitable

regularity, the first order condition from the program supε{z
′ε− V ∗(x, ε)} yields a demand

for quality function z = ∇εV
∗(x, ε). Similarly, the first order condition from the consumer

maximization problem (2) yields an inverse demand for quality function ε = ∇zV (x, z). If

the consumer’s potential V is convex, as a function of z, we will show that the demand

and inverse demand functions are uniquely determined. Convexity of V with respect to its

second variable z, therefore, turns out to be the shape restriction that delivers identification

in this case where marginal utility is linear in unobserved taste.

Assumption C2. [Convexity restriction] The function V (x, z) is convex in z for all x.

Convexity of V implies that the inverse demand function ε = ∇zV (x, z) is the gradient

of a convex function (as a function of z, for each x). In the univariate case developed in

the previous section, this corresponds to inverse demand being a non decreasing function.

Hence, in the case where both z and ε are scalar, higher levels of quality z are chosen by

consumers with higher levels of ε, interpreted as unobserved taste for quality. We therefore

recover the property of assortative matching, delivered in Section 3 by the single crossing

shape restriction on ζ, namely Assumption S1.

As discussed in Section 3, positive assortative matching (monotonicity of demand) is

difficult to extend to the multi-attribute case, but not the efficiency result that comes with

positive assortative matching. Imagine a social planner maximizing total surplus over the

distribution of heterogeneous consumers. The planner’s problem is to maximize E[z′ε|x]

over all possible allocations of qualities z to consumer types ε, i.e., over all pairs of random

vectors (ε, z) under the constraint that the marginal distributions Pε|x and Pz|x are fixed.

One of the central results of optimal transport theory, Brenier’s Theorem (Theorem 1

in Appendix 6.1), shows precisely that such a planner’s problem admits a unique pure

allocation as solution, which takes the form of the inverse demand function ε = ∇zV (x, z)
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with V (x, z) convex in z. We see thereby that convexity of V (x, z) in z is the shape

restriction that delivers identification as summarized in the following theorem.

Theorem 1 (Identification with linear marginal utility in taste). Under Assumptions EC,

H, R1, S2 and C2, the following statements hold:

(1) Ū(x, z) is nonparametrically identified, in the sense that z 7→ ∇zŪ(x, z) is the only

marginal utility function compatible with the pair (Pxz , p), i.e., any other marginal

utility function coincides with it, Pz|x almost surely.

(2) For all x ∈ X, Ū(x, z) = p(z)−V (x, z) and z 7→ V (x, z) is the convex solution to the

optimization problem minV (Ez[V (x, z)|x] + Eε[V
∗(x, ε)|x]), where ε 7→ V ∗(x, ε) is

the convex conjugate of z 7→ V (x, z) (convex conjugation with respect to the second

variable).

The structure of this identification proof is as follows (see the proof of Theorem 4, of

which this is a special case). We show that there exists a unique allocation of qualities

to tastes z 7→ ε(x, z) that maximizes the consumer problem (2). A significant portion

of the proof is dedicated to showing that the endogenous price function z 7→ p(z), hence

z 7→ V (x, z), is differentiable. Hence, once the allocation (inverse demand function) ε(x, z)

is identified, V (x, z) satisfies the first order condition

∇zV (x, z) = ∇zζ(x, ε(x, z), z) = ε(x, z), Pz|x-almost surely, for every x.

The latter determines V (x, z), and therefore Ū(x, z), up to a constant.

Remark 7. The identification is constructive, as V (x, z) is shown to be the convex solution

to the minimization of E[V (x, z)|x] + E[V ∗(x, ε)|x], where V ∗ is the convex conjugate of V

with respect to the second variable.

Identification under primitive restrictions only. Since the consumer potential V (x, z) is

equal to p(z) − Ū(x, z), it involves the endogenous price function. Hence, Theorem 1

involves a condition on the potential V , which is undesirable, since it constrains a non

primitive quantity in the model, namely the endogenous price function. However, we show

that, as monotonicity of inverse demand in the scalar case was implied by the single crossing
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condition, here, convexity of V in z is “essentially” always true under the maintained

primitive conditions, in the sense of the following lemma.

Lemma 1 (Convexity). Under Assumptions EC and H, for all x, V (x, z) = V ∗∗(x, z),

Pz|x almost surely, where ∗∗ denotes double convex conjugation with respect to the second

variable.

As we have seen above, the function V is equal to its double conjugate V ∗∗ if and only if it

is convex and lower semi-continuous. Hence Lemma 1 implies in particular, that on any open

subset of the support of Pz|x, V (x, z) is a convex function of z as required. It also implies,

as will be shown in Theorem 2, that the convexity assumption becomes unnecessary if the

distribution of qualities traded at equilibrium is absolutely continuous. We therefore give

conditions on the primitives of the model, such that the endogenous distribution of qualities

traded is absolutely continuous. This will allow us to dispense entirely from restrictions on

endogenous quantities in the statement of our identification theorem.

Assumption R2. [Conditions for absolute continuity of Pz|x] Assumption R1 holds.

(1) The Hessian of total surplus D2
zz (U(x, ǫ, z) − C(ỹ, z)) is bounded above; that is

D2
zz (U(x, ǫ, z) − C(ỹ, z)) ≤M1 for all x, ǫ, z, ỹ, for some fixed M1.

(2) The distribution of unobserved tastes Pε|x is absolutely continuous with respect to

Lebesgue measure for all x.

Lemma 2. Under Assumptions EC, H, S2 and R2, the endogenous distribution Pz|x of

qualities traded at equilibrium is absolutely continuous with respect to Lebesgue measure.

Remark 8. Lemma 2 is a crucial step in our identification strategy, but beyond its role

in identification, it is an important result in its own right within the theory of hedonic

equilibrium models.

Lemma 2 allows us to dispense with the convexity assumption on z 7→ V (x, z), which

implicitely involved a constraint on the endogenous price function z 7→ p(z). We can now

state our identification theorem based exclusively on restrictions on primitive quantities,

namely, preferences, technology and the distributions of consumer and producer types.
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Theorem 2. Under Assumptions EC, H, R2 and S2, the following statements hold:

(1) Ū(x, z) is nonparametrically identified, in the sense that z 7→ ∇zŪ(x, z) is the only

marginal utility function compatible with the pair (Pxz , p), i.e., any other marginal

utility function coincides with it, Pz|x almost surely.

(2) For all x ∈ X, Ū(x, z) = p(z)− V (x, z) and z 7→ V (x, z) is Pz|x almost everywhere

equal to the convex solution to the problem minV (Ez[V (x, z)|x] + Eε[V
∗(x, ε)|x]),

where ε 7→ V ∗(x, ε) is the convex conjugate of z 7→ V (x, z) (convex conjugation with

respect to the second variable).

Remark 9. Unlike Theorem 1, Theorem 2 above delivers an identification result based

only on restrictions on the primities of the model. These restrictions are mild regularity

conditions on preferences and technology, namely Assumption R2(1), and regularity of the

conditional distribution Pε|x of unobserved types, namely Assumption R2(2). Note, in par-

ticular, that no regularity is assumed for the distribution of observable consumer types Px

or the distribution of producer types Pỹ, so that discrete observable characteristics are also

covered by the result.

Nonlinear simultaneous equations. The reasoning behind the identification result of The-

orem 1 has implications beyond hedonic equilibrium models, as it provides identification

conditions for a general nonlinear nonseparable simultaneous equations econometric model

of the form z = h(x, ε), where the vector of endogenous variables z has the same dimension

as the vector of unobserved heterogeneity ε. Theorem 3 shows that in such models, h is

nonparametrically identified within the class of gradients of convex functions.

Theorem 3 (Nonlinear simultaneous equations). In the simultaneous equations model z =

h(x, ε), with z, ε ∈ R
dz and x ∈ R

dx, the function ε 7→ h(x, ε) is identified under the

following conditions.

