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Abstract

Firm-level productivity shocks can help understand sector- and macroeconomic-level outcomes.

Capturing the market power of these firms is important: it determines how productivity gains

translate into prices and markups. In existing models, firms do not internalize the impact of their

systemic size. This paper explores the alternative oligopolistic market structure. To this end, I

build a tractable multi-sector heterogeneous-firm general equilibrium model featuring oligopolis-

tic competition and an input-output (I-O) network. By affecting price and markup, firm-level

productivity shocks propagate both to the downstream and upstream sectors. Sector-level com-

petition intensity affects the strength of these new propagation mechanisms. The structural im-

portance of a firm is determined by the interaction of (i) the sector-level competition intensity,

(ii) the firm’s sector position in the I-O network, and (iii) the firm size. In a calibration exercise,

the aggregate volatility arising from independent firm-level shocks is 34% of the one observed in

the data.
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1 Introduction

Firm-level productivity shocks can explain an important part of movement in prices and output at

the sector and macroeconomic level.1 The market power of these firms in their sector, that is, the

market structure, determines how productivity gains translate into prices and markups, and, thus,

how they affect the economy. Imperfect competition appears to describe many markets more accu-

rately than perfect competition: a variety of market structures exist. But how important is the variety

of market structures for sector- and macroeconomics-level variables? In particular, how important is

the variety of market structures for understanding the propagation of firm-level productivity shocks

through the input-output (I-O) network? This is the question analyzed in this paper. The idea be-

hind the micro-origin of aggregate fluctuations is that a handful of large firms represent a large share

of a sector, and thus shocks hitting these large firms cannot be balanced out by the shocks affecting

smaller firms. However, the typical model is restrictive regarding the nature of competition within

a sector: firms are large enough to have a systemic importance, but these firms do not internalize

it when they make their decisions. For example, a firm whose sales represent 50% of its market be-

haves as if prices were given. This paper explores the alternative oligopolistic market structure in

which firms do take into account the effect of their decisions on sector-level price and quantity. The

propagation of firm-level shocks to sector- and aggregate-level variables is shown to depend on the

competition intensity, the I-O network, and the firm size.

Table 1 and Figure 1 motivate this paper: sectors are concentrated and linked through a “small-

world” I-O network. Table 1 shows summary statistics of the top four firms’ share of industry rev-

enue in 2002, 2007, and 2012 for around 970 industries. Industry revenue accounted for by the top

four firms varies from almost zero to close to 100%, with a median value close to 33% in 2007. The

first thing to note is that large firms represent an important share of revenue of the median sector.

Second, because concentration is a widely used measure of a sector’s competition intensity, this ta-

ble also suggests different sectors have different competition levels. For the bottom 25% of these

sectors, the top four firms account for less than 18% of the total industry revenues, whereas for the

top 25% of these sectors, only four firms account for more than 50% of the total industry revenues.

While confirming the “granular” nature of these sectors, this table emphasizes the heterogeneity

across sectors of the intensity of competition. In addition, these sectors are not independent from

each other: production in one sector relies on a complex and interlocking supply chain. Figure 1

displays the I-O network among 389 sectors for the United States in 2007. This is a “small-world”

network: a few nodes are connected to many other nodes. In such production networks, as Ace-

moglu et al. (2012) and Carvalho (2010) show, these highly-connected sectors propagate sector-level

fluctuations, which translate into sizeable aggregate fluctuations.

1An important paper in the literature on the micro-origin of aggregate fluctuations is the seminal work by Gabaix (2011)
that shows that when the firm-size distribution is fat-tailed, firm-level shocks do not wash out at the aggregate. Building on
this seminal work, Carvalho and Grassi (2017) show that firm dynamic models contain a theory of business cycles as soon

as the continuum of firms’ assumption is relaxed. Acemoglu et al. (2012), Carvalho (2010, 2014), and Baqaee (2016) build
on the multi-sector business-cycle framework of Long and Plosser (1983) to show how shocks on sectors linked through an
I-O network can translate into aggregate fluctuations. Earlier contributions include Jovanovic (1987), Durlauf (1993), and
Bak et al. (1993).
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Table 1: Top 4 firms’ share of total industry revenues

Year Mean Q1 Q2 Q3 Std

2002 35.4 17.6 31.1 51.0 23.0

2007 37.2 18 32.9 53.2 23.8

2012 35.0 16.2 31.2 50.1 22.9

NOTE: Summary statistics of the distribution of the top four firms’ share of total industry revenues across 970 industries.

The second column is the unweighted mean, the third column is the first quartile, the fourth column is the median, the

fifth column is the third quartile, and the sixth column is the strandard deviation. Source: US Census Bureau, 6-digit NAICS

industries, all sectors except 11 , 21, 23, 55 , and 92.

In this paper, I characterize how the structural importance of a firm depends on the interaction

between the competition intensity, the I-O network, and the firm size.2 Furthermore, I show how

the intensity of competition affects the propagation of firm-level shocks in the I-O network. Fi-

nally, I quantify how much aggregate volatility can be generated by independent firm-level shocks.

To this end, I build a tractable multi-sector heterogeneous-firm general equilibrium model featur-

ing oligopolistic competition and an I-O network. Within each sector, a finite number of hetero-

geneous firms are subject to oligopolistic competition and set variable markups à la Atkeson and

Burstein (2008). These firms are subject to persistent idiosyncratic (labor-augmenting) productivity

shocks that translate into sector-level and aggregate fluctuations.

The mechanism by which a firm affects sector- and aggregate-level output is as follows. Consider a

sector with a finite number of heterogeneous firms and assume that an already-large firm is subject

to a positive productivity shock. Following this shock, the sector’s average productivity increases

because the productivity of one firm has increased. Because this firm was already large before the

shock hit, the sector becomes even more concentrated. This firm-level shock has two opposite ef-

fects on price and output at the sector level. First, because of the increase in average productivity,

the sector good is cheaper and output increases. Second, because of the increase in concentration,

competition in the sector decreases: this large firm is larger and can use its size to extract even more

profit and charge a higher markup. It follows that the reduction in competition intensity mitigates

the decrease in price and increase in output.

These changes in prices and output propagate to the other sectors via the I-O network through two

channels. First, the fall in price reduces the marginal cost of downstream sectors. Indeed, the down-

stream sectors use this good as an input to produce. These downstream sectors also reduce their

price, and the downstream of these downstream sectors see their marginal cost fall. Ultimately, ev-

ery downstream sector reduces its price, which results in an increase in the real wage. Because the

decrease in competition intensity mitigates the initial fall in price, it also determines the strength of

this downstream propagation mechanism. Second, the decrease in competition also propagates to

the upstream sectors. Indeed, lower competition increases the sector’s profit share and reduces its

input share. It follows that the demand faced by upstream sectors falls. But, these upstream sec-

2The structural importance of a firm is, here, the elasticity of aggregate output to the productivity of this firm.
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Figure 1: The US I-O Network in 2007

NOTE: Larger nodes of the network represent sectors supplying inputs to many other sectors. A darker color represents the

higher top four firms’ share of total revenues in 2007 (sectors without available data are left white). The figure represents

389 sectors. Source: Bureau of Economic Analysis, detailed I-O table for 2007 and Census Bureau. The figure is drawn with

the software package Gephi.
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tors are also reducing the demand for their inputs. In turn, the demand faced by the suppliers of

these upstream sectors is also reduced. This upstream propagation mechanism ultimately affects

the repartition of income across sectors, and between profit and labor income.

Through these downstream and upstream propagation mechanisms, the increase in productivity

of one firm in one sector affects the real wage, the repartition of income between labor and profit,

and the aggregate output. Note that the above intuition traces the particular effect of a shock on

an already-large firm in one sector. In this paper, a large integer number of firms are subject to

persistent independent productivity shocks across a large integer number of heterogeneous sec-

tors. These shocks translate into non-negligible sector- and aggregate-level fluctuations through

the downstream and upstream propagation mechanisms. Because large firms are disproportionaly

important, the diversification across firms’ shocks in a sector is weak: the “granular hypothesis” of

Gabaix (2011) is at play. The diversification across sectors is dampened because of the “small-world”

nature of the I-O network as shown by Acemoglu et al. (2012) and Carvalho (2010).

In this model, up to an approximation, only two sufficient statistics at the sector level are needed

to solve for the equilibrium allocation analytically. For each sector, the first statistic is the cross-

sectional sum of firm-level productivity, whereas the second statistic is the cross-sectional Herfind-

ahl index of firm-level productivity. The high degree of tractability allows me to compute the elastic-

ity of sector- and aggregate-level prices and income shares.

I show the effect of the change in productivity of a firm in a given sector on aggregate output is a func-

tion of four characteristics. First is the sector’s concentration, which determines the competition

intensity in that sector and, thus, how much a shock to a firm translates into a change in sector-level

markup and price. Second is the sector centrality, which measures that sector’s direct and indirect

importance in the household’s consumption bundle. This characteristic relates to the transmission

of firm-level shocks to downstream sectors. Third is the sector’s profit share over its whole sup-

ply chain, which measures the profits that the sector captures directly and indirectly (through the

I-O network). This characteristic relates to the propagation of firm-level shocks to upstream sectors.

The fourth characteristic is the firm size, which interacts with all characteristics, and determines the

strength of the downstream and upstream propagation.

Furthermore, I show that a change in a firm’s productivity in a given sector propagates to the price of

downstream sectors and to the sales share of upstream sectors. Because of oligopolistic competition,

a change in one firm’s productivity does not pass through fully on sector-level price, but it affects the

profit and cost share. The change in price propagates to downstream sectors but is either reduced

or magnified, relative to the full-pass-through case, depending on the competition intensity and the

identity of the firm subject to the shock. Because the change in profit share affects the demand

for inputs, it propagates to upstream sectors and affects their sales as a share of output. The sign

of this upstream propagation mechanism is jointly determined by the competition intensity and

the identity of the firm. The latter mechanism requires both oligopolistic competition and an I-O

network.

Thanks to the high tractability of the model and the fact that the equilibrium is characterized by
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only two sector-level sufficient statistics, I can calibrate this economy by relying only on the US

Census Bureau’ concentration data which pin down sectors’ competition intensity, and the Bureau

of Economic Analysis (BEA)’s I-O data. For the benchmark calibration, the output volatility that

comes out of simulation is 34% of what is observed in the data. In the model, the volatility of the

labor-income share is about 11% of the aggregate volatility, whereas the volatility in wage due to

the change in competition intensity represents almost 16% of aggregate volatility. Furthermore, the

effect of competition on sector-level volatility is heterogeneous across sectors.

Related Literature: This paper contributes to the literature on the micro-origin of aggregate fluc-

tuations. This literature is based on two mains ideas: the “granular hypothesis” and the network

origin. For the former, seminal work by Gabaix (2011) shows that whenever the firm-size distribu-

tion is fat-tailed, idiosyncratic shocks do not average out quickly enough and therefore translate

into sizable aggregate fluctuations. Carvalho and Grassi (2017) ground the “granular hypothesis”

in a well-specified firm-dynamic setup. For the latter, Acemoglu et al. (2012) and Carvalho (2010)

show that when the distribution of sectors’ centrality in the I-O network is fat-tailed, sector-level per-

turbations also generate sizable aggregate fluctuations. Relative to these papers, I present the first

framework that includes both components explicitly. The “granular hypothesis” leads to sector-level

fluctuations, whereas the I-O network structure translates sector-level fluctuations into aggregate

fluctuations.3 An important drawback of this literature is that firms are assumed to be large enough

to influence the aggregate but also small enough not to be strategic. Here, I present the first model of

strategic pricing, in which aggregate fluctuations arise from purely idiosyncratic shocks. When they

are making their decisions, firms do take into account the fact that they have market power and can

influence their sector’s output and price.

Recently, Baqaee and Farhi (2017a) revisited the famous and influential result by Hulten (1978) that,

in efficient economies, the first-order impact of a productivity shock to a firm on aggregate output

is equal to that firm’s sales as a share of output. The framework presented here is not subject to

this result, because the economy is not efficient. Therefore, it is closer to Basu (1995), Basu and

Fernald (2002), Jones (2011, 2013), Bigio and La’O (2016), or Baqaee and Farhi (2017b), who study

the introduction of distortions in a multi-sector macroeconomic model with production networks.

In contrast to all of these papers, here, firm-level productivity shocks endogenously affect markups,

which generate the distortions in this economy.

An important literature studies the transmission of shocks across sectors through the I-O network:

Acemoglu et al. (2015) look at the transmission of well-identified supply and demand shocks; Car-

valho et al. (2016) and Boehm et al. (2016) study the firm-level impact of supply-chain disruptions

occurring in the aftermath of the Great East Japan Earthquake in 2011, and Barrot and Sauvagnat

(2016) look at the effect of natural disasters. Baqaee (2016) studies theoretically the effect of shocks

on entry cost. In this paper, I introduce a new propagation mechanism of firm-level shocks in the I-

O network through changes in sector-level competition, which act as supply shocks to downstream

3Notable contribution, in this literature include but are not limited to di Giovanni et al. (2014), Magerman et al. (2016),
and Baqaee and Farhi (2017a).
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sectors and demand shocks to upstream sectors. Firm-level shocks propagate both downstream and

upstream despite the Cobb-Douglas assumption; furthermore, firm size and the sector-level com-

petition intensity jointly determine the strength of the downstream propation and the sign of the

upstream propagation.

This paper also contributes to the literature on imperfect competition among heterogeneous firms.

Krugman (1979), Ottaviano et al. (2002), Melitz and Ottaviano (2008), Bilbiie et al. (2012), and Zh-

elobodko et al. (2012) study demand-side pricing complementarities, whereas I study at supply-side

pricing complementarities as in Atkeson and Burstein (2008) but in an I-O context. Furthermore, I

show, up to an approximation, that such a model is highly tractable and that firm heterogeneity can

be summarized at the sector level by just two sufficient statistics.

Finally, this paper relates to a recent and growing empirical literature that documents and analyzes

the macroeconomic consequences of the rise in market concentration in the United States. Barkai

(2017), Autor et al. (2017), and Kehrig and Vincent (2017) explain the secular declines in labor share

from the increase in sector-level and firm-level concentration, whereas Loecker and Eeckhout (2017)

document an increase in firm-level markup, which they relate to a number of secular trends in the

last three decades. Even if the focus of this paper is different, it contributes to this literature by pro-

viding a simple and tractable model to analyze the aggregate consequence of market concentration.

For example, market concentration is shown here to be driving sector-level markup and therefore

the profit and labor share.

Outline: The paper is organized as follows. In Section 2, I describe and solve the household’s and

firm’s problem. In Section 3, I first aggregate firms’ behavior at the sector level and show that firm

heterogeneity can be summarized by two sufficient statistics. I then solve for the dynamics of these

two statistics. In Section 4, I show that a firm’s sector market structure, its role in the I-O network,

and the firm’s size jointly determine its structural importance. In Section 5, I look at how firm-level

productivity shocks propagate to other sectors through the I-O network. In Section 6, I calibrate the

model and perform some quantitative exercises. Finally, Section 7 concludes.

2 Model

In this section, I describe the structure of the economy and solve for the household and firms’ prob-

lem. Two types of agent exist. First, a representative household consumes and supplies labor. Sec-

ond, a finite number of firms are distributed across a finite number of sectors that are linked by

a production network. In each sector, firms set their price (or quantity) strategically. Each firm is

subject to independent persistent idiosyncratic shocks.

2.1 Household

The representative household lives a discrete and infinite number of periods. Preferences are given

by E0
∑∞

t=0 ρ
tu(Ct, Lt), where u(Ct, Lt) is the instantaneous utility, ρ is the discounted rate, Ct is the

6



composite consumption good, and, Lt is the number of hours worked at time t.

The composite consumption good Ct is a Cobb-Douglas aggregation of N ∈ N sector-level goods:

Ct = θ
∏N

k=1C
βk

k,t, whereCk,t is the amount of good k consumed by the household at time t and where

θ is a normalization constant.4 The Cobb-Douglas weights, βk, are equal to the expenditure shares of

each good
Pk,tCk,t

PC
t Ct

, where Pk,t is the price of good k and PC
t is the aggregate price index that satisfies

PC
t =

∏N
k=1 P

βk

k,t . Note that N is an integer number.

In a sector k, an integer number, Nk, of varieties exists indexed by i. These varieties are aggregated

with a constant elasticity of substitution εk > 1 such that Ck,t =
(∑Nk

i=0 Ct(k, i)
εk−1

εk

) εk
εk−1

, where

Ct(k, i) is the amount of sector k’s variety i consumed by the household at time t. Finally, the price

of good k satisfies Pk,t =
(∑Nk

i=1 Pt(k, i)
1−εk

) 1

1−εk , where Pt(k, i) is the price of variety i in sector k at

time t. Each variety is produced by exactly one firm, and all the firms are owned by the representative

household.