(1) ε 7→ h(x, ε) is the gradient of a convex function in ε for all x ∈ X.

(2) For all x ∈ X, Pε|x is specified a priori and is absolutely continuous with respect to

Lebesgue measure and Pε|x and Pz|x have finite variance.



16 VICTOR CHERNOZHUKOV, ALFRED GALICHON, MARC HENRY AND BRENDAN PASS

In the univariate case, gradients of convex functions are the increasing functions, so that

our identifying shape restriction directly generalizes monotonicity in Matzkin (2003).

4.2. General case. The identification result of Theorem 1 can be easily extended to

allow for variation in the quality-unobserved taste interaction with observed type x as

in ζ(x, ε, z) = φ(z)′ψ(x, ε), where φ and ψ are known functions and φ is invertible. Going

beyond this requires a new type of shape restriction that can be interpreted as a multivariate

extension of the single crossing “Spence-Mirlees” condition of Assumption S1.

Recalling our notation V (x, z) = p(z) − Ū(x, z), the consumer’s program is to choose

quality vector z to maximize

sup
z∈Z

{Ū (x, z) + ζ(xε, z) − p(z)} = sup
z∈Z

{ζ(x, ε, z) − V (x, z)}. (3)

In the one dimensional case, single crossing condition ζεz(x, ε, z) > 0 delivered identification

of inverse demand. We noted that the sign of the single crossing condition was not important

for the identification result. Instead, what is crucial is the following, weaker, condition.

Assumption S3. [Twist Condition] For all x and z, the gradient ∇zζ(x, ε, z) of ζ(x, ε, z)

in z is injective as a function of ε on the support of Pε|x.

Remark 10. As is well known from Gale and Nikaido (1965), it is sufficient that D2
zεζ(x, ε, z)

be positive quasi-definite everywhere for Assumption S3 to be satisfied. A weaker set of con-

ditions is given in Theorem 2 of Mas-Colell (1979).

Remark 11. Assumption S3, unlike the single crossing condition, is well defined in the

multivariate case, and we shall show, using recent developments in optimal transport theory,

that it continues to deliver the desired identification in the multivariate case.

Before stating the theorem, we provide more intuition by further developing the parallel

between this general case and the cases covered so far. Notice that the Twist Condition

of Assumption S3 is satisfied in the particular case of marginal utility linear in taste, as

considered in Section 4.1 above.

Consider, as before, the hedonic market from the point of view of a social planner,

who allocates qualities z to tastes ε in a way that maximizes total consumer surplus. The
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distribution of consumer tastes is Pε|x and the distribution of qualities traded at equilibrium

is Pz|x. For fixed observable type x, the variable surplus of a match between unobserved

taste ε and quality z is ζ(x, ε, z). Hence, the planner’s problem is to find an allocation of

qualities to tastes, in the form of a joint probability µ over the pair of random vectors (ε, z),

so as to maximize Eµ[ζ(x, ε, z)|x] under the constraint that ε has marginal distribution Pε|x

and that z has marginal distribution Pz|x. This planner’s problem

max
µ

Eµ[ζ(x, ε, z)|x] subject to ε ∼ Pε|x, z ∼ Pz|x (4)

is equal to its dual

min
V,W

E[W (x, ε)|x] + E[V (x, z)|x] subject to W (x, ε) + V (x, z) ≥ ζ(x, ε, z) (5)

and both primal (4) and dual (5) are attained under the conditions of the Monge-Kantorovitch

Theorem (Theorem 6 in Appendix 6.1). Notice that the constraint in (5) can be written as

W (x, ε) = sup
z∈Z

{ζ(x, ε, z) − V (x, z)} := V ζ(x, ε), (6)

so that W (x, ε) is a candidate for the demand function mapping tastes ε into qualities

z derived from the consumer’s program (3). Equation (6) defines a generalized notion of

convex conjugation, which can be inverted, similarly to convex conjugation, into:

V ζζ(x, z) = sup
ε∈Rdz

{ζ(x, ε, z) − V ζ(x, ε)}, (7)

where V ζζ is called the double conjugate of V by analogy with V ∗∗.

Definition 2 (ζ-convexity). A function V is called ζ-convex if and only if V ζζ = V .

The requirement of ζ-convexity, therefore, is a shape restriction that directly generalizes

the convexity restriction of Assumption C2 in case of marginal utility linear in unobserved

taste.

Assumption C3. [ζ-convexity] The potential V is ζ-convex as a function of z for all x.

Under Assumptions EC, H, R1, S3 and C3, we show that there exists a unique allocation

of qualities to tastes z 7→ ε(x, z) that maximizes the consumer problem (6). Moreover,

this allocation is such that markets clear, since ε(x, z) is distributed according to Pε|x
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when z is distributed according to Pz|x. Heuristically, by the envelope theorem applied to

V (x, z) = supε{ζ(x, ε, z) − V ζ(x, ε)}, for a small variation δV ζ of V ζ , the variation in V

is δV (x, z) = −δV ζ(x, ε(x, z), z). Plugging the latter into the first order condition for (5)

yields E[δV ζ(x, ε)|x] = E[δV ζ(x, ε(x, z))|x]. The latter holds for any small variation δV ζ , so

that the distribution of allocation ε(x, z) is the same as the exogenously given distribution

of unobserved tastes Pε|x, so that the market clears.

Finally, once the allocation (inverse demand function) ε(x, z) is identified, V (x, z) satisfies

the first order condition of the consumer’s program

∇zV (x, z) = ∇p(z)−∇zŪ(x, z) = ∇zζ(x, ε(x, z), z), Pz|x-almost surely, for every x.

The latter determines V (x, z), and therefore Ū(x, z), up to a constant. We are now ready

to state our main theorem, relating the Twist Condition and the ζ-convex shape restriction

to nonparametric identification of preferences.

Theorem 4 (Identification of preferences). Under Assumptions EC, H, R1, S3 and C3,

the following statements hold:

(1) Ū(x, z) is nonparametrically identified, in the sense that z 7→ ∇zŪ(x, z) is the only

marginal utility function compatible with the pair (Pxz , p), i.e., any other marginal

utility function coincides with it, Pz|x almost surely.

(2) For all x ∈ X, Ū(x, z) = p(z)− V (x, z) and z 7→ V (x, z) is the ζ-convex solution to

the problem minV
(

Ez[V (x, z)|x] + Eε[V
ζ(x, ε)|x]

)

, with V ζ defined in (6).

Remark 12. As before, the identification strategy is constructive and efficient computa-

tion of Ū(x, z) = p(z) − V (x, z) is based on the identification of V as the solution to the

optimization problem of Theorem 4(2).

4.2.1. Identification under primitive restrictions only. As discussed in the previous section,

Assumption C3 involves restrictions on the price function p(z), which is endogenously deter-

mined at equilibrium. We show, however, that the Twist Condition of Assumption S3 is the

relevant shape restriction, corresponding to single crossing, and that ζ-convexity follows, in

the sense of the following lemma.
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Lemma 3. Under Assumptions EC and H, V (x, z) = V ζζ(x, z), Pz|x-a.s., for all x.

Again, this lemma allows us to dispense completely with conditions on non primitive

quantities (here, the function V , which depends on the endogenous price function) un-

der conditions such that the endogenous distribution of qualities traded at equilibrium is

absolutely continuous.

Assumption R3. [Conditions for absolute continuity of Pz|x] Assumption R2 holds.

(1) The function z 7→ ∇ǫζ(x, ǫ, z) is injective, as a function of z ∈ Z.

(2) For each x ∈ X, ∇zζ(x, ε, z) → ∞ as ‖ε‖ → ∞, uniformly in z ∈ Z.

(3) The matrix D2
ǫzζ(x, ε, z) has full rank for all x, ε, z. Its inverse [D2

ǫzζ(x, ε, z)]
−1 has

uniform upper bound M0.