The above household preferences and the assumption that εk > 1 capture the idea that as one is

dissagregating further, from sectors to firms, the household can more easily substitute between two

dissagregating units. Furthermore, the degree of substitution between two varieties of the same good

is higher that between two varieties of two different goods.

2.2 Firms

An integer number of firms are split into N sectors. Sector k contains Nk firms and each variety is

produced by exactly one firm. Firms are heterogeneous in their (labor-augmenting) productivity. A

sector is defined as a technology and a market structure: (i) firms in the same sector have access

to the same production function and (ii) these firms compete with each other in a differentiated

Bertrand or Cournot game. At the end of this section, I show the implied firm dynamics in this

model are consistent with recent empirical evidence.

Technology: The firm i in sector k combines labor, Lt(k, i), and other sectors’ goods, xt(k, i, l),

to produce yt(k, i) units of its variety using the constant return-to-scale Cobb-Douglas technology

yt(k, i) = αk

(
Zt(k, i)Lt(k, i)

)γk ∏N
l=1 xt(k, i, l)

ωk,l , where γk is the labor share in the production,αk is a

normalization constant,5 Zt(k, i) is the labor-augmenting productivity specific to the firm i in sector

k, and ωk,l is the input share of sector l’s goods needed in sector k’s production. The (N ×N) matrix

Ω = {ωk,l}k,l represents the I-O network.6 Thanks to constant return-to-scale, the kth rows of Ω sum

to 1 − γk:
∑N

l=1 ωk,l = 1 − γk. Furthermore, xt(k, i, l) is a composite of sector l’s varieties such that

xt(k, i, l) =
(∑Nl

j=1 xt(k, i, l, j)
εl−1

εl

) εl
εl−1

, where xt(k, i, l, j) is the quantity of the variety j of sector l’s

good that is used for the production of variety i of sector k’s good. Note the elasticity of substitution

among varieties in a sector is the same for firms and for the household.

4The normalization constant θ makes the mathematics simpler and is equal to θ =
∏N

k=1 β
−βk
k .

5The normalization constant αk makes the mathematics simpler and is equal to αk = γ
−γk
k

∏N
l=1 ω

−ωk,l

k,l .
6The notation U = {uk,l}k,l means U is the matrix where the element k, l is equal to uk,l, whereas I denote v = {vk}k as

the vector where the element k is equal to vk .
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Figure 2: Productivity Process

nt,k,int,k,i − 1 nt,k,i + 1

ak

bk = 1− ak − ck

ck

NOTE: A representation of the transition probabilities in assumption 1 of a firm i in sector k for Mk > nt,k,i > 0.

The I-O network Ω is assumed to be fixed across time and state, because it is a sector-level network.

Here the I-O linkages are interpreted as technology: the input bundle needed to produce the variety

of a good. At the business-cycle frequency, the labor-augmenting firm-level productivity shocks

that are considered here do not affect this technology. However, if one firm in a sector significantly

increases the price of its variety, its customers are able to substitute away from this variety thanks to

the double-nested constant-elasticity-of-substitution demand system. Therefore, even if the sector-

level I-O linkages are fixed, the transaction network between firms is not and varies across time and

state.7

The productivity of firm i in sector k, Zt(k, i), is identically and independently distributed across

firms but not across time. It follows a sector-specific Markov chain over the discrete state space,Φk =

{1, ϕk , ϕ
2
k, · · · , ϕn

k , · · · , ϕMk

k } = {ϕn
k}n∈{0,1,...,Mk} for ϕk > 1, which is evenly distributed in logs.8 This

Markov chain is described by the matrix of transition probabilities P(k) = {P(k)
n,n′}n,n′ where P(k)

n,n′ =

P
(
Zt+1(k, i) = ϕn′

k |Zt(k, i) = ϕn
k

)
is the probability that a firm i in sector k jumps from productivity

level ϕn
k to ϕn′

k between time t and time t + 1. In some cases, I assume a specific Markovian chain,

which is a discretization of a random growth process and is taken from Córdoba (2008). Figure 2 and

Assumption 1 describe its transition probabilities.

Assumption 1 (Random Growth) For ak + bk + ck = 1, firm-level productivity in sector k follows a

Markov chain over Φk = {ϕn
k}n∈{0,1,...,Mk} with transition probabilities such that:

P(k) =




ak + bk ck 0 · · · · · · 0 0

ak bk ck · · · · · · 0 0

· · · · · · · · · · · · · · · · · · · · ·

0 0 0 · · · ak bk ck

0 0 0 · · · 0 ak bk + ck




Pricing: A sector is also defined as a market in which firms are engaged in imperfect competition.

Sector’s goods are imperfect substitutes and varieties within a sector are more substitutable: εk > 1.

Each firm produces exactly one variety of its sector’s good, and customers cannot perfectly substitute

7This assumption differs from Magerman et al. (2016) who study the micro-origin of firm-level shocks in a fixed firm-
to-firm transaction network.

8This assumption implies ϕn+1
k /ϕn

k = ϕk.
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between two varieties: εk < ∞. Following Atkeson and Burstein (2008), I assume firms play a static

game where firm i in sector k chooses its price Pt(k, i) taking as given the prices chosen by other

firms in the economy, the other sectors’ price and quantities, the wage, and, aggregate prices and

quantities. Importantly, note that this firm recognizes that sector k’s price and quantity are affected

when it changes its price.

To understand this assumption, imagine General Motors (GM) has a way to produce a car that costs

$10,000 less than its competitors. The above assumption implies that when GM is making its pricing

decision, it is internalizing the impact of its decision on the quantity and price of the “Automobile

Manufacturing” sector but not on the “Amusement Parks and Arcades” sector. Note that with these

assumptions in place, GM is not internalizing the impact of its pricing decision on the real wage

and on the prices and quantities of its upstream or downstream sectors. Relaxing these assumptions

might create effects that will go beyond the scope of this paper, and I leave these questions for future

research.9

Note that here I assume a competition in price (labeled as Bertrand). In most of the results below, I

compare the baseline case of Bertrand competition with (i) the case of Cournot competition where

firms compete in quantity and (ii) with the benchmark case of monopolistic Dixit and Stiglitz (1977)

competition. When doing so does not create confusion, I abstract from the time t subscript.

As a result of cost minimization, firm i in sector k faces a marginal cost λ(k, i) =

Z(k, i)−γkwγk
∏N

l=1 P
ωk,l

l , where w is the wage rate in this economy. Note that due to the presence

of I-O linkages, this marginal cost is a function of other sectors’ prices. The sector-level gross output

is defined as Yk =
(∑Nk

i y(k, i)
εk−1

εk

) εk
εk−1

. Proposition 1 characterizes the pricing decision of a firm i

in sector k.

Proposition 1 (Firm’s Pricing) Firm i in sector k sets a price P (k, i), a markup µ(k, i) and has a sale

share s(k, i) that satisfies the following system of equations:

P (k, i) = µ(k, i)λ(k, i)

s(k, i) =
P (k, i)y(k, i)

PkYk
=

(
P (k, i)

Pk

)1−εk

µ(k, i) =





εk
εk−1 Under Monopolistic Competition
εk−(εk−1)s(k,i)

εk−1−(εk−1)s(k,i) Under Bertrand Competition
εk

εk−1−(εk−1)s(k,i) Under Cournot Competition.

Proof See Atkeson and Burstein (2008). �

The first thing to note in the above proposition is that firms charge a markup over their marginal

cost. Under monopolistic Dixit and Stiglitz (1977) competition, the markup is constant and equal to

εk/(εk − 1). Under oligopolistic competition (Bertrand or Cournot), the markup charged is increas-

ing in the sales share of the firm: larger firms charge a higher markup.

9Another interpretation of the assumptions made here is that firms have limited ability to compute the effect of their
decision on any variable outside their sector’s price and quantity. This assumption is fundamentally different from the
Atkeson and Burstein (2008) framework because, in their paper, they assume a continuum of sectors: even if firms are not
atomistic within a sector, a firm’s sector is atomistic with respect to the aggregate economy.
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Note that in both the Bertrand and Cournot competition case, the markup a firm charges is con-

verging to a constant as the size of this firm goes to zero. Indeed, for firm i in sector k, we have

µ(k, i) → εk/(εk − 1) as s(k, i) → 0. As a firm becomes atomistic, its markup approaches the one un-

der monopolistic competition. Because the system of equation in Proposition 1 does not admit an

analytical solution, aggregating firms’ behavior at the sector level in a tractable way turns out to be

impossible. To circumvent this issue, Proposition 2 is approximating the sales share of a firm under

oligopolistic competition by the sales share of this firm under monopolistic competition. In Section

3, this result is used to collapse firms’ heterogeneity to two sector-level statistics.

Proposition 2 (Firm’s Approximation) The sales share of firm i in sector k under monopolistic com-

petition is a function of its marginal cost λ(k, i) and the sector k price index: ŝ(k, i) =
(

εk
εk−1

λ(k,i)
Pk

)1−εk
.

When ŝ(k, i) → 0, the sales share of this firm under oligopolistic competition, s(k, i), satisfies

s(k, i) =





ŝ(k, i)−
(
1− ε−1

k

)
ŝ(k, i)2 + o

(
ŝ(k, i)2

)
Under Bertrand Competition

ŝ(k, i)− (εk − 1) ŝ(k, i)2 + o
(
ŝ(k, i)2

)
Under Cournot Competition.

where the notation f(x) = o
(
g(x)

)
means f(x)/g(x) → 0 when x→ 0.

Proof See Appendix A.1. �

In this proposition, the sales share of firm i in sector k is approximated by the sales share under

monopolistic competition ŝ(k, i). Because a one-to-one mapping exists between the marginal cost

and ŝ(k, i) for a fixed sector price index Pk, one can think of this result as an approximation of the

sales share of firms as a simple function of their marginal cost. Similarly, the above results hold when

ŝ(k, i) is small or, because εk > 1, when the marginal cost λ(k, i) is large.

The framework derived in this paper is designed to capture the aggregate effect of shocks on “large”

firms, whereas the results in Proposition 2 hold for “small” firms in their market. Therefore, knowing

if “small” in the sense of the approximation in Proposition 2 is “small” economically is important.

Figure 3 displays on the left panel the sales share under Bertrand competition as a function of the

sales share under monopolistic competition along with the second- and third-order approximation.

The right panel of this figure displays percentage deviations of the approximations with respect to

the exact solution. For sales share up to 20%, the error made by the second-order approximation

is less than 1.5%: “small” for the approximation in Proposition 2 is thus not small economically. To

aggregate the firms’ behavior at the sector level, in some cases, I assume this approximation holds.
10, 11

Assumption 2 (Approximation) In Proposition 2’s approximation, higher-order terms are negligible.

10For conciseness, the third-order approximation is not reported in the formula in Proposition 2 but can be found in the
proof of this proposition in Appendix A.1.

11A concern could be that this approximation holds well only in levels and not in term of slopes. Figure 10 in Online
Appendix E shows that for sales share up to 20%, the error made on the slope is less than 5%. Another concern might be
that the quality of this approximation depends on the value of the elasticity across varieties in a sector εk. Figures 11 and
?? in Online Appendix E show the quality of the approximation is of the same order for different values of εk.
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Figure 3: Approximation of Firms’ Sales Share
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NOTE: For εk = 5. The left panel shows the Bertrand sales share using a numerical solver, the second- and the third-

order approximation as a function of the monopolistic sales share. The right panel shows the percentage deviation of both

approximations with respect to the numerical solution.

Firm Dynamics: To conclude the description of the model, let us look at its implication in term

of firm dynamics. Under Assumption 1, the productivity of a given firm satisfies Gibrat’s law: the

growth rate is independent of the level. In particular, the level of productivity does not affect the

mean and the volatility of its growth rate. However, here Gibrat’s law is violated for a firm’s sales:

the larger a firm, the larger its market power and the less sensitive its sales are to a change in its

marginal cost. Indeed, the firm-level markup adjusts, and thus the pass-through of shock to price is

incomplete. Proposition 3 formalizes this reasoning.12

Proposition 3 (Size-Volatility) Under Assumptions 1 and 2, the (conditional) variance of the growth

rate of firm i in sector k’s productivity and sales share satisfies:

Vart

[
Zt+1(k, i) − Zt(k, i)

Zt(k, i)

]
= σ2k and Vart

[
st+1(k, i) − st(k, i)

st(k, i)

]
= gk(ŝt(k, i))σ

2
k

where σ2k = a
(
ϕ−1
k − 1

)2
+ c (ϕk − 1)2 − (aϕ−1

k + b + cϕk − 1)2 and gk : x 7→ gk(x) is a decreasing

function. Furthermore, the slope of gk is increasing in εk.

Proof See Online Appendix F.1. �

The fact that larger firms tend to be less volatile is well established. Recently, Yeh (2017) explored em-

pirically the possible mechanisms that could give rise to such a negative relationship between size

and volatility at the firm level. After ruling out diversification among establishments or products, he

concludes that large firms face smaller price elasticities and therefore respond less to a given-sized

12Gibrat’s law was first introduce by Gibrat (1931). See also Sutton (1997) for a review.
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productivity shock than small firms do. In the current framework, the reason behind the negative

size-volatility relationship of Proposition 3 is exactly the one identified by Yeh (2017).13

The simple demand system and the market structure assumed here, together with the random

growth process for productivity implies, a rich and empirically relevant firm dynamic. As the rest of

this paper shows, non-negligible sector-level and aggregate fluctuations arise from firm-level pro-

ductivity shocks despite the fact that larger firms are less volatile.

3 Sector Aggregation

The model derived above describes an economy in which a finite number of firms, subject to pro-

ductivity shocks, evolve and compete in their sector. The behavior and the dynamics of these firms

shape the sector-level variables. This section characterizes the mapping between firm-level and

sector-level variables. It shows the latter are related to a few moments of the distribution of firms

whose dynamics are solved for.

This section is organized as follow. First, I introduce two key sector-level statistics. Second, I derive

the relationship between sector-level markup and concentration before describing the equilibrium

under Assumption 2. Finally, I describe the sector dynamics under Assumptions 1 and 2.

3.1 Two Statistics

In the model described in Section 2, given the distribution of productivity Zt(k, i) at each time t, one

can solve for the equilibrium allocation. The distributions of productivity in each sector are the state

variables of this economy. I introduce two moments of these distributions that turn out to be key to

describe the equilibrium allocation under Assumption 2.

For a given sector k, the first statistic is the sum of the productivity of sector k’s firms raised at a

power that takes into account the downward-sloping demand and the decreasing return in labor:

Zt,k =

Nk∑

i=1

Zt(k, i)
(εk−1)γk .

This statistic is proportional to the unweighted average of firm-level productivity (raised at a power)

in sector k and is therefore related to the first moment of the firm’s productivity distribution in that

sector. Note that sector k contains an integer number of firms Nk; therefore, when the productivity

of one firm changes, this finite sum of productivity changes. More precisely, the elasticity of Zt,k

with respect to the productivity of firm i in sector k is ∂ logZk

∂ logZ(k,i) = (εk − 1)γk
Z(k,i)(εk−1)γk

Zk
> 0. If a

continuum of firms rather than an integer number of firms existed then this elasticity would always

be zero.

13Empirical studies that identified a negative size-volatility relationship at the firm level are Comin and Philippon (2006)
and Comin and Mulani (2006) for publicly listed US firms, Fort et al. (2013) and Foster et al. (2008) for US manufacturing
firms, and di Giovanni et al. (2014) using a census of French firms.
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The second statistic is related to the second moment of the firms’ productivity distribution in sector

k. It is the sum of the square of firms’ productivity shares in Zt,k: the Herfindahl index of productivi-

ties in sector k:

∆t,k =

Nk∑

i=1

(
Zt(k, i)

(εk−1)γk

Zt,k

)2

.

This statistic captures the dispersion of productivity across firms in a sector. The Herfindahl index

is a widely used measure of concentration. Note this Herfindahl index is among firm-level produc-

tivity and therefore is not directly observable. Because of the finite number of firms in sector k,

when the productivity of firm i in sector k changes, the concentration measure ∆t,k changes too:
∂ log∆k

∂ logZ(k,i) =
2
∆k

(
Z(k,i)(εk−1)γk

Zk
−∆k

)
∂ logZk

∂ logZ(k,i) . Note the elasticity of ∆t,k with respect to Z(k, i) can be

positive or negative depending on the productivity level of firm i in sector k relative to the concen-

tration measure ∆t,k. When the productivity of a “large” firm increases, that is for Z(k,i)(εk−1)γk

Zk
> ∆k,

the concentration of productivity increases. Conversely, when the productivity of a “small” firm in-

creases, that is for
Z(k,i)(εk−1)γk

Zk
< ∆k, the concentration of productivity decreases.

Before describing the dynamics of these statistics under Assumption 1, I show these two statistics

are sufficient to characterize the equilibrium allocation under Assumption 2.