Lemma 4. Under Assumptions EC, H, S3 and R3, the endogenous distribution Pz|x of

qualities traded at equilibrium is absolutely continuous with respect to Lebesgue measure.

Under the assumptions of Lemma 4, we obtain an identification result that relies only

on constraints on the primitive quantities of the model, namely preferences, technology and

the distributions of consumer and producer types.

Theorem 5. Under Assumptions EC, H, S3 and R3, the following statements hold:

(1) Ū(x, z) is nonparametrically identified, in the sense that z 7→ ∇zŪ(x, z) is the only

marginal utility function compatible with the pair (Pxz , p), i.e., any other marginal

utility function coincides with it, Pz|x almost surely.

(2) For all x ∈ X, Ū(x, z) = p(z)− V (x, z) and z 7→ V (x, z) is Pz|x almost everywhere

equal to the ζ-convex solution to the problem minV
(

Ez[V (x, z)|x] + Eε[V
ζ(x, ε)|x]

)

,

with V ζ defined in (6).

Again, the identification result of Theorem 4 has ramifications beyond the framework of

hedonic equilibrium models. Indeed, it provides the just identifying shape restriction for

general consumer problems with multivariate unobserved preference heterogeneity, where

consumers choose within a set of goods, differentiated along more than one dimension.
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Theorem 4 tells us that the shape of interactions between good qualities and unobserved

tastes governs the shape restriction that just identifies the utility function.

5. Discussion

The identification results in the paper rely on observations from a single price schedule

and the structural functions are just identified under normalization of the distribution of

unobserved heterogeneity. Although Ū(x, z) is not identified without such a normalization,

or additional restrictions, there are features of preferences that are identified. Consider

our model under Assumption S2, with U(x, ε, z) = Ū(x, z) + z′ε. From Theorem 8 in Ap-

pendix 6.1, the inverse demand ε(x, z) = ∇z

[

p(z)− Ū(x, z)
]

satisfies the following: for

all bounded continuous functions ξ,
∫

ξ(ε)fε(ε)dε =
∫

ξ
(

∇zp(z)−∇zŪ(x, z)
)

fz|x(z|x)dz.

Hence, taking ξ equal to the identity above and assuming only that Pε|x has mean zero,

instead of fixing the whole distribution, yields identification of the averaged partial ef-

fects E
[

∇zŪ(x,Z)|X = x
]

= E [∇p(Z)|X = x] from the fact that p(z) and Pz|x are identi-

fied.

Going beyond the latter result requires additional assumptions, which can take either of

the following forms. (1) A separability assumption of the form Ū(x, z) := z′α(x) + β(z)

can be imposed, in which case, the strategy outlined in Ekeland, Heckman, and Nesheim

(2004) can be extended to the case of multiple attributes and yield identification without

normalization of the distribution of unobserved tastes for quality ε. (2) Data from mul-

tiple markets can be brought to bear on the identification problem, or more generally a

variable that shifts underlying distributions of producers and consumers, without affect-

ing preferences and technology. To fix ideas, suppose two seperate markets m1 and m2

(separate in the sense that producers, consumers or goods cannot move between markets)

with underlying producer and consumer distributions (Pm1
x , Pm1

ỹ ) and (Pm2
x , Pm2

ỹ ), are at

equilibrium, with respective price schedules pm1(z) and pm2(z). The additional identifica-

tion assumption is that utility Ū(x, z) and unobserved taste distribution Pε|x are common

across the two markets. In each market, we recover a nonparametrically identified utility

function Ūm(x, z;Pε|x), where the dependence in the unknown distribution of tastes Pε|x

is emphasized. Therefore, the additional identifying restriction associated with multiple
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markets data takes the form Ūm1(x, z;Pε|x) = Ūm2(x, z;Pε|x) which defines an identified

set for the pair (Ū , Pε|x). Further research is needed to characterize this identified set and

derive conditions for point identification in this setting.

6. Appendix

Throughout Appendix 6.1, when there is no ambiguity, we drop the conditioning variable x from the

notation and consider the theory of optimal transportation of distribution Pz of quality vector z ∈ R
d to

distribution Pε of vector of unobserved tastes ε ∈ R
d. In Appendix 6.2, where we prove the results in the

main text, the conditioning variable will be reintroduced.

6.1. Optimal transportation results.

Monge-Kantorovich problem. We first consider the Kantorovich problem, which is the probabilistic allocation

of qualities to tastes so as to maximize total surplus, where the surplus of a pair (ε, z) is given by the

function ζ(ε, z), and the marginal distributions of qualities Pz and tastes Pε are fixed constraints. We

therefore define the set of allocations that satisfy the constraints as follows.

Definition 3 (Probabilities with given marginals). We denote M(Pε, Pz) the set of probability distributions

on R
d × R

d with marginal distributions Pε and Pz.

With this definition, we can formally state the Kantorovitch problem as follows.

(PK) = sup
π∈M(Pε,Pz)

∫

ζ(ε, z)dπ(ε, z).

If we consider the special case of surpluses that are separable in ε and z and dominate ζ(ε, z), i.e., of the

form W (ε)+V (z) ≥ ζ(ε, z), the integral yields
∫

W (ε)dPε(ε)+
∫

V (z)dPz(z). We denote Φζ the set of such

functions.

Definition 4 (Admissible set). A pair of function (W,V ) on R
d belongs to the admissible set Φζ if and only

if W ∈ L1(Pε), V ∈ L1(Pz) and W (ε) + V (z) ≥ ζ(ε, z) for Pε-almost all ε and Pz-almost all z.

The integral over separable surpluses

(DK) = inf
(W,V )∈Φζ

∫

W (ε)dPε(ε) +

∫

V (z)dPz(z)

will in general yield a weakly larger total surplus than (PK), but it turns out that under very weak conditions,

the two coincide.

Theorem 6 (Kantorovich duality). If ζ is upper semi-continuous, then (PK)=(MK) and there exists an

allocation π ∈ M(Pε, Pz) that achieves the maximum in (PK).
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A proof of the Kantorovich duality theorem can be found in Chapter 1 of Villani (2003). We give here

the intuition of the result based on switching infimum and supremum operations. First, if ζ is a continuous

function, the mapping µ 7→
∫

ζdµ is weakly continuous. Since M(Pε, Pz) is weakly compact, the maximum

in (PK) is achieved for some π by the Weierstrass Theorem. Hence, an optimal allocation exists. However,

continuity of ζ is not necessary.

To see the duality result, denote χA(x) = 0 if x ∈ A and −∞ otherwise. Then, we verify that

χM(Pε,Pz)(π) = inf
(W,V )

{
∫

W (ε)dPε(ε) +

∫

V (z)dPz(z)−

∫

(W (ε) + V (z)) dπ(ε, z)

}

,

where the infimum is over all integrable functions, say. Now we can rewrite (PK) as follows:

(PK) = sup
π

{∫

ζ(ε, z)dπ(ε, z) + χM(Pε,Pz)(π)

}

,

where the supremum is taken over positive measures π. Assuming the infimum and supremum operations

can be switched yields:

(PK) = inf
(W,V )

sup
π

{
∫

ζ(ε, z)dπ(ε, z)

+

∫

W (z)dPε(ε) +

∫

V (z)dPz(z)−

∫

(W (ε) + V (z)) dπ(ε, z)

}

= inf
(W,V )

{∫

W (z)dPε(ε) +

∫

V (z)dPz(z)

− inf
π

∫

(W (ε) + V (z)− ζ(ε, z)) dπ(ε, z)

}

.