3.2 Sector’s Allocation

In this subsection, I solve for the sector-level allocation. I start by defining the sector-level markup

and productivity, before characterizing the sector-level allocation under Assumption 2. Because

firms’ decisions are static, I abstract from the time t subscript in this section.

Markup: An important variable is the sector-level markup. This markup is defined as the sector-

level price divided by the sector-level marginal cost. For a given sector k, the marginal cost is defined

as λk = dTCk

dYk
, where TCk is the total cost in sector k: TCk =

∑Nk

i=1 λ(k, i)y(k, i). Note that in the

context of constant return-to-scale, the marginal cost is also equal to the average cost; therefore,

λk = TCk

Yk
=
∑Nk

i=1 λ(k, i)
y(k,i)
Yk

. After using the fact that firm-level price is a markup over the marginal

cost, it is easy to see the sector-level markup µk is

µk =
Pk

λk
=

(
Nk∑

i=1

µ(k, i)−1s(k, i)

)−1

. (1)

The sector’s markup is a sales-share-weighted harmonic average of firm-level markups. This expres-

sion is valid as long as firms charge a markup over the marginal cost. It therefore applies to any of

the market structure assumed here: monopolistic, Bertrand, and Cournot.

Proposition 4 shows the sector-level markup is a function of the sector-level concentration index.

In particular, the directly observable Herfindahl-Hirchman-Index (HHI), the sum of the sales share
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squared, plays an important role.

Proposition 4 (Sector-Level Markup) The sector k’s markup is equal to

µk =





εk
εk−1 Under Monopolistic competition

εk
εk−1

(
1− 1

εk−1

∑∞
m=2

(
εk−1
εk

)m−1
(HKk(m))m

)−1

Under Bertrand competition

εk
εk−1 (1−HHIk)

−1 Under Cournot competition.

where HHIk =
(∑Nk

i=1 s(k, i)
2
)

is the sector k’s Herfindahl-Hirchman-Index (HHI), and HKk(m) =
(∑Nk

i=1 s(k, i)
m
)1/m

is the Hannah and Kay (1977) concentration index. NB: HKk(2)
2 = HHIk; the

HHI is the square of the second Hannah and Kay (1977) concentration index.

Proof See Appendix A.2. �

The above proposition shows that under monopolistic competition, the sector-level markup is con-

stant and equal to the firm-level markup. This result is obvious because the sector’s markup is an av-

erage of firms’ markups, and under monopolistic competition, all the firms in a given sector charge

the same markup. As soon as pricing becomes strategic, under Bertrand or Cournot competition,

the sales-share distribution in the sector plays a crucial role. Under Cournot competition, for exam-

ple, the HHI entirely determines the sector’s markup. The intuition is as follows: when the sector’s

concentration is high, that is when the HHI is high, large firms have a higher market share and thus

they can use this higher market power to charge higher markups, which in turn aggregate to a higher

sector’s markup. An important implication of Proposition 4 is that it links empirically observable

variables, such as the HHI, to the sector-level markup.

Using the result in the above proposition, it is easy to derive some comparative statics of the markup

with respect to the HHI while keeping everything else constant.

∂µk
∂HHIk

=





0 Under Monopolistic competition
εk−1
ε2k

µ2k > 0 Under Bertrand competition
εk−1
εk

µ2k > 0 Under Cournot competition

Under Bertrand and Cournot competition, a higher sector’s HHI always implies a higher sector’s

markup. This relationship is stronger for low-competitive, high-markup sectors. The sensitivity of

the sector’s markup to the sector’s Herfindahl-Hirchman Index is stronger under Cournot than un-

der Bertrand competition. In this framework, given the demand system and the assumed market

structure, sector concentration is a measure of sector competition.

Productivity: The other important variable to define is the sector-level productivity, which is de-

fined as the sector-level labor-augmenting productivity. As shown above, the sector-level marginal

cost is λk =
∑Nk

i=1 λ(k, i)
y(k,i)
Yk

. After substituting for the firm-level marginal cost λ(k, i) =
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Z(k, i)−γkwγk
∏N

l=1 P
ωk,l

l , the sector-level marginal cost is equal to λk = Z−γk

k wγk
∏N

l=1 P
ωk,l

l , where

Z−γk

k =

Nk∑

i=1

Z(k, i)−γk
y(k, i)

Yk

is the sector k’s (labor-augmenting) productivity, an output-weighted sum of firm-level productivity

in sector k. It is entirely determined by the joint distribution of output and productivities across

firms in a sector, whereas the sector-level markup is entirely determined by the distribution of sales

share.

Allocation: The previous results were relating endogenous variables to each other and were not

linking equilibrium allocation to the state variable in this economy. Proposition 5 first solves for the

sector allocation given the sectors’ markup and productivity, before explicitly describing how the

two statistics, Zk and ∆k, entirely characterize the sector-level variables under Assumption 2.

Proposition 5 (Sector Allocation) Sectors’ prices are equal to:

{logPk}k = (I − Ω)−1

{
log µl

(
w

Zl

)γl
}

l

, (2)

where the (N × N)-matrix Ω is such that Ω = {ωk,l}1≤k,l≤N and I is the (N × N)- identity matrix.

Sectors’ sales shares are equal to: {
PkYk
PCC

}′

k

= β′(I − Ω̃)−1, (3)

where the (N ×N)-matrix Ω̃ is such that Ω̃ = {µ−1
k ωk,l}1≤k,l≤N and the (N × 1)- vector β is such that

β = {βk}k. Under Assumption 2, sector k’s markup and productivity are equal to:

µk =
εk

εk − fk (∆k)
and Zk =

(
Zk

) 1

γk(εk−1)

(
fk (∆k)

) −1

γk(εk−1)

(
εk − fk (∆k)

εk − 1

)−1

γk

where

fk(x) =





1 Under Monopolistic Competition

1−
√

1−4(1−ε−1
k )x

2(1−ε−1
k )x

for x ∈
[
0, 1

4(1−ε−1
k )

]
Under Bertrand Competition

1−
√

1−4(εk−1)x

2(εk−1)x for x ∈
[
0, 1

4(εk−1)

]
under Cournot Competition.

Proof See Appendix A.3. �

The above proposition characterizes the sectors’ allocation for a given wage w. System 2 of N equa-

tions relates the sectors’ prices to sectors’ productivities Zl, sectors’ markups µl, wage w, and the

I-O matrix Ω. To understand these equations, let us assume no I-O linkages exist; that is, Ω = 0

and γk = 1. In this case, the sector k’s price is just the sector’s markup µk over the marginal cost

in this sector (w/Zk)
γk , which is standard under imperfect competition. Now let us assume the I-

O structure is the one described in Figure 4; that is, sector k is using labor and sector l’s good to
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Figure 4: A Simple I-O Structure

lk

ωk,l

NOTE: In this simple I-O structure, firms in sector k are using labor and sector l’s good to produce their variety, while firms

in sector l are using only labor.

produce, whereas sector l is using only labor as input. Under imperfect competition, the price in

sector k is equal to the sector’s markup µk over the marginal cost. However, sector k’s marginal cost

is
(

w
Zk

)γk

(Pl)
ωk,l , a combination of the marginal cost of labor and the price of the upstream sector

l’s good. Sector l’s price is itself equal to the markup in sector l over the marginal cost of labor in

sector l: Pl = µl

(
w
Zl

)
. To solve for the prices of sector k and l, one just needs to solve a system of two

unknowns and two equations. System 2 is a generalization of this reasoning for any I-O network Ω.14

System 3 of N equations solves for the sectors’ sales share as a function of the household expen-

diture share β, the markups, and the I-O network through Ω̃. To understand the intuition behind

this matrix, let us assume the I-O structure is the one described in Figure 4, and let us compute the

income share sector l captures from a dollar spent on sector k’s good. Sector k rebates some of that

dollar, a share 1 − µ−1
k , directly as profit to the household; the remaining is used to pay for inputs

among which is sector l’s good. Therefore, sector l receives a share µ−1
k ωk,l of this dollar. For any I-O

network, the element (k, l) of the matrix Ω̃ is the share of income that flows directly from sector k to

sector l and is equal to µ−1
k ωk,l. Equation 3 shows the sales share of a sector is given by the vector

β′(I− Ω̃)−1 = β′+β′Ω̃+β′Ω̃2+ . . ., which captures the fact that the total sales of a sector is the sum of

the direct and indirect sales to the household. A given sector receives income directly from the sales

to the household. This income is captured by the term β′ in Equation 3. In addition, this sector’s

good is also sold to its downstream sectors that used it as inputs and served the household. This

first-degree indirect income is equal to the term β′Ω̃ in Equation 3. Furthermore, these downstream

sectors’ goods are also used as inputs by their own downstream sectors that sell to the household.

This second-degree indirect income share is equal to the term β′Ω̃2 in Equation 3. Higher-degree

indirect income shares are captured in the same way by the remaining terms. The sales share of a

given sector is therefore the infinite sum of these terms, which is then equal to the product of the

household expenditure share β′ and the Leontieff inverse of the matrix of income flow Ω̃.

Although the first part of Proposition 5 (Equations 2 and 3) does not need any specific assumption,

the rest of this proposition shows that under Assumption 2, the sectors’ markups and productivi-

ties are entirely determined by the two statistics, Zk and ∆k. Under this assumption, all the firm

heterogeneity is summarized by these two statistics. Furthermore, under oligopolistic competition,

14For the case of perfect competition, that is, for µk = 1, an implication of the system of equation 2 is that the sector’s
price is equal to the marginal cost of labor used directly and indirectly, through the I-O network.
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the sector’s markup is increasing in the concentration measure ∆k. This result is very intuitive. In a

given sector, when firms’ productivity concentration is higher, the most productive firms have even

more market power. It follows that the markup charged by these firms is even higher, which is re-

flected in a higher sector-level markup. An interesting result is that when the concentration measure

∆k is converging to zero, that is, when firms become homogeneous, the markup µk is converging to

εk/(εk−1), that is, the markup under monopolistic competition. The same is true for the sector-level

productivity Zk that converges, when ∆k goes to zero, to
(
Zk

) 1

γk(εk−1) , that is, the sector-level produc-

tivity under monopolistic competition. Therefore, the concentration measure ∆k is capturing the

intensity of competition in a sector and how much this sector market structure deviates from the

Dixit and Stiglitz (1977) monopolistic competition.

Proposition 5 is important in three ways. First, this proposition solves for sector-level allocation

given an equilibrium wage, nominal output, and sector-level productivities and markups. Second, it

reduces firms’ heterogeneity at the sector level by showing that under Assumption 2, the two statis-

tics, Zk and ∆k, are sufficient to describe the sector-level allocation. Third, it gives a natural and

simple interpretation to the concentration measure of productivity ∆k, which can be though of as a

measure of the competition intensity in sector k.15

3.3 Dynamics

In Section 3.2, the two statistics, Zt,k and ∆t,k, have been shown to entirely described the sector-

level allocation under Assumption 2. In this section, I show the dynamics of these two sufficient

statistics can be summarized by a simple stochastic process under random growth at the firm-level

(Assumption 1). Below, I solve for the law of motion of the firm-productivity distribution before

turning to the dynamics of the two statistics, Zt,k and ∆t,k.

The first step is to solve for the dynamics of the distribution of productivity in each sector, the state

variables of this model. Let us define the vector g
(k)
t = {g(k)t,n}0≤n≤Mk

, where g
(k)
t,n is the number of

firms at productivity level ϕn at time t in sector k. The vector g
(k)
t is thus the firm’s productivity

distribution at time t in sector k.16 Recall that sector k contains an integer number of firms Nk. As

in Carvalho and Grassi (2017), this assumption implies the productivity distribution is a stochastic

object. To understand the intuition behind this result, let us study a simple example.

Assume only three levels of productivity and four firms exist. At time period t, these firms are dis-

tributed according to the bottom-left panel of Figure 5; that is, all four firms produce with the inter-

mediate level of productivity. Further assume these firms have an equal probability of 1/4 of going

up or down in the productivity ladder and that the probability of staying at the same intermediate

level is 1/2. That is, the transition probabilities are given by (1/4, 1/2, 1/4)′ . First note that, if instead

of four firms, we had assumed a continuum of firms, the law of large numbers would hold such that

15The measure of competition intensity ∆k is fundamentally different from other measures of competition intensity
used in macroeconomics as in Aghion et al. (2014). Indeed, ∆k is also measuring the dispersion of firm-level productivity
in a sector, a fundamental of the economy.

16Because firm’s productivity evolves on a discrete space, the vector g
(k)
t is the histogram of the firms’ productivity at

time t in sector k.
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Figure 5: An illustrative example of the productivity-distribution dynamics

NOTE: Top panel: with a continuum of firms, the transition is deterministic. Bottom panel: with a finite number of firms,

the transition is stochastic.

at t + 1, exactly 1/4 of the (mass of) firms would be at the highest level of productivity, 1/2 would

remain at the intermediate level, and 1/4 would transit to the lowest level of productivity (top panel

of Figure 5). This scenario is not the case here, because the number of firms is finite. For instance,

a distribution of firms such as the one presented in the bottom-right panel of Figure 5 is possible

with a positive probability. Of course, many other arrangements would also be possible outcomes.

Thus, in this example, the number of firms in each productivity bin at t + 1 follows a multinomial

distribution with a number of trials of four and an event-probability vector (1/4, 1/2, 1/4)′ .

In this simple example, all firms are assumed to have the same productivity level at time t. However,

extending this example to any initial arrangement of firms over productivity bins is easy. Indeed,

for any initial number of firms at a given productivity level, the distribution of these firms across

productivity levels next period follows a multinomial. Therefore, the total number of firms in each

productivity level next period is simply a sum of multinomials, that is, the result of transitions from

all initial productivity bins. The following proposition generalizes this example to determine the

dynamics of the distribution of firms’ productivity for any firm-level productivity process.

Proposition 6 (Sector k’s Productivity-Distribution Dynamics) Sector k’s productivity distribution

satisfies the following law of motion:

g
(k)
t+1 = (P(k))′g

(k)
t + ǫ

(k)
t , (4)

where P(k) is the matrix of transition probabilities of the firm-level productivity process in sector k and

where ǫ
(k)
t =

{
ǫ
(k)
t,n

}
0≤n≤Mk

is a mean zero random vector.

Furthermore, under Assumption 1, the stationary distribution (when ∀t, ǫ(k)t = 0) is Pareto and equal

to g
(k)
n = NkKk(ϕ

n
k )

−δk , whereKk is a normalization constant and δk = log ak

ck
/logϕk is the tail index.
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Proof See Online Appendix F.2. �

The above proposition describes the law of motion of a sector’s productivity distribution and cap-

tures exactly the intuition of the example in Figure 5. The first term of the right-hand side of the law

of motion 4 is the average behavior of the sector’s productivity distribution. If an infinite number of

firms were present, this average behavior would be exactly the next-period sector’s productivity dis-

tribution. Note this term is solely a function of the current-period productivity distribution g
(k)
t and

the transition probabilities of the firm-level productivity process P(k). Because a finite and integer

number of firms are in each sector, an extra term, ǫ
(k)
t , exists. This second term is the deviation of

the actual realization of g
(k)
t+1 and its average behavior. As described in the example above, for a given

period t, this random vector is a sum of demeaned multinomial random vectors.

A direct implication of this proposition is that sectors’ productivity distribution, the state variables of

this framework, are stochastic vectors. It follows that every sector’s variables are stochastic and fluc-

tuate. Finally, these sectors’ productivity distributions hover around their stationary values, which

are, under Assumption 1, Pareto distributed with a tail index determined by the probabilities ak and

ck.17

Note that no aggregate or sector-level shocks are assumed; instead this sector- (and aggregate-) level

fluctuations arise from independent firm-level shocks. The quantitative importance of such fluc-

tuations is not formally discussed here and is addressed numerically below where the above model

is calibrated to the US economy. However, the diversification among these firm-level independent

shocks is weak as soon as the stationary Pareto distribution is fat-tailed. As shown by Gabaix (2011),

when a small number of very productive firms exist, shocks to these firms are unlikely cancel out,

and therefore they translate into quantitatively important fluctuations.18

After the characterization of the dynamics of the sector’s productivity distribution (Proposition 6),

the second step is to describe the law of motion of the two statistics, Zt,k and ∆t,k, that are sufficient

under Assumption 2. Proposition 7 below shows that under random growth (Assumption 1), the law

of motion of these two statistics can be described by a simple process.