Consider the second infimum in the last display. If the function W (ε)+V (z)− ζ(ε, z) takes a negative value,

then, choosing for π the Dirac mass at that point will yield an infimum of −∞. Therefore, we have:

inf
π

∫

(W (ε) + V (z)− ζ(ε, z)) dπ(ε, z) = χΦζ
(W,V ),

so that

(PK) = inf
(W,V )

{
∫

W (z)dPε(ε) +

∫

V (z)dPz(z)− χΦζ
(W,V )

}

= (DK)

as required.

We now see that the dual is also achieved.

Theorem 7 (Kantorovich duality (continued)). If (PK)< ∞ and there exist integrable functions ζε and ζz

such that ζ(ε, z) ≥ ζε(ε) + ζz(z), then there exists a ζ-convex function (see Definition 2) V such that
∫

V ζ(ε)dPε(ε) +

∫

V (z)dPz(z)

achieves (DK). In addition, if π is an optimal allocation, i.e., achieves (PK), and (V ζ , V ) is an optimal ζ-

conjugate pair, i.e., achieves (DK), then

V ζ(ε) + V (z) ≥ ζ(ε, z) with equality π-almost surely. (8)
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Idea of the proof. The proof can be found in Chapter 5 of Villani (2009). The last statement of The-

orem 7 is easy to see. If π achieves (PK) and (V ζ , V ) achieves (DK), then, as (PK)=(DK) by Theo-

rem 6, we have
∫

[V ζ(ε) + V (z) − ζ(ε, z)]dπ(ε, z) = 0. The integrand is non negative, since (V ζ , V ) ∈ Φζ .

Hence, V ζ + V = ζ, π-almost surely, as desired. The proof of existence of an optimal pair of ζ-convex

functions achieving (DK) revolves around the notion of cyclical monotonicity.

In view of the above, if (φ, ψ) achieve (DK) and a sequence of pairs (εi, zi)i=1,...,m belong to the support

of the optimal allocation π, then φ(εi) + ψ(zi) = ζ(εi, zi) for each i = 1, . . . ,m. On the other hand,

since (φ,ψ) ∈ Φζ , we have φ(εi)+ψ(zi+1) ≥ ζ(εi, zi+1) for each i = 1, . . . ,m−1, and φ(εm)+ψ(z) ≥ ζ(εm, z)

for an arbitrary z. Substracting and adding up yields

ψ(z) ≥ ψ(z1) + [ζ(εm, z)− ζ(εm, zm)] + . . .+ [ζ(ε1, z2)− ζ(ε1, z1)].

Since the functions in the pair (φ, ψ) are only determined up to a constant, normalize ψ(z1) = 0 and define V

as the infimum of all functions ψ satisfying ψ(z) ≥ [ζ(εm, z)− ζ(εm, zm)]+ . . .+[ζ(ε1, z2)− ζ(ε1, z1)] over all

choices of (εi, zi)i=1,...,m in the support of π and all m ≥ 0. It turns out that V ζ(ε)+V (z) = ζ(ε, z), π-almost

surely, so that integration over π yields the fact that (V ζ , V ) achieves (DK) as desired. �

The quadratic case and Brenier’s Theorem. In the special case of Assumption S2, where ζ(ε, z) = z′ε, the

planner’s program (PK) writes

sup
π∈M(Pε,Pz)

∫

z′εdπ(ε, z)

and the set Φζ becomes

Φ = {(W,V ) : W (ε) + V (z) ≥ z′ε}.

The pair (W,W ∗) ∈ Φ defined by

W ∗(z) = sup
ε

{z′ε−W (ε)},

W (ε) = sup
z

{z′ε−W ∗(z)}

achieves the minimum in the dual problem (DK). Notice that W and W ∗ are standard Fenchel-Legendre

convex conjugates of each other and that W =W ∗∗ and is hence convex.

In this case, ∇W ∗(z) = ∇zζ(ε, z) simplifies to ∇W ∗(z) = ε, which guarantees uniqueness and purity of

the optimal assignment z = ∇W (ε), where V is convex. As a corollary, ∇W is a Pε-almost surely uniquely

determined gradient of a convex function.

Theorem 8 (Brenier). Suppose Pε is absolutely continuous with respect to Lebesgue measure and that Pε

and Pz have finite second order moments. Then, there exists a Pε-almost surely unique map of the form ∇W ,

where W is convex, such that
∫

ε′∇W (ε)dPε(ε) achieves the maximum in (PK) with ζ(ε, z) = z′ε. The
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function W is the Pε-almost everywhere uniquely determined convex map such that Pε(∇W
−1(B)) = Pz(B)

for all Borel subsets B of the support of Pz. Moreover, (W,W ∗) achieves the dual program (DK).

A proof of Theorem 8 can be found in Section 2.1.5 of Villani (2003). Note that W is not only the unique

convex map that solves the optimization problem. However, ∇W is the unique gradient of a convex map

that pushes forward probability distribution Pε to Pz. Hence, identification can be achieved for a nonlinear

simultaneous equations model z = f(x, ε) without an underlying assumption about how choices z were

generated from tastes (x, ε). This is the content of Theorem 3, which is therefore seen to be a straightforward

application of Theorem 8.

6.2. Proof of results in the main text.

Proof of Lemma 1. This is a direct corollary of Lemma 3. �

Proof of Lemma 2. This is a corollary of Lemma 4, since Assumptions S2,R2 imply R3. �

Proof of Theorems 1 and 2. These are corollaries of Theorems 4 and 5, since Assumptions S2,C2 imply

S3,C3 and Assumptions S2,R2 imply R3. �

Proof of Theorem 3. Since z = h(x, ε), for any Borel set B,

P(Z ∈ B|X = x) = P(h(x, ε) ∈ B|X = x). (9)

By Theorem 8, a gradient of a convex function satisfying (9) is Pε|x-almost everywhere uniquely determined,

hence the result. �

Proof of Lemma 3. By definition of V ζ , we have

V (x, z) ≥ ζ(x, ε, z)− V ζ(x, ε). (10)

As, by definition of ζ-conjugation, V ζζ(x, z) = supε

[

ζ(x, ε, z)− V ζ(x, ε)
]

, we have

V (x, z) ≥ V ζζ(x, z), (11)

by taking supremum over ε in (10).

Let γ be an hedonic equilibrium probability distribution on X̃ × Z × Ỹ . By Assumption EC,

ζ(x, ε, z)− V (x, z) = U(x, ε, z)− p(z) = max
z∈Z

(U(x, ε, z)− p(z)) = max
z∈Z

(ζ(x, ε, z)− V (x, z)) = V ζ(x, ε)

is true γ-almost everywhere. Hence, there is equality in (10) γ-almost everywhere. Hence, for Pz|x almost

every z, and ε such that (z, ε) is in the support of γ, we have V (x, z) = ζ(x, ε, z) − V ζ(x, ε). But the right

hand side is bounded above by V ζζ(x, z) by definition, so we get V (x, z) ≤ V ζζ(x, z). Combined with (11),

this tells us V (x, z) = V ζζ(x, z), Pz|x almost everywhere. �
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Proof of Lemma 4. For an upper semi-continuous map S : Rd1 × R
d2 → R, possibly indexed by x, and

probability distributions µ on R
d1 and ν on R

d2 , possibly conditional on x, let TS(µ, ν) be the solution of

the Kantorovich problem, i.e.,

TS(µ, ν) = sup
γ∈M(µ,ν)

∫

R
d1×R

d2

S(ε, z)dγ(ε, z).

We state and prove three intermediate results in Steps 1, 2 and 3 before completing the proof of Lemma 4.