Proposition 7 (Dynamics of Zt,k and ∆t,k) Under Assumption 1, the two statistics, Zt,k and ∆t,k, of

the sector k’s productivity distribution satisfy the following dynamics:

Zt+1,k = ρ
(Z)
k Zt,k + o

(Z)
t,k +

√
̺
(Z)
k ∆t,k +O

(Z)
t,k Zt,k ε

(Z)
t+1,k

(
Zt+1,k

Zt,k

)2

∆t+1,k = ρ
(∆)
k ∆t,k + o

(∆)
t,k +

√
̺
(∆)
k χt,k +O

(∆)
t,k ∆t,k ε

(∆)
t+1,k

where ε
(Z)
t+1,k and ε

(∆)
t+1,k are random variables following a N (0, 1) with a non-zero covariance and

where χt,k, o
(Z)
t,k , o

(∆)
t,k ,O

(Z)
t,k , and O

(∆)
t,k are predetermined at time t, whereas, ρ

(Z)
k , ρ

(∆)
k ,̺

(Z)
k , and ̺

(∆)
k are

constant.

17The concept of a stationary distribution is the same as in Hopenhayn (1992) and Hopenhayn and Prescott (1992).
18In a one-sector model with perfect competition and entry/exit à la Hopenhayn (1992), Carvalho and Grassi (2017) study

the behavior for an increasingly large number of firms of the volatility arising from idiosyncratic independent shocks on
firms.
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Proof See Online Appendix F.3. �

Proposition 7 is similar to Theorem 2 of Carvalho and Grassi (2017). It shows the dynamics of the two

moments of sector k’s productivity distribution are persistent. The intuition is that because the firm-

level productivity is persistent, persistence is aggregated at the sector level. The higher the firm-level

persistence, the higher the sector-level persistence, as shown in Carvalho and Grassi (2017).19

Moreover, the (conditional) variance of the sum of the productivity of sector k’s firms, Zt,k, is time

varying and is determined by the Hearfindahl index of firms’ productivity ∆t,k. Here, as in Gabaix

(2011) and Carvalho and Grassi (2017), any volatility at the sector level is due to idiosyncratic shocks

at the firm level. When a sector is concentrated, shocks to firms with a large productivity do not

wash out at the aggregate level. A higher concentration implies a higher importance of these firms

and thus more volatility due to idiosyncratic shocks.

4 Structural Firms

In this section, I show the structural importance of a firm is determined by the firm’s size, the firm’s

sector industrial organization, and its role in the I-O network. The structural importance of a firm is

defined here as the elasticity of aggregate output with respect to the productivity of one firm in one

sector.

To compute this elasticity, the first step is to solve for the aggregate output and the equilibrium wage.

I assume the household supplies inelastically one unit of labor, and I normalized the price of the

composite consumption good to 1. The following proposition describes the equilibrium allocation

given sector-level markups and productivities.

Proposition 8 (Equilibrium Allocation) For given sector-level markups µk and productivities Zk, the

wage is

logw = −β′(I − Ω)−1
{
log µkZ

−γk

k

}
k
= −

N∑

k=1

βk log µkZ
−γk

k , (5)

where β is the (N × 1)-vector of the household expenditure share {βk}k and
{
βk
}′
k
= β′(I − Ω)−1 are

the sectors’ centrality. The share of aggregate profit in nominal output is

Pro

PCC
= β′(I − Ω̃)−1

{
1− µ−1

k

}
k
=

N∑

k=1

βk

(
1− µ̃k

−1
)
, (6)

where Ω̃ = diag
({
µ−1
k

}
k

)
Ω with diag ({xk}k) is the diagonal matrix whose non-zero elements are

the xk and where µ̃k is such that
{
1− µ̃k

−1
}
k
= (I − Ω̃)−1

{
1− µ−1

l

}
l
. Finally, aggregate output is

log Y = logw − log

(
1− Pro

PCC

)
. (7)

19For n ∈ N
∗, the sequences vk,n = akϕ

−n(εk−1)γk
k + bk + ckϕ

n(εk−1)γk
k and wk,n = akϕ

−2n(εk−1)γk
k + bk + ckϕ

2n(εk−1)γk
k −

(ρ
(n)
k )2 are, respectively, the mean and variance of the growth rate of firm i in sector k productivity measure Z(k, i)n(εk−1)γk .

We have that, ρ
(Z)
k = vk,1, ρ

(∆)
k = vk,2, ̺

(Z)
k = wk,1, and ̺

(∆)
k = wk,2.
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Proof See Appendix A.4. �

The equilibrium wage of Equation 5 comes from sectors’ price (Equations 2) and the normalization

PC = 1. Note that the log of wage can be rewritten as a weighted sum of sector-level markups and

productivities where the weights are
{
βk
}′
k
= β′(I−Ω)−1 = β′(I+Ω+Ω2+ . . .) the sectors’ centrality.

The centrality measures the direct and indirect importance of a sector in the household consump-

tion bundle. A sector’s good contributes to the consumption bundle by the direct consumption of

this good by the household. This direct contribution is governed by the shares β. This good is also

used as input by other sectors that are consumed by the household. This first-degree indirect contri-

bution to the household consumption bundle is captured by the term β′Ω. Furthermore, this good is

also used as an input for other goods that are inputs of other goods that are consumed by the house-

hold. This second-degree indirect importance is captured by the term β′Ω2. Higher-degree linkages

are captured in the same way. The centrality is then the infinite sum of these terms, which is then

equal to the product of the share β and the Leontieff inverse (I − Ω)−1. The centralities βk take into

account the direct and indirect consumption of a sector’s good through the I-O network.

The aggregate profit share is a function of sectoral markups and the I-O network. To understand the

intuition behind Equation 6, let us compute the profit share of one dollar spent on sector k in the

simple I-O network of Figure 4. The sector-level markup determines the profit share: a share 1−µ−1
k

of this dollar is directly rebated to the household as profit. The remaining, µ−1
k , is used to pay for

inputs, among which is the sector l’s good. Therefore, sector l receives µ−1
k ωkl of income of every

dollar spent on sector k, from which a share 1 − µ−1
l is rebated to the household. The total profit

rebated to the household of this dollar spend on sector k is then equal to 1− µ−1
k + µ−1

k ωkl

(
1− µ−1

l

)
.

Equation 6 is a generalization of this intuition to any I-O structure. The element µ−1
k ωk,l of the matrix

Ω̃ is the income share that goes from sector k to sector l. The Leontieff inverse of this matrix, (I−Ω̃)−1,

gives the direct and indirect income share that goes from one sector to another whereas the vector{
1− µk

−1
}
k

gives the income share of each sector that is directly rebated to the household. The

aggregate profit share can also be rewritten as a weighted sum of the expenditure share βk, where

the weights 1 − µ̃k
−1 are the direct and indirect profit share of each sector k. Note also that µ̃k

−1 is

the direct and indirect labor share of each sector, and it is such that {µ̃k}k = (I − Ω̃)−1{γkµ−1
k }k.20

The aggregate output equation comes from the household budget constraint and the inelastic labor

supply. Note this equation will be different for different utility functions. Appendix D derives the

case of elastic labor supply for both separable and Greenwood–Hercowitz–Huffman (GHH) prefer-

ences. Under Assumption 2, the results in Propositions 8 and 5 describe entirely the equilibrium

allocation as a function of the two sufficient statistics, Zk and ∆k. The first part of Proposition 5 and

Proposition 8 solve for the equilibrium allocation as a function of sector-level markups and produc-

tivities, whereas the second part of Proposition 5 gives the sectors’ markup and productivity as a

function of these two sufficient statistics.

Let us decompose the effect of an increase in productivity of one firm in one sector on aggregate

output into the “downstream” and “upstream” parts of aggregate output. The “downstream” part of

20This can be shown using the definition of µ̃k
−1 and the fact that Ω̃{1}k = diag({µ−1

k }k)Ω{1}k = {µ−1
k (1− γk)}k.
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aggregate output is defined as the first term of the right-hand side of Equation 7: log Y d = log w
P L =

logw. This term is the (log) real labor income, because total labor and the composite good price are

normalized to 1. The “upstream” part is defined as log Y u = − log
(
1− Pro

PCC

)
= − log

(
wL
PCC

)
, which

is the (log of) the labor share. Therefore, this decomposition of aggregate output is just a decompo-

sition in terms of the real labor income and the labor share. The terminology “downstream” comes

from the fact that any change in a sector’s price impacts the downstream sectors and is reflected in

the wage. The “upstream” terms comes from the fact any change in markups and thus cost share im-

pact the income share received by the upstream sectors and is ultimately reflected in the aggregate

profit/labor share.21 The elasticity of aggregate output to the productivity Z(k, i) of firm i in sector k

is then the sum of the effect on the “downstream” and “upstream” parts of aggregate output:

∂ log Y

∂ logZ(k, i)︸ ︷︷ ︸
change in GDP

=
∂ log Y d

∂ logZ(k, i)︸ ︷︷ ︸
change in labor income

+
∂ log Y u

∂ logZ(k, i)︸ ︷︷ ︸
-change in labor share

First, let us look at the effect of a change in productivity of one firm in one sector on the labor in-

come. The change in the “downstream” part of aggregate output captures any change in the real

wage. These changes are themselves due to changes in sectoral prices. Changes in sectoral prices

propagate to downstream sectors. To understand the intuition, let us once again look at the simple

I-O of Figure 4. Recall that in this simple case, sector k’s price is

log Pk = log µk + log

(
w

Zk

)γk

+ ωk,l logPl with log Pl = log µl + log

(
w

Zl

)
.

Following a change in the productivity of one firm in sector l, the two statistics, Zl and ∆l, are af-

fected as described in Section 3.1. These changes affect the markup µl and the productivity Zl in

sector l (Proposition 5), which in turn affect the price in sector l. Any change in sector l’s price im-

pacts the marginal cost of the downstream sector k and therefore the price of sector k. Any shocks to

firms in a sector propagate to downstream sectors through the price. This shocks ultimately affects

price in all downstream sectors and thus the real wage that is, the “downstream” part of aggregate

output. The strength of this effect depends on (i) the pass-through in sector l, that is, on how much

sector l’s price changes after the increase in productivity of one of its firms, and on (ii) the I-O link-

age between sector l and sector k. The market structure of the sector and the identity of the firms

whose productivity increases determine the strength of the pass-through. Proposition 9 computes

the elasticity of the “downstream” part of aggregate output with respect to the productivity of one

21See Section 5 for a study of the propagation of firm-level shocks across sectors.
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firm in one sector for any I-O network.

Proposition 9 (Elasticity “downstream”) Assume 2, the elasticity of the “downstream” part of aggre-

gate output with respect to the productivity of firm i in sector k is

∂ log Y d

∂ logZ(k, i)
=

βk
εk − 1

(
1 +

2ek
∆k

(
∆k −

Z(k, i)(εk−1)γk

Zk

))
∂ logZk

∂ logZ(k, i)
,

where ek = d log fk
d log∆k

and
{
βk
}′
k
= β′(I − Ω)−1 is the vector of sectors’ centrality.

Proof See Appendix A.5. �

The elasticity of the “downstream” part of aggregate output with respect to the productivity of firm

i in sector k is the product of three terms. The first term is the sector’s centrality βk. As discussed

earlier, the centrality measures the direct and indirect importance of a sector in the household con-

sumption bundle. The second term captures the effect of oligopolistic competition; under monop-

olistic competition this term would be equal to 1. Whenever firm i in sector k is “large”, that is, when
Z(k,i)(εk−1)γk

Zk
> ∆k, this second term is smaller than 1, because, when the productivity of a large firm

increases, some of the productivity gains translate into an increase in the markup rather than a de-

crease in price. Indeed, this firm already has a lot of market power and does not need to cut its price

and increase its production by as much as under monopolistic competition: the pass-through is in-

complete. At the sector level, the price falls by less than under monopolistic competition and the

effect on the “downstream” part of aggregate output is smaller. Conversely, if the productivity of a

“small” firm increases, that is, when
Z(k,i)(εk−1)γk

Zk
< ∆k, the second term is larger than 1. When the

productivity of this firm increases, it decreases its price and increases its markup but also cuts the

markups of larger firms. At the sector level, the price falls by more than under monopolistic com-

petition and the effect on the equilibrium wage and the “downstream” part of aggregate output is

stronger. The last term is the effect of the firm’s increase in productivity on the first moment of the

sector k productivity distribution. The more productive the firm affected, the larger this term.

One can see that the elasticity of the “downstream” part of aggregate output reflects the effect of the

change in price on the real wage following an increase in Z(k, i) by rewriting it as22:

∂ log Y d

∂ logZ(k, i)
= βk

(
1

εk − 1

∂ logZk

∂ logZ(k, i)
−

εk
εk−1 − 1

µk − 1

∂ log µk
∂ logZ(k, i)

)
(8)

The centrality βk is the importance of the firm’s sector good in the determination of the wage. The

first term in the bracket is equal to the change in the sector k’s price under monopolistic competition

following the increase in the productivity of firm i. The second term in the bracket is the change in

sector’s markup due to the change in the firm i’s productivity. This last term would be equal to

zero under perfect competition. As described earlier, this term can be either negative or positive

depending on the identity of the firm subject to the shock.

22Note that using the expression of the markup under Assumption 2 (Proposition 5) and the elasticity of ∆k to Z(k, i) in

Section 3.1, we can show that the elasticity of the markup is ∂ log µk
∂ logZ(k,i)

= −(µk − 1) 2ek
∆k

(
∆k − Z(k,i)(εk−1)γk

Zk

)
.
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The structural importance of a firm for the “downstream” part of aggregate output is a function of

the I-O network through the sector’s centrality, the sector’s market structure index by the ∆k, and,

the firm size through the term ∂ logZk

∂ logZ(k,i) . The market structure and the firm size govern the change

in the sector’s price following a change in the firm’s productivity, whereas the I-O linkages determine

the intensity of the effect of this change in the sector’s price on other sectors and on the equilibrium

wage.

Let us now study the effect of a change in productivity of one firm in one sector on the labor share.

The change in the “upstream” part of aggregate output captures any change in the aggregate la-

bor and profit income share. These changes are themselves due to changes in sectoral profit share.

Changes in the sectoral profit share affect the income received by the upstream sectors. To under-

stand this effect, let us look at the profit share of a dollar spent on sector k’s good in the simple I-O

structure of Figure 4. In this example, the share of profit of one dollar spent on sector k’s good is

1− µk
−1 + µk

−1ωkl

(
1− µl

−1
)
. Following a shock to the productivity of firm i in sector k, the statistic

∆k changes, and let assume it increases. This increase in ∆k increases µk, the markup in sector k

(Proposition 5). As a consequence, less income goes toward paying for inputs, among which is sec-

tor l’s good. The total share of profit/labor is affected because (i) the sector k rebates more profit to

the household and (ii) the upstream sector l receives less income and therefore rebates less profit to

the household. Proposition 10 generalizes the above intuition to any I-O structure.

Proposition 10 (Elasticity “upstream”) Assume 2, the elasticity of the “upstream” part of aggregate

output with respect to the productivity of firm i in sector k is

∂ log Y u

∂ logZ(k, i)
= −P

CC

wL

PkYk
PCC

(µk − 1)

µ̃k

2ek
∆k

(
∆k −

Z(k, i)(εk−1)γk

Zk

)
∂ logZk

∂ logZ(k, i)
.

where ek = d log fk
d log∆k

is the elasticity of fk, and where µ̃k is such that
{
1− µ̃k

−1
}
k
= (I − Ω̃)−1

{
1− µ−1

l

}
l

with

Ω̃ = diag
({
µ−1
k

}
k

)
Ω.

Proof See Appendix A.5. �

The elasticity of the “upstream” part of aggregate output is the product of several terms. The first im-

portant term, µ̃k
−1, is the cost share of sector k’s income that is rebated as labor income to the house-

hold directly and indirectly through other sectors. The second important term is proportional to the

change in sector’s cost/profit share, 2ek
∆k

(
∆k − Z(k,i)(εk−1)γk

Zk

)
∂ logZk

∂ logZ(k,i) . Under monopolistic competi-

tion, that is, when ∆k → 0, this term is zero. Under oligopolistic competition, this term can be either

positive or negative. Whenever firm i in sector k is “large”, that is, when Z(k,i)(εk−1)γk

Zk
> ∆k, this term

is negative and ∂ log Y u

∂ logZ(k,i) becomes positive. This result is very intuitive: when the productivity of a

large firm increases, this firm reduces its price but also uses its market power to raise its markup. At

the sector level, the profit share is higher, which translates to a higher (resp. lower) aggregate profit

share (resp. labor share) and a higher “upstream” part of aggregate output. Conversely, when the

productivity of a “small” firm increases, that is, when
Z(k,i)(εk−1)γk

Zk
< ∆k, this term is positive and the

elasticity of the “upstream” part of aggregate output is negative, because when the productivity of a

“small” firm increases, this firm decreases its price and increases its markup but also cuts the markup
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of larger firms. At the sector level, the markup is reduced, which translates into smaller (resp. larger)

profit share (resp. labor share). The aggregate profit share (resp. labor share) is therefore reduced, as

is the “upstream” part of aggregate output. The elasticity of the “upstream” part of aggregate output

reflects the effect of the change in cost share on the aggregate labor share following an increase in

Z(k, i). One can rewrite this elasticity as follows:

∂ log Y u

∂ logZ(k, i)
= − PkYkµ̃k

−1

wL

∂ log(µ−1
k )

∂ logZ(k, i)
.

This expression shows the effect on the aggregate labor income, the upstream part of aggregate out-

put, is determined by sector k’s direct and indirect labor share and the elasticity of sector k’s cost

share. Sector k’s direct and indirect labor share is measured as a share of the total labor income by

the sales of sector k, PkYk, of which a share µ̃k
−1 is rebated directly and indirectly as labor income.

Sector k’s cost share is µ−1
k . Because of oligopolistic competition, this share is affected by changes in

the productivity of firms in sector k.

Both the market structure and the I-O network impact the propagation of firm-level shocks on the

“upstream” part of aggregate output. The markup centrality µ̃k is jointly determined by the I-O net-

work and the competition intensity through the matrix Ω̃, whose elements gives the income share

that flows between two sectors.

In conclusion, the structural importance of a firm is determined by the firm size, the market struc-

ture, and the I-O network. The firm size determines the firm’s influence on the sector’s price and

profit share. The I-O network determines the sector’s importance in the consumption bundle and

the aggregate profit/labor share. The sector’s market structure interacts with both the firm size and

the I-O network in shaping the firm’s structural importance. Indeed, with the firm size, it governs

the strength of the change in the sector’s price and profit share following a shock to one firm, and,

with the I-O network, it governs a sector’s importance for the aggregate profit/labor share.

The decomposition between the “downstream” and “upstream” parts of aggregate output is valid be-

cause I assume an inelastic labor supply. In this case, any change in profit/labor share does not feed

back to the wage by affecting the labor supply, whereas the effect of a wage increase on aggregate out-

put is not magnified by an endogenous increase in labor supply. Relaxing the inelastic-labor-supply

assumption won’t affect the results, but it affects the interpretation of the terms “downstream” and

“upstream”. As Appendix D shows, with separable or GHH preferences, the output is still a function

of the wage and the profit/labor share. They are themselves only functions of sectoral productivities

and markups (Proposition 8) and therefore, under Assumption 2, a function of the statistics Zk and

∆k (Proposition 5).

5 Propagation

In this section, I show how a shock to one firm in one sector propagates to other sectors through the

I-O network. The propagation to downstream sectors is due to changes in price whose magnitude
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is governed by the competition intensity. The new propagation mechanism to upstream sectors is

entirely due to the endogenous changes in cost/profit share. To study the propagation of firm-level

productivity shocks in the economy, I derive the elasticity of sector-level price (Proposition 11) and

sales share (Proposition 12) with respect to the productivity of one firm in one sector. These results,

together with the elasticity of aggregate output derived in the previous section (Propositions 9 and

10), allow the derivation of the effect of an increase in productivity of one firm in a sector on sector-

level output.

The effect of a change in productivity of one firm on other sectors’ price is summarized in Proposi-

tion 11 by the elasticity of sector k’s price with respect to the productivity of firm j in sector l.

Proposition 11 (“Downstream” Propagation) Assume 2, the elasticity of the sector k’s price with re-

spect to the productivity of firm j in sector l is

∂ log Pk

∂ logZ(l, j)
=

∂ logw

∂ logZ(l, j)
−

ψd
k,l

εl − 1

(
1 +

2el
∆l

(
∆l −

Z(l, j)(εl−1)γl

Zl

))
∂ logZl

∂ logZ(l, j)

where ek = d log fk
d log∆k

is the elasticity of fk, and ψd
k,l is the element (k, l) of the matrix ψd = (I − Ω)−1.

Proof See Appendix A.6. �

The change in sector k’s price reflects the change in cost. It is the sum of the change in the cost of

labor and intermediate goods. Following a change in the productivity of firm j in sector l, the wage

changes as it is described in the previous section and in Proposition 9. This change in wage is the

structural importance of the firm j in sector l on the wage. This change in wage affects the cost of

labor and thus sector k’s price.23

The change in the intermediate-goods price is captured by the second term, which is the product

of (i) the direct and indirect exposure of sector k’s production to sector l’s good, (ii) the effect of

oligopolistic competition in sector l, and (iii) the effect of the change in productivity of firm j on

sector l’s productivity. The degree of direct and indirect exposure of sector k’s production to sector l’s

good is measured byψd
k,l, the element k, l of the matrix (I−Ω)−1. In the simple I-O structure of Figure

4, this parameter is exactly equal to ωk,l. For a more general I-O structure, the number ψd
k,l captures

the dependence of sector k’s production on sector l’s good directly and through other sectors. For

example, let us assume the I-O network is as in Figure 6; that is, sector k is using sector l and sector

m’s goods to produce, and sector m is also using sector l’s good to produce. In this simple case, the

direct and indirect exposure of sector k’s production to sector l’s good, ψd
k,l, takes into account the

direct consumption of sector l’s good by sector k plus the indirect consumption of sector l’s good

through sectors m, because the latter is also using l to produce its good: ψd
k,l = ωk,l + ωk,mωm,l.

The effect of oligopolistic competition is similar to the one described in the previous section. It

measures the pass-through of the increase in productivity of firm j on sector l’s price. Under mo-

nopolistic competition, the term 1 + 2el
∆l

(
∆l − Z(l,j)(εl−1)γl

Zl

)
would be equal to 1. Here, depending on

23Note this change in wage affects all the sectors in the economy and therefore also indirectly affects sector k through
its intermediate input consumption, which is the reason why no parameter γk, the labor share in sector k, is in front of the
term ∂ logw

∂ logZ(l,j)
.
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Figure 6: An Example of Input-Output Structure

mk l

ωk,m ωm,l

ωk,l

NOTE: In this simple I-O structure, firms in sector k are using labor, and sector l and sector m’s goods to produce their

variety, firms in sector m are using labor and sector l’s good, and firms in sector l are using only labor.

the identity of the firm j, the response of sector l is larger or smaller than under monopolistic com-

petition. If the productivity of a large firm increases, that is,
Z(l,j)(εl−1)γl

Zl
> ∆l, some of the increase

in productivity translates into an increase in markup at the sector level, and therefore sector l’s price

falls by less than under monopolistic competition. Conversely, if the increase in productivity affects

a small firm, that is,
Z(l,j)(εl−1)γl

Zl
< ∆l, this firm is cutting the markup of its larger competitors and

thus reduces the markup at the sector level. In this case, sector l’s price falls by more than under mo-

nopolistic competition. To understand this result more clearly, let us rewrite the elasticity of sector

k’s price as:

∂ log Pk

∂ logZ(l, j)
=

∂ logw

∂ logZ(l, j)
− ψd

k,l

(
1

εl − 1

∂ logZl

∂ logZ(l, j)
−

εl
εl−1 − 1

µl − 1

∂ log µl
∂ logZ(l, j)

)
.

The effect on sector k’s price is larger or smaller depending on the sign of the elasticity of sector

l’s markup with respect to Z(l, j). As described above, the sign of this elasticity is a function of the

identity of firm j.

Without an I-O network, the term ψd
k,l would be replaced by one for k = l and by zero otherwise

that is, a shock to one firm in a sector affects other sectors only through the effect on wage. With

an I-O network but without oligopolistic competition, sector l’s markup would be constant, that is,
∂ log µl

∂ logZ(l,j) = 0. In that case, only the size of the firm would matter through ∂ logZl

∂ logZ(l,j) , and the market

structure in the sector would be irrelevant.

Let us now look at the effect of a change in productivity of one firm on other sectors’ sales share. This

effect is summarized in Proposition 12 by the elasticity of sector k’s sales share with respect to the
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productivity of firm j in sector l.

Proposition 12 (“Upstream” Propagation) Assume 2, the elasticity of the sector k’s sales share with

respect to the productivity of firm i in sector l is

∂ log
(
PkYk

PCC

)

∂ logZ(l, j)
= (ψs

l,k − Il,k)
PlYl
PkYk

(µl − 1)
2el
∆l

(
∆l −

Z(l, j)(εl−1)γl

Zl

)
∂ logZ l

∂ logZ(l, j)
,

where ek = d log fk
d log∆k

is the elasticity of fk, Il,k is equal to 1 if k = l and zero otherwise ,and ψs
l,k is the

element (l, k) of the matrix ψs = (I − Ω̃)−1.

Proof See Appendix A.7. �

The change in sector k’s sales share reflects the change in demand from sector l. The demand from

sector l is determined by the total cost share of sector l and the exposure of sector k to sector l de-

mand. Any change in the cost share is a change in the opposite sign of the profit share. For example,

after an increase in the profit share, more income is rebated to the household as profit and less in-

come is used to pay for inputs. Following an increase in productivity of firm j in sector l, the profit

share changes, and depending on the identity of firm j, it can increase or decrease. If j is large, that

is, ∆l <
Z(l,j)(εl−1)γl

Zl
, the gain in productivity translates into an increase in markup and thus of the

profit share. Conversely, if j is small, that is, ∆l >
Z(l,j)(εl−1)γl

Zl
, the increase in firm j’s productivity

cuts the markup of its larger competitors in sector l, and the profit share at the sector level increases.

Sector l’s cost share is µ−1
l , and rewriting the elasticity of the sector k’s sales share as a function of the

change in cost share folows:

∂ log
(
PkYk

PCC

)

∂ logZ(l, j)
= (ψs

l,k − Il,k)
PlYl
PkYk

∂ log µ−1
l

∂ logZ(l, j)
. (9)

This elasticity is the product of three terms. The last two terms represent the change in total cost in

sector l as a share of sector k’s sales share. It is the product of sector l’s income and the change in

sector l’s cost share following an increase in productivity of firm j in sector l. The first term represents

the exposure of sector k to the direct and indirect demand of sector l. The number ψs
l,k, that is, the

element (l, k) of the matrix (I − Ω̃)−1, is the share of sector l’s income that goes to sector k directly

or indirectly through other sectors. To understand this results, let us assume the I-O network is the

simple one of Figure 6. In this case, the number ψs
k,l takes into account the direct income share used

by sector k to pay for the input of sector l’s good. It also takes into account the indirect income share

of sector k that goes to sector l through sector m because the latter is also using sector l’s good to

produce. In the simple case of Figure 6, we have ψs
k,l = µ−1

k ωk,l + µ−1
k ωk,mµ

−1
m ωm,l.

Note sector k’s sales share would be kept constant if no I-O network exists. In that case, ψs = I and

the first term of Equation 9 would be zero. Without an I-O network, all the demand comes from the

households that are spending a constant share of their income on each good, thanks to the Cobb-

Douglas preferences. Even if the increase in productivity of firm j in sector l is affecting aggregate

income (see Section 4), it is not affecting one sector more than the others. Note also that sector
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k’s sales share would be constant if monopolistic competition were assumed. In that case, sector

l’s cost share would be fixed and the last term of Equation 9 would be zero. Without oligopolistic,

competition the change in productivity of firm j in sector l does not affect the sector-level markup,

and the repartition of income between inputs and profit is fixed by the value of the parameter εk.

The propagation mechanism of Proposition 12 requires both an I-O network and an endogenous

market structure to operate.

Proposition 11 relates to the “downstream” propagation because sector l’s shock affects sector k

strongly for higher values of ψd
k,l. This term is the element (k, l) of the matrix (I − Ω)−1, which mea-

sures the direct and indirect cost share of sector l’s good in sector k production: the good is going

from sector l to sector k; that is, sector k is downstream from sector l. Proposition 12 relates to the

“upstream” propagation because a shock to sector l affects sector k strongly for higher values of ψs
l,k.

This term is the element (l, k) of the matrix (I − Ω̃)−1, which measures the direct and indirect in-

come share of sector k’s good in sector l production: the good is going from sector k to sector l; that

is, sector k is upstream from sector l. Note that here this notion of “downstream” and “upstream” are

a generalization of the usual definition to take into account the indirect linkages between sectors.

6 Quantitative Results

In this economy, all aggregate uncertainty comes from the firm-level productivity stochastic pro-

cess Zt(k, i). Because the number of firms in a sector is finite, firm-level fluctuations translate into

sector-level fluctuations. However, these firms play an oligopolistic competition game and take into

account the impact of their decisions on their sector. This results in incomplete pass-through of

shocks to price and fluctuations in profit share. When the firm-level productivity process is assumed

to follow random growth (Assumption 1), the two statistics Zt,k and ∆t,k are stochastic and follow

AR(1)-type processes (Proposition 7). While under Assumption 2 and under oligopolistic compe-

tition, fluctuations in these statistics create fluctuations in sector-level markups and productivities

according to Proposition 5. The origin of these sector-level fluctuations is “granular” (Gabaix, 2011)

and they are due to the presence of large firms in a given sector. Sectors are linked through a “small

world” I-O network (Figure 1) that contains a handful of hub-like sectors. Similar to Acemoglu et al.

(2012) and Carvalho (2010), sector-level fluctuations do not average out, and create sizable fluctua-

tions in output as computed in Proposition 8.

In this section, I evaluate the quantitative importance of firm-level productivity shocks and

oligopolistic competition in shaping the business cycle. To this end, I first calibrate the above frame-

work to the US economy. I then simulate a path of firm-level productivity for each firm, and I solve

for the equilibrium allocation in each period. I then compute business-cycle statics and decom-

pose variance of aggregate output into fluctuations in labor income and labor share, that is, into

the “downstream” and “upstream” part of aggregate output. Finally, I decompose the variance of

sector-level output into fluctuations of price and sales share.
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6.1 Calibration and Numerical Strategy

To calibrate this economy, the first step is to choose preferences and deep parameters of the model.

Consistent with the analysis in Section 4, I assume labor supply is inelastic. Such an assumption

allows me to interpret the decomposition of aggregate output between the labor income and labor-

income share as “downstream” and “upstream”.24 Appendix D shows how relaxing the inelastic-

labor-supply assumption affects the results. The second important assumption is the choice of the

parameter εk. I choose this parameter to be equal to 5 in every sector: ∀k, εk = 5. Even if this assump-

tion is strong, this value seems reasonable because the international trade literature has estimated

this number to be between 3 and 9 (see Imbs and Mejean (2015) for a review). Note the estimates

in the international trade literature are not necessarily consistent with the above model, because

they are usually not assuming oligopolistic competition. An elasticity of 5 across varieties within a

sector implies a sectoral markup for monopolistic competition of 1.25. Finally, I assume the sector

competition to be differentiated Bertrand.

The second step consists of using concentration and I-O data to discipline the sector-level param-

eters. For this calibration, a sector is an industry as defined by the BEA in its detailed I-O classi-

fication. The BEA identifies 389 sectors and the level of disagregation is comparable for most sec-

tors to the 5-digit NAICS classification. This dataset is the most disaggregated level available with

sectoral I-O linkages information. The US Census Bureau gives information on sector-level con-

centration. I use the 2007 vintage of these data and especially the HHI of sales share among the

top 50 firms, namely, HHIk.25 Under Assumption 2 and using Proposition 4, we can easily show(
1− ε−1

k

)
HHIk = fk(∆k)− 1.26 I use this relationship and the value of εk to back out the concentra-

tion measure of productivity at the sector level ∆k. With these values in hand, I calibrate the Markov

chain of the productivity process P(k) to match a firm-level volatility of σk = 0.1 and the value of ∆k.

The firm-level volatility is at the lower hand of the estimate in the firm dynamics literature.27 Note,

however, that the literature’s estimates are not necessarily consistent with the oligopolistic competi-

tion assumption in the framework presented in this paper. The matrix Ω is calibrated using the latest

vintage of the detailed I-O data of the BEA for 2007. For a description of the data, see Appendix B.

The model counterpart of the I-O table provided by the BEA is Ω̃, whose elements are the share of

income that goes from one sector to the other. Using the concentration, I compute the sector-level

markup, and I use the relation between Ω and Ω̃ = diag({µ−1
k }k)Ω to recover the actual Ω whose

elements are the share of total cost that goes from one sector to the other. As Figure 1 shows and as

Acemoglu et al. (2012) or Carvalho (2014) show, this I-O network is a “small-world” network in which

a handful of sectors are heavily connected to the other sectors.

Table 2 summarizes the parameters of the baseline calibration. This calibration hasN = 389 sectors.

24This assumption is also standard in the literature on the micro-origin of aggregate fluctuations, and allow, for compar-
ison with Acemoglu et al. (2012), Baqaee (2016), or Baqaee and Farhi (2017a). Carvalho and Grassi (2017) assume elastic
labor supply, and their results should be compared with the results in Appendix D.