Step 1: We first show that Pz achieves

max
ν∈∆(Z)

[TU (Px̃, ν) + T−C(Pỹ, ν)]. (12)

This step follows the method of proof of Proposition 3 in Carlier and Ekeland (2010). Take any probability

distribution ν ∈ ∆(Z), µ1 ∈ M(Px̃, ν) and µ2 ∈ M(Pỹ , ν). By the Disintegration Theorem (see for instance

Pollard (2002), Theorem 9, page 117), there are families of conditional probabilities µz
1 and µz

2, z ∈ Z, such

that µ1 = µz
1 ⊗ ν and µ2 = µz

2 ⊗ ν. Define the probability γ ∈ ∆(X̃ × Ỹ × Z) by
∫

X̃×Ỹ ×Z

F (x̃, ỹ, z)dγ(x̃, ỹ, z) =

∫

X̃×Ỹ ×Z

F (x̃, ỹ, z)dµz
1(x̃)dµ

z
2(ỹ)dν(z),

for each F ∈ C0(X̃, Ỹ , Z). By construction, the projection µ of γ on X̃ × Ỹ belongs to M(Px̃, Pỹ). We

therefore have:
∫

X̃×Z

U(x̃, z)dµ1(x̃, z)−

∫

Ỹ ×Z

C(ỹ, z)dµ2(ỹ, z) =

∫

X̃×Ỹ ×Z

[U(x̃, z)−C(ỹ, z)] dγ(x̃, ỹ, z)

≤

∫

X̃×Ỹ ×Z

sup
z∈Z

[U(x̃, z)− C(ỹ, z)] dγ(x̃, ỹ, z)

=

∫

X̃×Ỹ

sup
z∈Z

[U(x̃, z)−C(ỹ, z)] dµ(x̃, ỹ).

Since ν, µ1 and µ2 are arbitrary, the latter sequence of displays shows that the value of program (12) is

smaller than or equal to the value of program (13) below.

sup
µ∈M(Px̃,Pỹ)

∫

X̃×Ỹ

sup
z∈Z

[U(x̃, z)−C(ỹ, z)] dµ(x̃, ỹ). (13)

By Assumption EC, Program (13) is attained by the projection µ̄ on X̃ × Ỹ of the equilibrium probability

distribution γ. Let µ1 and µ2 be the projections of the equilibrium probability distribution γ onto X̃ × Z

and Ỹ × Z. Now, since the value of (12) is smaller than or equal to the value of (13), and the latter is

attained by µ̄, we have

(12) ≤

∫

X̃×Ỹ

sup
z∈Z

[U(x̃, z)− C(ỹ, z)] dµ̄(x̃, ỹ)

=

∫

X̃×Z

U(x̃, z)dµ1(x̃, z) +

∫

Ỹ ×Z

[−C(ỹ, z)] dµ2(ỹ, z)

≤ sup
µ1∈M(Px̃,Pz)

∫

X̃×Z

U(x̃, z)dµ1(x̃, z) + sup
µ2∈M(Pỹ,Pz)

∫

Ỹ ×Z

[−C(ỹ, z)] dµ2(ỹ, z) ≤ (12),

so that equality holds throughout, and Pz solves (12).
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Step 2: We then show by contradiction that for Px almost every x, Pz|x achieves

max
ν

[TU (Pε|x, ν) + T−C(Pỹ|x, ν)]. (14)

Assume the conclusion is false; that is, that there is some set E ⊂ X, with Px(E) > 0 such that, for each x

in E there is some probability distribution P ′
z|x on Z such that

TU (Pε|x, P
′
z|x) + T−C(Pỹ|x, P

′
z|x) > TU (Pε|x, Pz|x) + T−C(Pỹ|x, Pz|x).

For x /∈ E, we set P ′
z|x = Pz|x. This means that for every x, P ′

z|x is defined and we have

TU (Pε|x, P
′
z|x) + T−C(Pỹ|x, P

′
z|x) ≥ TU (Pε|x, Pz|x) + T−C(Pỹ|x, Pz|x);

moreover, the inequality is strict on a set E of positive Px measure, so that

∫

X

[TU (Pε|x, P
′
z|x) + T−C(Pỹ|x, P

′
z|x)]dPx >

∫

X

[TU (Pε|x, Pz|x) + T−C(Pỹ|x, Pz|x)]dPx. (15)

We define a new probability distribution P ′
z on Z by P ′

z(A) =
∫

X
P ′
z|x(A)dPx(x), for each Borel set A ⊆ Z.

We claim that

TU (Px̃, P
′
z) + T−C(Pỹ, P

′
z) > TU (Px̃, Pz) + T−C(Pỹ , Pz),

which contradicts the maximality of Pz in (12) established in Step 1. Let P ′
εz|x achieve the optimal trans-

portation between Pε|x and P ′
z|x; that is,

TU (Pε|x, P
′
z|x) =

∫

Rdε×Z

U(x, ε, z)dPεz|x.

Existence of such a Pεz|x is given by Theorem 6. By construction, the marginals of P ′
εz|x are Pε|x and P ′

z|x.

We define P ′
x̃z on X̃ × Z for any Borel subset B ⊆ X̃ × Z by P ′

x̃z(B) :=
∫

X
P ′
εz|x(Bx)dPx, where we

define Bx := {(ε, z) ∈ R
dz × Z : (x, ε, z) ∈ B}. Then, for any Borel subset A ⊆ Z,

P ′
x̃z(R

dz ×X × A) =

∫

X

P ′
εz|x(R

dz × A)dPx =

∫

X

P ′
z|x(A)dPx = P ′

z(A).

Similarly, for any Borel subset B ⊆ R
dz ×X,

P ′
x̃z(B × Z) =

∫

X

P ′
εz|x(Bx × Z)dPx =

∫

X

Pε|x(Bx)dPx = Px̃(B).

The last two calculations show that Px̃ and P ′
z are the x̃ and z marginals of P ′

x̃z, respectively, and so it

follows by definition that

TU (Px̃, P
′
z) ≥

∫

X×Rdz×Z

U(x̃, z)dP ′
x̃z. (16)

Similarly, we let P ′
ỹz|x achieve the optimal transportation between Pỹ|x and P ′

z|x and define P ′
ỹz on Ỹ × Z

by P ′
ỹz =

∫

X
P ′
ỹz|xdPx; a similar argument to above shows that the ỹ and z marginals of P ′

ỹz are Pỹ and P ′
z,

respectively. Therefore,

T−C(Pỹ, P
′
z) ≥

∫

Ỹ ×Z

[−C(ỹ, z)] dP ′
ỹz. (17)
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Now, equations (16) and (17) yield

TU (Px̃, P
′
z) + T−C(Pỹ , P

′
z) ≥

∫

X̃×Z

U(x̃, z)dP ′
x̃z +

∫

Ỹ ×Z

[−C(ỹ, z)] dP ′
ỹz

=

∫

X

[
∫

Rdz×Z

U(x, ε, z)dP ′
εz|x

]

dPx +

∫

X

[
∫

Ỹ ×Z

[−C(ỹ, z)] dP ′
ỹz|x

]

dPx

=

∫

X

TU (Pε|x, P
′
z|x)dPx +

∫

X

[T−C(Pỹ|x, P
′
z|x)dPx

>

∫

X

TU (Pε|x, Pz|x)dPx +

∫

X

[T−C(Pỹ|x, Pz|x)dPx

≥

∫

X

[∫

Rdz×Z

U(x, ε, z)dPεz|x

]

dPx +

∫

X

[∫

Ỹ ×Z

[−C(ỹ, z)] dPỹz|x

]

dPx

=

∫

X̃×Z

U(x̃, z)dPx̃z +

∫

Ỹ ×Z

[−C(ỹ, z)] dPỹz

= TU (Px̃, Pz) + T−C(Pỹ, Pz),

where we have used (15) in the fourth line above. This establishes the contradiction and completes the

proof.

Step 3: We finally now show that for Px almost all x, Pz|x is the unique solution of Program (14). This

step follows the method of proof of Proposition 4 in Carlier and Ekeland (2010). We know from Step 2

that Pz|x is a solution to (14). Suppose ν ∈ ∆(Z) also solves (14). Let µεz|x and µỹz|x achieve TU (Pε|x, ν)

and T−C(Pỹ|x, ν). The latter exist by Theorem 6. We therefore have

∫

Rdz×Z

U(x, ε, z)dµεz|x(ε, z|x) +

∫

Ỹ ×Z

[−C(ỹ, z)]dµỹz|x(ỹ, z|x) = TU (Pε|x, ν) + T−C(Pỹ|x, ν) = (14).

Let ϕU
x denote the U -conjugate of a function ϕ on Z, as defined by ϕU

x (ε) := supz∈Z{U(x, ε, z) − ϕ(z)}.

Similarly, let (−ϕ)−C be the (−C)-conjugate of (−ϕ), defined as (−ϕ)−C(ỹ) := supz∈Z{−C(ỹ, z) + ϕ(z)}.

By definition, for any function ϕ on Z, and any (ε, ỹ, z) on R
dz × Ỹ × Z, we have

ϕU
x (ε) + ϕ(z) ≥ U(x, ε, z), and [−ϕ]−C(ỹ)− ϕ(z) ≥ −C(ỹ, z). (18)

By Assumption EC, the price function p of the hedonic equilibrium satisfies

pUx (ε) + p(z) = U(x, ε, z), Pεz|x-a.s. and [−p]−C(ỹ)− p(z) = −C(ỹ, z), Pỹz|x-almost surely. (19)

Therefore, p achieves the minimum in the program

inf
ϕ

{∫

Rdz×Z

[ϕU
x (ε) + ϕ(z)]dPεz|x(ε, z|x) +

∫

Ỹ ×Z

[(−ϕ)−C(ỹ)− ϕ(z)]dPỹz|x(ỹ, z|x)

}

= inf
ϕ

{∫

Rdz

ϕU
x (ε)dPε|x(ε|x) +

∫

Z

ϕ(z)dPz|x(z|x) +

∫

Ỹ

(−ϕ)−C(ỹ)dPỹ|x(ỹ|x)−

∫

Z

ϕ(z)dPz|x(z|x)

}

= inf
ϕ

{∫

Rdz

ϕU
x (ε)dPε|x(ε|x) +

∫

Ỹ

(−ϕ)−C(ỹ)dPỹ|x(ỹ|x)

}

. (20)
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Since p achieves (20), we have

(20) =

∫

Rdz

pUx (ε)dPε|x(ε|x) +

∫

Ỹ

(−p)−C(ỹ)dPỹ|x(ỹ|x)

=

∫

Rdz×Z

[pUx (ε) + p(z)]dµεz|x(ε, z|x) +

∫

Ỹ ×Z

[(−p)−C(ỹ)− p(z)]dµỹz|x(ỹ, z|x),

since µεz|x ∈ M(Pε|x, ν) and µỹz|x ∈ M(Pỹ|x, ν) by construction. By the strong duality result in Theorem 3

of Carlier and Ekeland (2010), we have (14)=(20). Hence

∫

Rdz×Z

U(x, ε, z)dµεz|x(ε, z|x) +

∫

Ỹ ×Z

[−C(ỹ, z)]dµỹz|x(ỹ, z|x)

=

∫

Rdz×Z

[pUx (ε) + p(z)]dµεz|x(ε, z|x) +

∫

Ỹ ×Z

[(−p)−C(ỹ)− p(z)]dµỹz|x(ỹ, z|x),

which, given the inequalities (18), implies

pUx (ε) + p(z) = U(x, ε, z), µεz|x almost surely, and [−p]−C(ỹ)− p(z) = −C(ỹ, z), µỹz|x almost surely.

We therefore have pUx (ε) + p(z) = U(x, ε, z) both Pεz|x and µεz|x almost surely. The U -conjugate pUx of p is

locally Lipschitz by Lemma C.1 of Gangbo and McCann (1996), hence differentiable Pε|x-almost everywhere

by Rademacher’s Theorem (see for instance Villani (2009), Theorem 10.8(ii)). We can therefore apply the

Envelope Theorem to obtain the equation below.

∇pUx (ε) = ∇εU(x, ε, z) = ∇εζ(x, ε, z), both Pεz|x and µεz|x almost everywhere. (21)

By Assumption R3(1), ∇εζ(x, ε, z) is injective as a function of z. Therefore, for each ε, there is a unique z

that satisfies (21). This defines a map T : R
dz → Z, such that z = T (ε) both Pεz|x and µεz|x almost

everywhere. Since the projections of Pεz|x and µεz|x with respect to ε are the same, namely Pε|x, we

therefore have

Pεz|x = (id, T )#Pε|x = µεz|x.

The two probability distributions Pεz|x and µεz|x being equal, they must also share the same projection with

respect to z and ν = Pz|x as a result.

Armed with the results in Steps 1 to 3, we are ready to prove Lemma 4. Fix x ∈ X such that Pz|x is the

unique solution to Program (14). Let PN
ỹ be a sequence of discrete probability distributions with N points

of support on Ỹ ⊆ R
dỹ converging weakly to Pỹ|x. The set of probability distributions on the compact

set Z is compact relative to the topology of weak convergence. By Assumption R3, U and C are continuous,

hence, by Theorem 5.20 of Villani (2009), the functional ν 7→ TU (Pε|x, ν) + T−C(P
N
ỹ , ν) is continuous with

respect to the topology of weak convergence. Program maxν∈∆(Z)[TU (Pε|x, ν)+T−C(P
N
ỹ , ν)], therefore, has

a solution we denote PN
z .

We first show that PN
z converges weakly to Pz|x. For any probability measure ν on Z, we have

TU (Pε|x, ν) + T−C(P
N
ỹ , ν) ≤ TU (Pε|x, P

N
z ) + T−C(P

N
ỹ , PN

z ). (22)
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Since Z is compact, ∆(Z) is compact with respect to weak convergence. Hence, we can extract from

(PN
z ) a convergent subsequence, which we also denote (PN

z ), as is customary, and we call the limit P̄ .

By the stability of optimal transport (Villani (2009), Theorem 5.20), we have T−C(P
N
ỹ , ν) → T−C(Pỹ|x, ν),

TU (Pε|x, P
N
z ) → TU (Pε|x, P̄ ) and T−C(P

N
ỹ , P̄ ) → T−C(Pỹ|x, P̄ ), and so passing to the limit in inequality (22)

yields

TU (Pε|x, ν) + T−C(Pỹ|x, ν) ≤ TU (Pε|x, P̄ ) + T−C(Pỹ|x, P̄ ).

As this holds for any probability distribution ν on R
dz , it implies that P̄ is optimal in Program (14). By

uniqueness proved in Step 3, we then have P̄ = Pz|x, as desired.

We are now ready to complete the proof of Lemma 4. Combining Steps 1 to 3 above, we know that PN
z

is the marginal with respect to z of a hedonic equilibrium distribution γN on R
dz × Z × {ỹ1, . . . , ỹN}, with

consumer and producer distributions Pε|x and PN
ỹ , respectively. By Step 1 in the proof of Theorem 4(1)

applied to this hedonic equilibrium with producer type distribution PN
ỹ , for each N , there is an optimal

map FN pushing PN
z forward to Pε|x i.e., Pε|x = FN#PN

z . For i = 1, 2, ...N , we define the subsets SN
i ⊆ Z

by

SN
i = {z ∈ Z : z ∈ argmax

w
(U(x, FN(z), w)− C(ỹi, w))};

note that SN
i is the set of quality vectors that are produced by producer type ỹi. Since PN

ỹ has finite

support {ỹ1, . . . , ỹN}, PN
z almost all z belong to some Si, i = 1, . . . , N . We then set

EN
i = {z ∈ SN

i and z /∈ SN
j for all j < i},

for each i = 1, . . . , N , with the convention SN
0 = ∅. The EN

i are disjoint, and EN = ∪N
i=1E

N
i has full PN

z

measure, PN
z (EN) = 1. On each EN

i , FN coincides with a map Gi, which satisfies

∇zU(x,Gi(z), z)−∇zC(ỹi, z) = 0

or

∇zŪ(x, z) +∇zζ(x,Gi(z), z)−∇zC(ỹi, z) = 0.