25These data are described in Appendix B.
26Note that at the second order, we have

(
1− ε−1

k

)
HHIk = fk(∆k) − 1 ≈

(
1− ε−1

k

)
∆k. Using

(
1− ε−1

k

)
HHIk =

fk(∆k)− 1 or HHIk = ∆k to calibrate the value of ∆k does not significantly affects the results.
27See, for example, Foster et al. (2008) or Castro et al. (2015).
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Table 2: Baseline Calibration

Parameters Value Description Target/Source

εk 5 substitution across firms Monop Markup 1.25

N 389 # of sectors BEA

Nk 578 median # firms in a sector Census data∑
kNk 5 576 852 total # of firms Census data

∆k 0.037 median Pdty Herfindahl sales HHI of the Census

βk 0.027 median HH consumption share (%) BEA

γk 55.90 median labor share (%) BEA

Ω 2.19 I-O network density (when links> 1%, %) BEA

ak, ck 0.34,0.30 median Firm-level pdty process σk = 0.1 and ∆k

NOTE: The first column gives the notation of the parameter in the model. The third column gives the description of the

value in the second column. The fourth column is the data source or the associated calibration target.

The median number of firms in each sector is 578, and the total number of firms is equal to almost

5.6 millions. The median value of ∆k across sectors is 0.037, which implies a value of the HHI of

0.063. Note that merger law starts to apply in the United States for a value of the HHI over 0.18. The

value of the median markup is about 1.27. Under monopolistic competition, this markup would be

1.25 for a value of εk = 5. In this calibration, the median sector is relatively close to a sector under

monopolistic competition, and it reflects the conservatism of the baseline calibration. Finally, the

I-O network has a density of 2.19% and is very sparse; that is, 2.19% of all the possible N2 = 151321

links have a value higher than 1%.

6.2 Aggregate and Sector-Level Volatility

For each of the 5.6 million firms, I simulate a path of productivity of 4, 000 periods.28 To do so, I

use Proposition 6 and simulate the law of motion of the productivity distribution for each sector.

As in Carvalho and Grassi (2017), I follow the number of firms in each productivity bin rather than

following the path of each firm. Doing so considerably reduces the computation cost of simulations.

Note that even if Assumption 2 is key for this calibration strategy, by allowing the mapping between

the HHI and the productivity concentration measure ∆k, this assumption is not necessary to solve

for the equilibrium allocation given the firm-productivity distribution in each period. Therefore, for

each period t, I solve for the full problem at the firm level from which I recover sector-level markups

and productivities that I aggregate in Yt using the Proposition 8.29 For this 4, 000-period time series,

I compute aggregate volatility measured by the standard deviation of the percentage deviation of

aggregate output Yt. In Table 3, I report the standard deviation of the labor income and of the labor

share, that is, the “downstream” and “upstream” parts of aggregate output:

28I simulate 5, 000 periods and drop the first 1, 000 periods.
29Rather than solving the firm-level problem for each firm, I solve this problem for each productivity bin because the

firms in a bins are perfectly homogeneous. More details can be found in the numerical Appendix C.
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Table 3: Aggregate Volatility

Xt Total Downstream Upstream

σX = sd [logXt] 0.62 0.58 0.07

σX/sd [log Yt] 100 93.55 11.29

NOTE: The first row is the standard deviation of the percentage deviation of aggregate output Yt, of the “downstream” and

the “upstream” parts of aggregate output as defined in Section 4. The second row is the relative standard deviation of the

“downstream” and the “upstream” parts of aggregate output with respect to aggregate volatility. Numbers are reported in

percentage points. These statistics come from a 4, 000-periods simulation.

log Yt = logwtL︸ ︷︷ ︸
labor income, “downstream”

− log
wtL

PCYt
,

︸ ︷︷ ︸
labor share, “upstream”

(10)

The first result is that the standard deviation of aggregate output Yt is 0.62%. The same number in

the Fernald (2014) data is 1.83%.30 So the aggregate volatility in this model is 0.62/1.83 = 33.88% of

the aggregate volatility observed in the data. Note that in this model, this aggregate volatility arises

purely from 5.6 million independent firm-level shocks. The reason this number is quantitatively

non-negligible is that the central limit theorem and the “diversification argument” introduced by

Lucas (1977) fail to apply. The first reason the central limit argument fails to apply is that the di-

versification across firms within a sector is weak. Indeed, within a sector, large firms represent a

disproportionate market share as observed in the US Census Bureau concentration data. The “gran-

ular hypothesis” introduced by Gabaix (2011) is at play: shocks to these large firms do not average

out. Following a shock to one of these large firms, another shock of the opposite sign is unlikely to

hit another large firm and mitigate the first one. The second reason the central limit argument is

not applying is that the diversification across the 389 sectors is governed by the “small-world” I-O

network where a handful of highly connected hub-like sectors exist. As Acemoglu et al. (2012) and

Carvalho (2010) show, diversification across sectors is weaker than without such an I-O network and

translates into aggregate volatility.

The second result is that the volatility of the labor income, namely, the “downstream” part of aggre-

gate output, is 93.55% of the aggregate volatility, whereas the volatility of the labor share, namely,

the “upstream” part of aggregate output, is 11.29% of the aggregate volatility. In an economy without

oligopolistic competition, all the aggregate volatility would be due to the downstream part of aggre-

gate output, because the labor share, namely, the “upstream” part would be constant. This table

illustrates the importance of the role of the propagation of changes in profit share and competition

intensity following firm-level shocks. Consistent with Section 4’s results of Propositions 9 and 10, the

fact that the contribution of the “downstream” part of aggregate volatility is reduced compared to the

monopolistic-competition case indicates aggregate fluctuations are led by shocks to large firms in

their sectors. Following a shock to one of these large firms, the reduction in sector-level price that

30This number is the standard deviation of the percentage deviation of aggregate output from an HP trend as it is com-
puted in Carvalho and Grassi (2017).
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Table 4: Relative Contribution to Aggregate Volatility

“downstream” “upstream”

Xt wage monop. com. intensity

σX/σY 93.55 11.29

σX/σY 101.48 15.67 11.29

σX/σY (Monop) 100 0 0

NOTE: The first row is the ratio of the standard deviation of the “downstream” and “upstream” parts of aggregate output

with the aggregate volatility. The second row shows the relative standard deviations of the (log) wage under monopolistic

competition, of the difference of the (log) wage under oligopolistic and monopolistic competition, and of the “upstream”

part of aggregate output. The third row is the same as the second row but under monopolistic competition. Numbers are

reported in percentage points. These statistics comes from a 4, 000-period simulation.

propagates to downstream sectors is smaller because some of the gain in productivity is captured

by an increase in markup. If, instead, the downstream propagation were higher than under monop-

olistic competition, the implication would be that fluctuations were led by shocks to medium-size

firms. Indeed, a positive shock to one of these firms translates into a larger drop in the sector’s price

because some of this productivity gain also reduces the sector’s markup and thus strengthens the

downstream propagation.

Let us further decompose the labor income, that is, the “downstream” part of aggregate output, into

the contribution of the wage under monopolistic competition and the contribution of the competi-

tion intensity:

log Y d
t = logwtL = logwmonop

t︸ ︷︷ ︸
wage under monopolistic

+ logwt − logwmonop
t︸ ︷︷ ︸

competition intensity

. (11)

Under Assumption 2, Equation 5 and Proposition 5 show that under monopolistic competition, the

wage and the labor income, wmonop
t , at time t are entirely determined by Zt,k, whereas the term

logwt − logwmonop
t = −β′(I − Ω)−1{log fk(∆t,k)

1

εk−1 }k is entirely determined by the competition in-

tensity measured by the statistic ∆t,k. From the expression of the elasticity of the “downstream” part

of aggregate output in Equation 8, the interpretation of this decomposition is even clearer: the first

term is as if the sector-level markup were assumed to be fixed, whereas the second term is the change

in the sector-level markup. Table 4 shows the decomposition of the “downstream” part of aggregate

output.

The first row of Table 4 reproduces the relative standard deviation of the “downstream” and “up-

stream” of Table 3. In the second row, I report the relative standard deviation of each terms of the

righ-hand side of Equation 11, and in the last row, I report these latter numbers under monopo-

listic competition. Under monopolistic competition, all the volatility of aggregate output is due to

change in the sum of productivity, whereas change in productivity concentration would have no

effect. The volatility of aggregate output under monopolistic competition is 0.63 or 34.43% of the ob-

served aggregate volatility in the data. From an aggregate perspective, the aggregate volatility under

monopolistic and oligopolistic competition looks similar. However, as Table 4 shows, the propaga-
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Table 5: Sector-level Volatility

Xk,t log
(

w
Pk,t

)(Monop)
log w

Pk,t
− log

(
w

Pk,t

)(Monop)
log PkYk

PCC
− log wL

PCC

σXk
σYk

p10 100.30 3.54 0.09 1.11

p50 105.75 8.90 1.92 1.87

p90 117.26 23.74 8.71 8.00

σXk
σYk

(Monop)
p10 100 0 0 0

p50 100 0 0 0

p90 100 0 0 0

NOTE: The first three rows are the 10th, 50th, and 90th across sectors of the percentile of the ratio of the standard deviation

of each terms in the righ-hand side of Equation 12 and of the standard deviation of the (log) sector-level output Yk,t. The

last three rows report the same numbers under monopolistic competition. Numbers are reported in percentage points.

These statistics comes from a 4, 000-period simulation.

tion patterns are entirely different. Taking oligopolistic competition into account, the propagation

of changes in productivity of one firm to the downstream sectors is dampened by the response of the

competition intensity. Furthermore, the latter also propagates to upstream sectors. The difference in

propagation patterns between oligopolistic and monopolistic competition can be seen at the sector

level. Let us decompose the sector-level output as:

log Yk,t = log

(
wt

Pk,t

)Monop

+

(
log

wt

Pk,t
− log

(
wt

Pk,t

)Monop
)

+ log
Pk,tYk,t

PC
t Yt

− log
wtL

PC
t Yt

. (12)

Under Assumption 2, the second term of the right-hand side of Equation 12, wt

Pk,t
− log

(
wt

Pk,t

)Monop
,

is only a function of the concentration measure ∆l,t.
31 Therefore, this term measures the role of

oligopolistic competition. Furthermore, the last two terms in the right-hand side of Equation 12 are

entirely determined by parameters and the sector-level markups (see Equations 3 and 6). Table 5

shows percentiles across sectors of the ratio of the standard deviation of each term in the righ-hand

side of Equation 12 and of the standard deviation of the (log) sector-level output Yk,t.

The first result is that the median relative standard deviation of the first and second terms in Equa-

tion 12 are, respectively, 105.75% and 8.90%. According to Proposition 11, these terms are due to the

downstream propagation of changes in sector-level prices. The median relative standard deviation

of the (log) sales share, log PkYk

PCC , is 1.92%. As Proposition 12 show, these fluctuations in the sales

share are entirely due to the upstream propagation of change in sector-level profit share. The sec-

ond result, is that these relative volatilities are heterogeneous across sectors. In 10% of the sectors,

the volatility due to the propagation upstream of change in profit share represents more than 8.71%

of the sector-level output volatility, whereas in 10% of the sectors, this number is almost negligible.

The last result is that the propagation patterns across sectors under monopolistic competition are

entirely different from the pattern under monopolistic competition, as the Table 5 shows.

31Combining Equation 2, the results in Proposition 12, and Equation 5 shows this results.
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7 Conclusion

In this paper, I characterize the structural importance of a firm by its size, the role its sector plays in

the I-O network, and by its sector’s market structure. I highlight the role played by the interaction

between the I-O linkages and the industrial organization both theoretically and numerically. The

propagation of changes in profit share turns out to be important.

This paper also relates to the important literature on the micro-origin of aggregate fluctuations by

addressing its internal inconsistency and providing a new quantification. Indeed, in this paper, large

firms take into account the effect of their decisions on their sector price and output. Previous pa-

pers maintain the atomistic behavior assumption while studying the role played by a finite num-

ber of production units. Furthermore, the quantification provided here combined the “granular”

and the “network” origin of aggregate fluctuations while allowing for a flexible market structure.

Oligopolistic competition, compared to the monopolistic-competition benchmark, has little effect

on the aggregate volatility arising from purely idiosyncratic shocks, but the propagation patterns

are entirely different. A new propagation channel of productivity shocks arises through the endoge-

nous response of markups and profit shares. The downstream propagation of firm-level productiv-

ity shocks is dampened while also propagating to upstream sectors. The interaction of oligopolistic

competition and the I-O network is key for the latter.

This paper is also a starting point for studying the aggregate consequence of an increase in concen-

tration. The framework presented here allows for the aggregation of the change in concentration

and traces it back to a change in the concentration of firm-level productivity. Furthermore, if the

concentration of firm-level productivity could be affected by policy, such as merger law, the model

would be helpful in understanding the impact of such policy on the whole economy by taking into

account the I-O network. I leave these subjects for future research.
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Appendix to “IO in I-O: Size, Industrial Organization and the Input-Output
Network Make a Firm Structurally Important”

Basile Grassi

A Proof Appendix

A.1 Proof of Proposition 2 (Firm’s Approximation)

The first step is to rewrite the system of equations of Proposition 1 in terms of the following perceived elasticity

of demand: ε(k, i) = µ(k,i)
µ(k,i)−1 . Then let us define the following system of equations for a given parameter χ:

P (k, i) =
ε(k, i)

ε(k, i)− 1
λ(k, i)

s(k, i) =
P (k, i)y(k, i)

PkYk
=

(
P (k, i)

Pk

)1−εk

ε(k, i) =





εk Under Monopolistic Competition
εk − χ(εk − 1)s(k, i) Under Bertrand Competition(

1
εk

+ χ(1− 1
εk
)s(k, i)

)−1

Under Cournot Competition

When χ = 1, the above system is exactly the one described in Proposition 1 in terms of ε(k, i). When χ = 0,
both the Bertrand and Cournot cases reduce to the monopolistic case. I now focuse on these two cases.

Let us reduce the above system of equations to one equation determining the sales share s(k, i) of the firm i in
sector k by subsituting the expression of ε(i, k) and P (k, i):

s(k, i) =





(
1− 1

εk−χ(εk−1)s(k,i)

)εk−1 (
λ(k,i)
Pk

)1−εk
Under Bertrand

(
1− 1

εk
− χ(1− 1

εk
)s(k, i)

)εk−1 (
λ(k,i)
Pk

)1−εk
Under Cournot

Let us rewrite the above equation using the unknown X(ω, χ) = s(k, i) with ω =
(

λ(k,i)
Pk

)1−εk
and by the

function H(X,ω, χ) such that:
F(ω, χ) = H(X(ω, χ), ω, χ) = 0 (13)

with

H(X,ω, χ) =





X −
(
1− 1

εk−χ(εk−1)X

)(εk−1)

ω Under Bertrand

X −
(
1− 1

εk
− χ(1− 1

εk
)X
)(εk−1)

ω Under Cournot.

As explained earlier, X(ω, 0) = ŝ(k, i) is the solution under monopolistic competition. The solution of this
system X(ω, χ) satisfies at the second order:

X(ω, χ) = X(ω, 0) + χX ′(ω, 0) + χ2X ′′(ω, 0) + o(χ2),

where X ′(ω, χ) := ∂X
∂χ

(ω, χ) and X ′′(ω, χ) := ∂X′

∂χ
(ω, χ).

For χ = 1, it yields an approximation of the solution for the Oligopolistic case:

X(ω, 1) ≈ X(ω, 0) +X ′(ω, 0) +X ′′(ω, 0).

Let us compute these derivatives by differentiating Equation 13:

F ′
χ(ω, χ) = 0 = X ′(ω, χ)H′

X(X(ω,χ), ω, χ) +H′
χ(X(ω,χ), ω, χ)

F ′′
χ (ω, χ) = 0 = X ′′(ω,χ)H′

X(X(ω,χ), ω, χ) + (X ′(ω,χ))2H′′
XX(X(ω, χ), ω, χ) + 2X ′(ω,χ)H′′

χX(X(ω, χ), ω, χ),
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from which it follows

X ′(ω,χ) = −
H′

χ(X(ω, χ), ω, χ)

H′
X(X(ω, χ), ω, χ)

X ′′(ω,χ) = −
(X ′(ω,χ))2H′′

XX(X(ω, χ), ω, χ) + 2X ′(ω,χ)H′′
χX(X(ω, χ), ω, χ)

H′
X(X(ω,χ), ω, χ)

,

and evaluating this at (ω, 0):

X ′(ω, 0) = −
H′

χ(X(ω, 0), ω, 0)

H′
X(X(ω, 0), ω, 0)

X ′′(ω, 0) = −
(X ′(ω, 0))2H′′

XX(X(ω, 0), ω, 0) + 2X ′(ω, 0)H′′
χX (X(ω, 0), ω, 0)

H′
X(X(ω, 0), ω, 0)

,

We are left to compute the derivative of H(X,ω, χ) and substitute, which yields

X ′(ω, 0) =

{
−(1− 1

εk
)X(ω, 0)2 Under Bertrand

−(εk − 1)X(ω, 0)2 Under Cournot

X ′′(ω, 0) =

{
(1− 1

εk
)2(1− 1

εk−1
)X(ω, 0)3 Under Bertrand

(εk − 1)2(3− 1
εk−1

)X(ω, 0)3 Under Cournot.

which yields

X(ω, 1) ≈





X(ω, 0)
(
1− (1− 1

εk
)X(ω, 0) + (1− 1

εk
)2(1− 1

εk−1
)X(ω, 0)2

)
Under Bertrand

X(ω, 0)
(
1− (εk − 1)X(ω, 0) + (εk − 1)2(3− 1

εk−1
)X(ω, 0)2

)
Under Cournot

By substituting X(ω, 1) = s(k, i) and X(ω, 0) = ŝ(k, i), we get the result. �

A.2 Proof of Proposition 4 (Sector-Level Markup)

To prove this proposition, I substitute the result of Proposition 1 into Equation 1, reproduced here for conve-
nience:

µk =

(
Nk∑

i=1

µ(k, i)−1s(k, i)

)−1

. (1)

Let us first focus on the monopolistic competition case, and then turn to the Cournot and Bertrand cases.

Monopolistic case: Let us first look at the monopolistic competition case in which markups charged by
firms in sector k are identical and equal to εk

εk−1 . Substituting µ(k, i) into Equation 1 leads to µk =

εk
εk−1

(∑Nk

i=1 s(k, i)
)−1

= εk
εk−1 because the sum of the sales share of firms in sector k is equal to 1.

Cournot case: In this case, the markup charged by firm i in sector k is equal to µ(k, i) = εk
εk−1−(εk−1)s(k,i) . Let

us substitute it into Equation 1. After some simplification, we have:

µ−1
k =

εk − 1

εk

Nk∑

i=1

s(k, i)− εk − 1

εk

Nk∑

i=1

s(k, i)2 =
εk − 1

εk

(
1−

Nk∑

i=1

s(k, i)2

)
,

where the last equality comes from the fact that
∑Nk

i=1 s(k, i) = 1.

Bertrand case: In this case, the markup charged by firm i in sector k is equal to µ(k, i) = εk−(εk−1)s(k,i)
εk−1−(εk−1)s(k,i) . Let

us substitute it in Equation 1. After some simplification we have:

µ−1
k =1− 1

εk

Nk∑

i=1

s(k, i)
1

1− εk−1
εk

s(k, i)

Note that because εk > 1 and s(k, i) < 1, we have 0 < εk−1
εk

s(k, i) < 1. We can expand the series and therefore
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1

1−
εk−1

εk
s(k,i)

=
∑∞

m=0

(
εk−1
εk

)m
s(k, i)m. After substituting in the previous equation, we get

µ−1
k =1− 1

εk

Nk∑

i=1

∞∑

m=0

(
εk − 1

εk

)m

s(k, i)m+1

=1− 1

εk

∞∑

m=0

(
εk − 1

εk

)m Nk∑

i=1

s(k, i)m+1

=1− 1

εk
− 1

εk

∞∑

m=1

(
εk − 1

εk

)m Nk∑

i=1

s(k, i)m+1

=
εk − 1

εk

(
1− 1

εk − 1

∞∑

m=2

(
εk − 1

εk

)m−1 Nk∑

i=1

s(k, i)m

)
,

where for the first to the second line, I use the fact that the sum over the firms in sector k index by i is finite,
where for the second to the third line, I take out the first term of the sum over the index m, and where the last
line comes from rearranging terms and reindexing of the sum overm. �

A.3 Proof of Proposition 5 (Sector Allocation)

The structure of the proof is as follows. First, I find the relationship (Equation 2) between sector prices and
sector level productivity and markup. Second, I show Lemmas 1 and 2, which relate the sector-level produc-
tivity and markup to other sector prices and the wage. Finally, I combine these results to solve for the sector
allocation.

A.3.1 Proof of Equation 2:

As show earlier in Section 3.2, the sector-level marginal cost and markup are such that λk = µ−1
k Pk. Using the

fact that λk = Z−γk

k wγk
∏N

l=1 P
ωk,l

l , we have

Pk = µk

(
w

Zk

)γk N∏

l=1

P
ωk,l

l and logPk = logµk

(
w

Zk

)γk

+
N∑

l=1

ωk,l logPl (14)

Rewriting the last equation in matrix form yields

{logPk}k =

{
logµk

(
w

Zk

)γk
}

k

+Ω {logPk}k

where theN×N matrixΩ is such that Ω = {ωk,l}1≤k,l≤N . Finally, Equation 2 comes from the pre-multiplication
of the following expression by the matrix (I − Ω)−1:

(I − Ω) {logPk}k =

{
logµk

(
w

Zk

)γk
}

k

�

A.3.2 Proof of Equation 3:

The market-clearing condition for the variety i of sector k’s good is such that the supply is equal to the demand
from the household and from other firms in the economy:

P (k, i)y(k, i) = P (k, i)c(k, i) +
N∑

l=1

Nl∑

j=1

P (k, i)x(l, j, k, i),

where c(k, i) is the demand of variety i of sector k’s good by the household and x(l, j, k, i) is the demand
of variety i of sector k’s good from firm j in sector l. The household’s problem gives P (k, i)c(k, i) =
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βk

(
P (k,i)
Pk

)1−εk
PCC, whereas the cost-minimization problem of firm j in sector l gives P (k, i)x(l, j, k, i) =

ωl,k

(
P (k,i)
Pk

)1−εk
λ(l, j)y(l, j). Summing over the firms in sector k and using the fact that Pk =

∑Nk

i=1 P (k, i)
1−εk ,

we have

PkYk =

Nk∑

i=1

p(k, i)y(k, i) = βkP
CC +

N∑

l=1

ωl,k

Nl∑

j=1

λ(l, j)y(l, j) = βkP
CC +

N∑

l=1

ωl,kµ
−1
l PlYl

where in the last equality, I use the definition of the sector marginal cost λl and the fact that λl = µ−1
l Pl. Let us

define the N ×N matrix Ω̃ = {µ−1
k ωk,l}k,l. The above equation in vector form yields

{
PkYk
PCC

}′

k

= β′ +

{
PlYl
PCC

}′

l

Ω̃ ⇒
{
PkYk
PCC

}′

k

= β′(I − Ω̃)−1.

�

A.3.3 Two Lemmas:

Let us first prove two lemmas that simplifythe expression of sectors’ productivity and markup.

Lemma 1 (Productivity) Under Assumption 2, the sector-level productivity Zk satisfies

Z−γk

k =





X
εk

εk−1

k Zk Under Monopolistic Competition

X
εk

εk−1

k

(
Zk −XkZk

2
∆k

)
Under Bertrand Competition

X
εk

εk−1

k

(
Zk − εkXkZk

2
∆k

)
Under Cournot Competition

where Xk =
(
P−1
k

εk
εk−1w

γk
∏N

l=1 P
ωk,l

l

)(1−εk)

and where Zk and ∆k are defined in Section 3.1.

Proof of Lemma 1: Let us first look at the monopolistic case before turning to the Bertrand and Cournot cases.

Monopolistic case: Under monopolistic competition, firm i in sector k charges a (constant) markup εk
εk−1 over

its marginal cost λ(k, i). Note the firm-level marginal cost is equal to

λ(k, i) = Z(k, i)−γkwγk

N∏

l=1

P
ωk,l

l

It follows that

y(k, i)

Yk
=

(
P (k, i)

Pk

)−εk

=

(
εk

εk − 1
P−1
k λ(k, i)

)−εk

= Z(k, i)γkεk

(
εk

εk − 1
P−1
k wγk

N∏

l=1

P
ωk,l

l

)−εk

.

Substituting the above expression into the expression of Zk yields

Z−γk

k =

Nk∑

i=1

Z(k, i)−γk
y(k, i)

Yk
=

(
εk

εk − 1
P−1
k wγk

N∏

l=1

P
ωk,l

l

)−εk Nk∑

i=1

Z(k, i)γk(εk−1)

which implies the result

Z−γk

k = X
εk

εk−1

k

Nk∑

i=1

Z(k, i)γk(εk−1) = X
εk

εk−1

k Zk

Cournot case: Let us first note that y(k,i)
Yk

= Pkp(k, i)
−1s(k, i) = Pkλ(k, i)

−1µ(k, i)−1s(k, i). The

sales share under monopolistic competition is ŝ(k, i) = P εk−1
k

(
εk

εk−1

)1−εk
λ(k, i)1−εk , whereas λ(k, i) =
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Z(k, i)−γkX
1

1−εk

k Pk
εk−1
εk

. It follows that ŝ(k, i) = Z(k, i)−γk(1−εk)Xk. Note also that λ(k, i)−1Pk
εk−1
εk

=

Z(k, i)γkX
−1

1−εk

k .

Under Cournot competition according to Proposition 1, we have

y(k, i)

Yk
= λ(k, i)−1Pk

εk − 1

εk
(s(k, i)− s(k, i)2) = Z(k, i)γkX

−1
1−εk

k (s(k, i)− s(k, i)2).

Under Assumption 2,the sales share of firm i in sector k satisfies s(k, i)−s(k, i)2 = ŝ(k, i)−εkŝ(k, i)2. Equipped
with all these expressions, let us look at

Z−γk

k =

Nk∑

i=1

Z(k, i)−γk
y(k, i)

Yk
=

Nk∑

i=1

Z(k, i)−γkZ(k, i)γkX
−1

1−εk

k (s(k, i)− s(k, i)2)

= X
−1

1−εk

k

Nk∑

i=1

(
ŝ(k, i)− εkŝ(k, i)

2
)

= X
−1

1−εk

k

Nk∑

i=1

(
Z(k, i)−γk(1−εk)Xk − εkZ(k, i)

−2γk(1−εk)X2
k

)

= X
−1

1−εk

k

(
Xk

Nk∑

i=1

Z(k, i)−γk(1−εk) − εkX
2
k

Nk∑

i=1

Z(k, i)−2γk(1−εk)

)

= X
εk

εk−1

k

(
Zk − εkXkZk

2
∆k

)
.

Bertrand case:

Under Bertrand competition, according to Proposition 1, µ(k, i) = εk−(εk−1)s(k,i)
εk−1−(εk−1)s(k,i) , and therefore

µ(k, i)−1s(k, i) =
εk − 1

εk

1− s(k, i)

1− εk−1
εk

s(k, i)
s(k, i) =

εk − 1

εk
s(k, i)(1− s(k, i))

(
1 +

εk − 1

εk
s(k, i) + (

εk − 1

εk
s(k, i))2

)
,

where the last equality holds for a second-order approximation for s(k, i) −→ 0. At the second order, we thus

have µ(k, i)−1s(k, i) = εk−1
εk

(
s(k, i)− ε−1

k s(k, i)2
)

. Using the fact that
y(k,i)
Yk

= Pkλ(k, i)
−1µ(k, i)−1s(k, i) and

λ(k, i)−1Pk
εk−1
εk

= Z(k, i)γkX
−1

1−εk

k , the output share of firm i in sector k is

y(k, i)

Yk
= λ(k, i)−1Pk

εk − 1

εk

(
s(k, i)− ε−1

k s(k, i)2
)
= Z(k, i)γkX

−1
1−εk

k

(
s(k, i)− ε−1

k s(k, i)2
)
.

Under Assumption 2,the sales share of firm i in sector k satisfies s(k, i)−ε−1
k s(k, i)2 = ŝ(k, i)−ŝ(k, i)2. Equipped

with all these expressions, let us look at

Z−γk

k =

Nk∑

i=1

Z(k, i)−γk
y(k, i)

Yk
=

Nk∑

i=1

Z(k, i)−γkZ(k, i)γkX
−1

1−εk

k (s(k, i)− ε−1
k s(k, i)2)

= X
−1

1−εk

k

Nk∑

i=1

(
ŝ(k, i)− ŝ(k, i)2

)

= X
−1

1−εk

k

Nk∑

i=1

(
Z(k, i)−γk(1−εk)Xk − Z(k, i)−2γk(1−εk)X2

k

)

= X
−1

1−εk

k

(
Xk

Nk∑

i=1

Z(k, i)−γk(1−εk) −X2
k

Nk∑

i=1

Z(k, i)−2γk(1−εk)

)

= X
εk

εk−1

k

(
Zk −XkZk

2
∆k

)
.

�
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Lemma 2 (Markup) Under Assumption 2, sector k’s markup satisfies

µ−1
k =





εk−1
εk

Under Monopolistic Competition

εk−1
εk

(
1− 1

εk
X2

kZk
2
∆k

)
Under Bertrand Competition

εk−1
εk

(
1−X2

kZk
2
∆k

)
Under Cournot Competition.

where Xk =
(
P−1
k

εk
εk−1w

γk
∏N

l=1 P
ωk,l

l

)(1−εk)

and where Zk and ∆k are defined in Section 3.1.

Proof of Lemma 2: Let us first look at the Cournot case before turning to the Bertrand case.

Cournot case: Proposition 4 shows that under Cournot competition, we have µ−1
k = εk−1

εk

(
1−∑Nk

i=1 s(k, i)
2
)

whereas under Assumption 2, we have s(k, i)2 = ŝ(k, i)2. Using the fact that ŝ(k, i) = Z(k, i)−γk(1−εk)Xk,

µ−1
k =

εk − 1

εk

(
1−X2

k

Nk∑

i=1

Z(k, i)2γk(εk−1)

)
.

Bertrand case: As shown in the proof of Lemma 1 under Bertrand competition, the markup and the sales share
of firm i in sector k satisfy up to a second-order approximation:

µ(k, i)−1s(k, i) =
εk − 1

εk

(
s(k, i)− ε−1

k s(k, i)2
)
.

It follows that the sector-level markup,

µ−1
k =

Nk∑

i=1

εk − 1

εk

(
s(k, i)− ε−1

k s(k, i)2
)
=
εk − 1

εk

(
1− ε−1

k

Nk∑

i=1

s(k, i)2

)

because
∑Nk

i=1 s(k, i) = 1. Under Assumption 2, we have that s(k, i)2 = ŝ(k, i)2. Using the fact that ŝ(k, i) =

Z(k, i)−γk(1−εk)Xk, the result follows. �

A.3.4 Proof of the Proposition 5:

In the last step of this proof, let us rewrite Equation 14 as

µkZ
−γk

k =
εk

εk − 1

[
εk − 1

εk
Pkw

−γk

N∏

l=1

P
−ωk,l

l

]
.

The term on the right-hand side in the brackets of the above equation is equal to X
1

εk−1

k . We can then rewrite
this equation as

Z−γk

k = µ−1
k

εk
εk − 1

X
1

εk−1

k (15)

Bertrand case: Let us substitute in Equation 15, the expression of the productivity and the markup in Lemmas
1 and 2:

X
εk

εk−1

k

(
Zk −XkZk

2
∆k

)
=
εk − 1

εk

(
1− 1

εk
X2

kZk
2
∆k

)
εk

εk − 1
X

1
εk−1

k

Rearranging terms yields the following quadratic equation in unknownXk:

(1− ε−1
k )Zk

2
∆kX

2
k − ZkXk + 1 = 0. (16)

First note that the monopolistic case is nested in the above equation (see Lemmas 1 and 2). Indeed, by taking
∆k = 0, we recover the solution of the above equation under monopolistic competition: Xk = 1/Zk. Second,

Equation 16 admits a solution only if Zk
2 − 4(1 − ε−1

k )Zk
2
∆k ≥ 0 or equivalently when ∆k ≤ 1

4(1−ε−1
k )

. In the
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case of strict inequality, this equation admits the following two solutions:

X+
k =

1 +
√
1− 4(1− ε−1

k )∆k

2(1− ε−1
k )∆kZk

and X−
k =

1−
√
1− 4(1− ε−1

k )∆k

2(1− ε−1
k )∆kZk

.

For ∆k −→ 0, we cano see X+
k −→ ∞ and X−

k −→ 1
Zk

. To ensure continuity of the solutions with the monopo-

listic case, X−
k is the only admissible solution, and therefore using the notation fk of the Proposition 5,

Xk ==
1−

√
1− 4(1− ε−1

k )∆k

2(1− ε−1
k )∆kZk

=
fk(∆k)

Zk

.

Let us now solve for the productivity. Using Lemma 1, we haveX
1

εk−1

k

(
ZkXk −X2

kZk
2
∆k

)
. Using Equation 16,

to see that X2
kZk

2
∆k = ZkXk−1

1−ε−1
k

, the productivity in sector k satisfies

Z−γk

k = X
1

εk−1

k

εk − ZkXk

εk − 1
.

The markup expression is also found using the same reasoning. Combining Lemma 2 and Equation 16 yields

that µ−1
k = εk−ZkXk

εk
.

Cournot case: For the Cournot case, I follow the same logic. By combining Equation 15 and Lemmas 1 and 2,
Xk is the solution of the following quadratic equation:

(εk − 1)Zk
2
∆kX

2
k − ZkXk + 1 = 0. (17)

This equation, for ∆k <
1

4(εk−1) , has one admissible solution32:

Xk =
1−

√
1− 4(εk − 1)∆k

2∆k(εk − 1)Zk

=
fk(∆k)

Zk

.