By Assumption R3(3) the Implicit Function Theorem, Gi is differentiable and we have

[D2
zzŪ(x, z) +D2

zzζ(x,Gi(z), z)−D2
zzC(ỹi, z)] +D2

zεζ(x,Gi(z), z)DGi(z) = 0

so that

DGi(z) = [D2
zεζ(x,Gi(z), z)]

−1[D2
zzŪ(x, z) +D2

zzζ(x,Gi(z), z)−D2
zzC(ỹi, z)].

Therefore, |DGi(z)| ≤M0M1 := C by Assumptions R2(1) and R3(3). Now, this implies that Gi is Lipschitz

with constant C, and therefore, FN restricted to EN
i is also Lipschitz with constant C.
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Now, for any Borel A ⊂ R
dz , we can write A ∩EN = ∪N

i=1(A ∩EN
i ). Therefore,

PN
z (A) = PN

z (A ∩ EN) ≤ PN
z (F−1

N (FN (A ∩ EN)))

= Pε|x(FN(A ∩EN ))

= Pε|x(FN(∪N
i=1(A ∩ EN

i ))

= Pε|x(∪
N
i=1FN (A ∩ EN

i )). (23)

Denote by |A| the Lebesgue measure of a set A in the rest of this proof. We now show the absolute

continuity of of Pz|x by contradiction. Assume not; then there is a set A with |A| = 0 but δ = Pz|x(A) > 0.

We can choose open neighbourhoods, A ⊆ Ak, with |Ak| ≤
1
k
; by weak convergence of PN

z to Pz|x, we have

lim inf
N→∞

PN
z (Ak) ≥ Pz|x(Ak) ≥ δ

and so for sufficiently large N , we have PN
z (Ak) ≥ δ/2. On the other hand, by the Lipschitz property of FN

on EN
i , we have

|FN (Ak ∩EN
i )| ≤ Cdz |Ak ∩EN

i |,

so that

| ∪N
i=1 FN (Ak ∩EN

i )| ≤ Cdz

N
∑

i=1

|Ak ∩EN
i | = Cdz |Ak ∩EN | ≤ Cdz |Ak| ≤

Cdz

k
.

Now, Pε|x is absolutely continuous, so that Pε|x(∪
N
i=1FN (Ak ∩E

N
i )) → 0 as k → ∞ (because | ∪N

i=1 FN (Ak ∩

EN
i )| → 0 as k → ∞). On the other hand, by (23), Pε|x(∪

N
i=1FN (Ak ∩EN

i )) ≥ PN
z (Ak) ≥

δ
2
for all k, which

is a contradiction, completing the proof. �

Proof of Theorems 4 and 5. Step 1: identification of inverse demand. For a fixed observable type x, assume

that the types x̃0 := (x, ε0) and x̃1 := (x, ε1) both choose the same good, z̄ ∈ Z, from producers ỹ0 and ỹ1,

respectively.

We want to prove that this implies the unobservable types are also the same; that is, that ε0 = ε1. This

property is equivalent to having a map from the good qualities Z to the unobservable types, for each fixed

observable type.

Note that z̄ must maximize the joint surplus for both ε0 and ε1. That is, setting

S(x, ε, ỹ) = sup
z∈Z

[Ū(x, z) + ζ(x, ε, z)− C(ỹ, z)]

we have,

S(x, ε0, ỹ0) = Ū(x, z̄) + ζ(x, ε0, z̄)− C(ỹ0, z̄) (24)

and

S(x, ε1, ỹ1) = Ū(x, z̄) + ζ(x, ε1, z̄)− C(ỹ1, z̄). (25)
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By Assumption EC, we can apply Lemma 1 of Chiappori, McCann, and Nesheim (2010), so that the pair

of indirect utilities (V,W ), where

V (x̃) = sup
z∈Z

(U(x̃, z)− p(z))

W (ỹ) = sup
z∈Z

(p(z)− C(ỹ, z)) ,

achieve the dual (DK) of the optimal transportation problem

sup
π∈M(Px̃,Pỹ)

∫

S(x̃, ỹ)dπ(x̃, ỹ),

with solution π. This implies, from Theorem 7, that for π-almost all pairs (x̃0, ỹ0) and (x̃1, ỹ1),

V (x̃0) +W (ỹ0) = S(x̃0, ỹ0),

V (x̃1) +W (ỹ1) = S(x̃1, ỹ1),

V (x̃0) +W (ỹ1) ≥ S(x̃0, ỹ1),

V (x̃1) +W (ỹ0) ≥ S(x̃1, ỹ0).

We therefore deduce the condition (called the 2-monotonicity condition):

S(x, ε0, ỹ0) + S(x, ε1, ỹ1) ≥ S(x, ε1, ỹ0) + S(x, ε0, ỹ1),

recalling that x̃0 = (x, ε0) and x̃1 = (x, ε1). Now, by definition of S as the maximized surplus, we have

S(x, ε1, ỹ0) ≥ Ū(x, z̄) + ζ(x, ε1, z̄)− C(ỹ0, z̄) (26)

and

S(x, ε0, ỹ1) ≥ Ū(x, z̄) + ζ(x, ε0, z̄)− C(ỹ1, z̄). (27)

Inserting this, as well as (24) and (25) into the 2-monotonicity inequality yields

Ū(x, z̄) + ζ(x, ε0, z̄)−C(ỹ0, z̄) + Ū(x, z̄) + ζ(x, ε1, z̄)− C(ỹ1, z̄)

≥ S(x, ε1, ỹ0) + S(x, ε0, ỹ1)

≥ Ū(x, z̄) + ζ(x, ε1, z̄)− C(ỹ0, z̄) + Ū(x, z̄) + ζ(x, ε0, z̄)− C(ỹ1, z̄).

But the left and right hand sides of the preceding string of inequalities are identical, so we must have equality

throughout. In particular, we must have equality in (26) and (27). Equality in (26), for example, means

that z̄ maximizes z 7→ Ū(x, z)+ ζ(x, ε1, z)−C(ỹ0, z), and so, as z̄ is in the interior of Z by Assumption EC,

we have

∇zζ(x, ε1, z̄) = ∇zC(ỹ0, z̄)−∇zŪ(x, z̄). (28)

Since z̄ also maximizes z 7→ Ū(x, z) + ζ(x, ε0, z)−C(ỹ0, z), we also have

∇zζ(x, ε0, z̄) = ∇zC(ỹ0, z̄)−∇zŪ(x, z̄). (29)
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Equations (28) and (29) then imply

∇zζ(x, ε1, z̄) = ∇zζ(x, ε0, z̄)

and Assumption S3 implies ε1 = ε0.

Step 2: Differentiability of V in z. In this step, we work under Assumptions EC, H, R1, S3 and C3. The

proof under Assumptions EC, H, S3 and R3 is presented in Step 2 alternative below. The method of proof

of Step 2 is to prove that the subdifferential at each z0 is a singleton, which is equivalent to differentiability

at z0.

Definition 5 (Subdifferential). The subdifferential ∂ψ(x0) of a function ψ : Rd → R∪ {+∞} at x0 ∈ R
d is

the set of vectors p ∈ R
d, called subgradients, such that ψ(x)− ψ(x0) ≥ p′(x− x0) + o(‖x− x0‖).

Remark 13. The subdifferential is always closed and convex. If f is continuous, its subdifferential is also

bounded.

From Assumption C3, V (x, z) is ζ-convex, and hence locally semiconvex, by Proposition C.2 in Gangbo

and McCann (1996). We recall the definition of local semiconvexity from the latter paper.

Definition 6 (Local semiconvexity). A function ψ : Rd → R∪{+∞} is called locally semiconvex at x0 ∈ R
d

if there is a scalar λ > 0 such that ψ(x) + λ‖x‖2 is convex on some open ball centered at x0.

Since the term λ‖x‖2 in the definition of local semiconvexity simply shifts the subdifferential by 2λx,

we can extend Theorem 25.6 in Rockafellar (1970) to locally semiconvex functions and obtain the following

lemma.

Lemma 5. Let ψ : Rd → R∪{+∞} be a locally semiconvex function, and suppose that q ∈ R
d is an extremal

point in the subdifferential ∂ψ(x0) of ψ at x0. Then there exists a sequence xn converging to x0, such that ψ

is differentiable at each xn and the gradient ∇ψ(xn) converges to q.

Now, Step 1 shows that for each fixed z, the set

{ε ∈ R
dz : V (x, z) + V ζ(x, ε) = ζ(x, ε, z)} := {f(z)} (30)

is a singleton. We claim that this means V is differentiable with respect to z everywhere. Fix a point z0. We

will prove that the subdifferential ∂zV (x, z0) contains only one extremal point (for a definition, see Rockafellar

(1970), Section 18). This will yield the desired result. Indeed, the subdifferential of V is closed and convex

by Remark 13. By Assumption C3, V is ζ-convex, hence continuous, by the combination of Propositions C.2

and C.6(i) in Gangbo and McCann (1996). Hence, still by Remark 13, the subdifferential is also bounded.

Hence, it is equal to the convex hull of its extreme points (see Rockafellar (1970), Theorem 18.5). The

subdifferential of V at z0 must therefore be a singleton, and V must be differentiable at z0 (Theorem 25.1
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in Rockafellar (1970) can be easily extended to locally semiconvex functions). Let q be any extremal point

in ∂zV (x, z0). Let zn be a sequence satisfying the conclusion in Lemma 5. Now, as V is differentiable at

each point zn, we have the envelope condition

∇Vz(x, zn) = ∇zζ(x, εn, zn) (31)

where εn = f(zn) is the unique point giving equality in (30).

As the sequence ∇zζ(x, εn, zn) converges, the growth condition in Assumption R3 implies that the εn

remain in a bounded set. We can therefore pass to a convergent subsequence εn → ε0. By continuity of ∇zζ,

we can pass to the limit in (31) and, recalling that the left hand side tends to q, we obtain q = ∇zζ(x, ε0, z0).

Now, by definition of εn, we have the equality V (x, zn) + V ζ(x, εn) = ζ(x, εn, zn). By Assumption C3, V

and V ζ are ζ-convex, hence continuous, by the combination of Propositions C.2 and C.6(i) in Gangbo and

McCann (1996). Hence, we can pass to the limit to obtain V (x, z0) + V ζ(x, ε0) = ζ(x, ε0, z0). But this

means ε0 = f(z0), and so q = ∇zζ(x, ε0, z0) = ∇zζ(x, f(z0), z0) is uniquely determined by z0. This means

that the subdifferential can only have one extremal point, completing the proof of differentiability of V .

Step 2 alternative: We now work under Assumptions EC, H, S3 and R3. By Lemma 3, we know that

for each x, V (x, z) = V ζζ(x, z), Pz|x almost everywhere, and Pz|x is absolutely continuous with respect

to Lebesgue measure, by Lemma 4. We will prove that V is therefore approximately differentiable Pz|x

almost everywhere, with ∇ap,zV (x, z) = ∇zV
ζζ(x, z), where ∇ap,zV (x, z) denotes the approximate gradient

of V (x, z) with respect to z.

Definition 7 (Approximate differentiability). If we have

lim
r↓0

|Br(x) ∩E|

|Br(x)|
= 1,

where |B| is Lebesgue measure of B, Br(x) is an open ball of radius r centered at x, and E ⊆ R
d is a

measurable set, x is called density point of E. Let x0 be a density point of a measurable set E ⊆ R
d and

let f : E → R be a measurable map. If there is a linear map A : Rd → R such that, for each η > 0, x0 is a

density point of
{

x ∈ E : −η ≤
f(x)− f(x0)− A(x− x0)

‖x− x0‖
≤ η

}

,

then f is said to be approximately differentiable at x0, and A is called the approximate gradient of f at x0.

Remark 14. The approximate differential is uniquely defined, as shown below Definition 10.2 page 218 of

Villani (2009).

By Lemma 3, we have V = V ζζ , Pz|x almost everywhere. Moreover, as a ζ conjugate, V ζζ is locally

Lipschitz by Lemma C.1 of Gangbo and McCann (1996), hence differentiable Pz|x-almost everywhere by

Rademacher’s Theorem (see for instance Villani (2009), Theorem 10.8(ii)). Hence, there exists a set S of

full Pz|x measure such that, for each z0 ∈ S,
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(1) V ζζ(x, z) is differentiable with respect to z at z0.

(2) V (x, z0) = V ζζ(x, z0).

By Lebesgue’s density theorem (still denoting Lebesgue measure of B by |B|),

lim
r↓0

|S ∩Br(z)|

|Br(z)|
= 1

for Lebesgue almost every z ∈ Z, hence also for Pz|x almost every z, by the absolute continuity of Pz|x.

Since S has Pz|x measure 1, the set S̄ of density points of S,

S̄ =

{

z ∈ S : lim
r↓0

|S ∩ Br(z)|

|Br(z)|
= 1

}

,

therefore has Pz|x measure 1. Take any density point z0 of S, i.e., z0 ∈ S̄. Fix η > 0. Since z0 ∈ S̄ ⊆ S, V ζζ

is differentiable at z0. Hence there is r > 0 such that for all z ∈ Br(z0),

−η ≤
V ζζ(z)− V ζζ(z0)−∇zV

ζζ(z0) · (z − z0)

‖z − z0‖
≤ η.

Since V ζζ = V on S, for all z ∈ Br(z0) ∩ S, we have

−η ≤
V (z)− V (z0)−∇zV

ζζ(z0) · (z − z0)

‖z − z0‖
≤ η.

Therefore Br(z0) ∩ S = Br(z0) ∩ S̃, where

S̃ :=

{

z ∈ S : −η ≤
V (z)− V (z0)−∇zV

ζζ(z0) · (z − z0)

‖z − z0‖
≤ η

}

.

As z0 is a density point of S,

lim
r↓0

|S̃ ∩ Br(z0)|

|Br(z0)|
= lim

r↓0

|S ∩Br(z0)|

|Br(z0)|
= 1,

so that z0 is also a density point of S̃, which means, by definition, that V is approximately differentiable

at z0, and that its approximate gradient is ∇ap,zV (x, z0) = ∇zV
ζζ(x, z0). The latter is true for any z0 ∈ S̄

and S̄ has Pz|x measure 1. Hence, V is approximately differentiable Pz|x almost everywhere.

Step 3: Since by Step 2 or Step 2 alternative, V (x, z) is approximately differentiable Pz|x almost surely,

and since Ū(x, z) is differentiable by assumption, p(z) = V (x, z) − Ū(x, z) is also approximately differen-

tiable Pz|x almost surely. Since, by Step 1, the inverse demand function ε(x, z) is uniquely determined, the

first order condition ∇zζ(x, ε(x, z), z) = ∇app(z)−∇zŪ(x, z) identifies ∇zŪ(x, z), Pz|x almost everywhere,

as required. �

Proof of Theorem 4(2). In Part (1), we have shown uniqueness (up to location) of the pair (V, V ζ) such

that V (x, z) + V ζ(x, ε) = ζ(x, ε, z), π-almost surely. By Theorem 7, this implies that (V, V ζ) is the unique

(up to location) pair of ζ-conjugates that solves the dual Kantorovitch problem as required.
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