Using Equation 17 and Lemmas 1 and 2, it is easy to show that under Cournot competition

Z−γk

k = X
1

εk−1

k

εk − ZkXk

εk − 1
and µ−1

k =
εk − ZkXk

εk
.

�

A.4 Proof of Proposition 8 (Equilibrium Allocation)

Wage (Equation 5): Without loss of generality, let us normalize the composite consumption good to PC = 1.

It implies 0 = log 1 = logPC =
∑N

k=1 βk logPk = β′ {logPk}k, where the last expression is an inner product
of the two vectors β and {logPk}k. In this last expression, let us subsitute the expression of sector-level price
(Equation 2):

0 = β′(I − Ω)−1

{
logµl

(
w

Zl

)γl
}

l

= β′(I − Ω)−1 {γl}l logw + β′(I − Ω)−1
{
logµlZl

−γl
}
l
.

Note that ΩI =
{∑N

l=1 ωk,l

}
k

= {1− γk}k = I − {γk}k, where I = {1}k is the vector of ones. It implies

(I − Ω)−1 {γl}l = I. Furthermore, because
∑N

k=1 βk = 1, it follows that β′(I − Ω)−1 {γl}l = β′I =
∑N

k=1 βk = 1.
Using this last expression, we have the expression of the wage:

logw = −β′(I − Ω)−1
{
logµlZl

−γl
}
l
.

�

32An admissible solution such that Xk −→
∆k→0

1

Zk
.
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Aggregate profit share (Equation 6): From the firm’s problem, it is clear that the profit π(k, i) of firm i in sector
k is such that π(k, i) = P (k, i)y(k, i)− λ(k, i)y(k, i). Summing over the firms in sector k yields:

πk =

Nk∑

i=1

P (k, i)y(k, i)−
Nk∑

i=1

λ(k, i)y(k, i) = PkYk − λkYk = (1 − µ−1
k )PkYk,

where I use the definition of the marginal cost in sector k and the fact that λk = µ−1
k Pk . Finally, aggregate profit

is equal to the sum of the profit in each sector:

Pro

PCC
=

N∑

k=1

πk
πk
PCC

=

N∑

k=1

(1 − µ−1
k )

PkYk
PCC

=

{
PkYk
PCC

}′

k

{
1− µ−1

k

}
k
.

Substituting Equation 3 yields the result. �
Aggregate output (Equation 7): The household budget constraint is such that total expenditure is equal to the
labor and profit income:

PCC = wL+ Pro ⇔ C = w +
Pro

PCC
C,

where I use the normalization of the price PC = 1 and of the labor L = 1. Note that in this framework, Y = C.
Rearranging terms and taking logs gives the results. �

A.5 Proof of Propositions 9 and 10 (Elasticity of Aggregate Output)

Proposition 9: Combining the expression of the wage w in Proposition 8 and the expression of the sectoral
markups and productivities under Assumption 2 given by Proposition 5, we have

logw = −β′
{
log

εk
εk − 1

(
Zk

) −1
εk−1 fk(∆k)

1
εk−1

}

k

= −
N∑

k=1

βk

( −1

εk − 1
logZk +

1

εk − 1
log fk(∆k) + log

εk
εk − 1

)
.

Taking derivative of the above expression with respect to logZk and log∆k yields

∂ logw

∂ logZk

=
βk

εk − 1
and

∂ logw

∂ log∆k

= − βk

εk − 1
ek.

where ek is the elasticity of fk with respect to ∆k: ek = d log fk(∆k)
d log∆k

. Using the fact that ∂ log ∆k

∂ logZ(k,i) =

2
∆k

(
Z(k,i)(εk−1)γk

Zk
−∆k

)
∂ logZk

∂ logZ(k,i) and using the chain rule, we can compute the elasticity of the wage with

respect to the productivity of firm i in sector k:

∂ logw

∂ logZ(k, i)
=
∂ logw

∂ logZk

∂ logZk

∂ logZ(k, i)
+

∂ logw

∂ log∆k

∂ log∆k

∂ logZ(k, i)

=
βk

εk − 1

(
1 +

2ek
∆k

(
∆k − Z(k, i)(εk−1)γk

Zk

))
∂ logZk

∂ logZ(k, i)
.

�

Proposition 10: Let us first prove a technical lemma that turns out to be useful, which compute the deriva-
tive of the sector-level sales share with respect to the inverse of the sector-level markups.

Lemma 3 (Sector-level sales-share derivative) Under Assumption 2, the derivative of the vector of sector-level

sales share β̃ =
{
PkYk

PCC

}
k

with respect to µ−1
k is

∂β̃′

∂(µ−1
k )

= µkβ̃kv
′
k

[
(I − Ω̃)−1 − I

]
,

where vk is the (N × 1) vector where all elements are zero except the kth.

Proof of the lemma: Equation 3 in Proposition 5 tells us β̃′ ≡
{
PkYk

PCC

}′
k
= β′(I − Ω̃)−1 = β′(I − SΩ)−1, where
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S is the diagonal matrix with the element of the vector {µ−1
k }k i.e S = diag(µ−1

k ). Thanks to the fact that for a

matrix A, the derivative of its inverse is ∂A−1

∂x
= −A−1 ∂A

∂x
A−1, we have

∂β̃′

∂µ−1
k

= −β′(I − Ω̃)−1 ∂(I − SΩ)

∂µ−1
k

(I − Ω̃)−1 = +β′(I − Ω̃)−1 ∂S

∂µ−1
k

Ω(I − Ω̃)−1 = β′(I − Ω̃)−1 ∂S

∂µ−1
k

S−1Ω̃(I − Ω̃)−1.

Note that ∂S

∂µ−1
k

S−1 = µkvkv
′
k with vkv

′
k is the (N × N) matrix such that all elements are zeros except the kth

of the diagonal. Note also that Ω̃(I − Ω̃)−1 = (I − Ω̃)−1 − I = Ω̃ + Ω̃2 + . . . Using this expression in the above
equation yields:

∂β̃′

∂(µ−1
k )

= µkβ
′(I − Ω̃)−1vkv

′
k

[
(I − Ω̃)−1 − I

]
= µkβ̃kv

′
k

[
(I − Ω̃)−1 − I

]
.

�

Back to the proof of Proposition 10, let us recall that log Y u = − log(1− Pro
PCC

). By using the chain rule, we have

∂ log Y u

∂ logZ(k, i)
=
∂ log Y u

∂ logZk

∂ logZk

∂ logZ(k, i)
+
∂ log Y u

∂ log∆k

∂ log∆k

∂ logZ(k, i)
=
∂ log Y u

∂ log∆k

∂ log∆k

∂ logZ(k, i)
,

where the last equality comes from the fact that ∂ log Y u

∂ logZk
= 0. Indeed, Pro

PCC
= β′(I − Ω̃)−1{1− µ−1

k }k is entirely

determined by the parameters β and Ω and the markups µk, and the latter are themselves entirely determined

by the ∆k. Using the expression of ∂ log∆k

∂ logZ(k,i) , we have

∂ log Y u

∂ logZ(k, i)
=

2

∆k

(
Z(k, i)(εk−1)γk

Zk

−∆k

)
∂ logZk

∂ logZ(k, i)

∂ log Y u

∂ log∆k

. (18)

Let us compute ∂ log Y u

∂ log∆k
:

∂ log Y u

∂ log∆k

=
∆k

1− Pro
PCC

∂ Pro
PCC

∂∆k

=
∆k

wL
PCC

∂(µ−1
k )

∂∆k

∂ Pro
PCC

∂(µ−1
k )

= −fk(∆k)

εk

∆kf
′
k(∆k)

fk(∆k)

PCC

wL

∂ Pro
PCC

∂(µ−1
k )

,

where I use the chain rule in the second equality and the expression of the sector k’s markup µ−1
k = 1− fk(∆k)

εk

in the last equality. Note that I can use the chain rule in the second equality because the markup in sector k is
entirely determined by the index ∆k. Using the definition of the markup and the elasticity ek of the function
fk, we have

∂ log Y u

∂ log∆k

= −(1− µ−1
k )ek

PCC

wL

∂ Pro
PCC

∂(µ−1
k )

. (19)

Let us compute
∂ Pro

PCC

∂(µ−1
k )

. First thanks to Proposition 8, we have Pro
PCC

= β′(I − Ω̃)−1{1 − µ−1
k }k = β̃′{1 − µ−1

k }k
with the notation of Lemma 3: β̃ =

{
PkYk

PCC

}
k
= β′(I − Ω̃)−1. Using the fact that for two vectors y and x that are

function of z then ∂(y′x)
∂z

= x′ ∂y
∂z

+ y′ ∂x
∂z

, we have

∂ Pro
PCC

∂(µ−1
k )

= β̃′ ∂({1− µ−1
k }k)

∂(µ−1
k )

+ {1− µ−1
k }′k

∂β̃

∂(µ−1
k )

= −β̃′vk + µkβ̃k{1− µ−1
k }′k

[(
(I − Ω̃)−1

)′
− I

]
vk

= −β̃k + µkβ̃k

[(
{1− µ̃k

−1}k
)′
vk − {1− µ−1

k }′kvk
]

= −β̃k + µkβ̃k

[
1− µ̃k

−1 − 1 + µ−1
k

]
= −β̃k

µk

µ̃k

= −PkYk
PCC

µk

µ̃k

(20)

where in the fifth line I use the definition of µ̃k
−1

in Proposition 8. Substituting Equations 20 and 19 into
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Equation 18 yields the result:

∂ log Y u

∂ logZ(k, i)
= −Prok

wL

µk

µ̃k

2ek
∆k

(
∆k − Z(k, i)(εk−1)γk

Zk

)
∂ logZk

∂ logZ(k, i)
.

where I use the fact that Prok = PkYk(1− µ−1
k ). �

A.6 Proof of Proposition 11 (Elasticity of Sector-Level Price)

Using Equation 2 and the results of Proposition 5, we have

{logPk}k = (I − Ω)−1

{
logZl

−1
εl−1 fl(∆l)

1
εl−1

εl
εl − 1

}

l

+ logwI,

where I used the fact that (I −Ω)−1 {γl}l = I, where I = {1}l. Taking the derivative with respect to Z(l, i) yields

{
∂ logPk

∂ logZ(l, i)

}

k

=
(I − Ω)−1vl

εl − 1

(
− ∂ logZl

∂ logZ(l, i)
+

∂ log∆l

∂ logZ(l, i)
el

)
+ logwI,

where el is the elasticity of fl and vl is the N × 1 vector where the element l is 1 and the others are zero. Note

that ψdvl = (I − Ω)−1vl = {ψd
k,l}k. Let us substitute the expression of ∂ log∆l

∂ logZ(l,i) to find that

{
∂ logPk

∂ logZ(l, i)

}

k

= −
{ψd

k,l}k
εl − 1

(
1 +

2el
∆l

(
∆l −

Z(l, i)(εl−1)γl

Zl

))
∂ logZl

∂ logZ(l, i)
+ logwI.

�

A.7 Proof of Proposition 12 (Elasticity of Sector-Level Sales Share)

From Equation 3 of Proposition 5, the sales share of sectors are such that

{
PkYk
PCC

}′

k

= β′(I − Ω̃)−1,

Using the chain rule,

{
∂ log

(
PkYk

PCC

)

∂ logZ(l, i)

}′

k

=

{
µ−1
l

PkYk

PCC

∂ log(µ−1
l )

∂ logZ(l, i)

∂
(
PkYk

PCC

)

∂(µ−1
l )

}′

k

,

Lemma 3 gives that

{
∂
(

PkYk
PCC

)

∂(µ−1
l

)

}′

k

= µlβ̃lv
′
l

[
(I − Ω̃)−1 − I

]
. Because v′lψ

s = {ψs
l,k}k we have

∂
(

PkYk
PCC

)

∂(µ−1
l

)
=

µlβ̃l(ψ
s
l,k − Il,k), where Il,k = 1 is l = k and = 0 otherwise. Using the expression of

∂ log(µ−1
l )

∂ logZ(l,i) , the fact that

β̃l =
PlYl

PCC
, we have

{
∂ log

(
PkYk

PCC

)

∂ logZ(l, i)

}′

k

=

{
PlYl
PkYk

2el
∆l

(
∆l −

Z(l, i)(εl−1)γl

Zl

)
(ψs

l,k − Il,k)

}′

k

,

�

B Data Appendix

In this paper, I use two types of data at the sector level. The first type is the oinput-output I-O data of the
Bureau of Economic Analysis (BEA). The second type is the concentration data of the US Census Bureau.
The BEA provide I-O information at different level of aggregation. I use here the detailed I-O table from
2007, which gives information on 389 sectors. The BEA does not provide direct requirement Industry-
by-Industry table but instead total Industry-by-Industry requirement table, TOT . I then use the formula
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Ω̃ = (TOT − I)TOT−1 to find the direct requirement of an industry input to produce one dollar of its out-
put at the steady state. To find the value of household-consumption share, I use the BEA’s USE table, which
gives for each commodity how much the household buys of this commodity. I then recover the share of income
the household spends on each industry, by premultiplying these commodity spending shares by the MAKE ta-
ble. For each industry, the MAKE table gives how much of each commodity is needed to produce one dollar of
output.
The US Census Bureau provides a concentration measure for different levels of aggregation all sectors except
for Agriculture, Forestry, Fishing and Hunting (11); Mining, Quarrying, and Oil and Gas Extraction (21); Con-
struction (23); Management of Companies and Enterprises (55); Public Administration (92). The measure of
concentration are the top 4,8,20, and 50 firms’ share of total industry revenues in 2002, 2007, and 2012. For
manufacturing (31-33), the US Census Bureau also gives the Herfindahl-Hirschman Index among the 50 largest
firms. I use these data for Figures 9 and 8 in Online Appendix E. The former plots the sector-level concentration
measure in 2002 versus 2007. The latter displays the empirical distribution of the sector-level concentration
measures.
Using the correspondence table given by the BEA between the I-O sectors-classification and the NAICS 2007
classification, I matched these two data sources to plot Figure 1 and to calibrate the model in section 6.

C Numerical Appendix

In this appendix, I first describe how to simulate a path of productivity for each of the 5.6 million firms in an
efficient way. Second, I describe how to numerically solve for the equilibrium allocation without relying on
Assumption 2.

Simulation of a Path of Productivity Distributions

To simulate a path of productivity for a large number of firms, I follow the number of firms in each productivity
bins rather than the productivity of each firm. The idea is the one described in Proposition 6 and is illustrated
in the discussion of the simple example of Figure 5. The key assumption is that productivity evolves on a
discrete grid: the number of firms in each bin characterizes the whole distribution of productivity across firms.
Because firms in a same productivity bin are the same, following the number of firms in each productivity bin
is equivalent to following the productivity of each firm.
The simulation procedure follows closely the proof of Proposition 6 in Appendix F.2. For a given period t, for

a given sector k, and for a given distribution of firms g
(k)
t in this sector, that is, a vector whose elements are

the number of firms in each productivity bin, we know the number of firms in each productivity bin at time
t + 1 that were in productivity bin n at t follow a multinomial random vector with the number of trials being

g
(k)
t,n and the event probability given by the nth row vector of the matrix P(k). The next productivity distribution

g
(k)
t+1 is just the sum of all these conditional distributions. This procedure makes the simulation of a path of

productivity for each of the 5.6 million firms extremely efficient. I use this procedure in all the simulation
exercises in the main text of this paper.

Solving the Equilibrium Allocation

Given the distributions of productivity across firms in each sector, I can solve for the equilibrium allocation.
The first step is to solve for the Bertrand firm-level problem described in Proposition 1. Note that after substi-

tuting for the firm’s marginal cost, and defining Xk =
(

εk
εk−1

P−1
k wγk

∏N
l=1 P

ωk,l

l

)1−εk
, this problem is equivalent

to

∀i ∈ [|1, Nk|],





s(k, i) =
(
µ(k, i)Z(k, i)−γk εk−1

εk

)1−εk
Xk

µ(k, i) = εk−(εk−1)s(k,i)
εk−1−(εk−1)s(k,i)

and Xk =

(
Nk∑

i=1

µ(k, i)1−εkZ(k, i)γk(εk−1)

(
εk

εk − 1

)εk−1
)−1

Given firm-level productivities Z(k, i), the above system of equations can be solved numerically and gives,
for each sector, the firm-level sales share s(k, i), the markups µ(k, i), and Xk. Note that one equation exists
per firm, so when the number of firms is very large, as it is in the baseline calibration, the size of this system
becomes too large. To save computation time, I rewrite the above system for each possible productivity level

and use the number of firms in each productivity bin given by the vector g
(k)
t : the sum in the right-hand side

of the above equation satisfied by Xk is now over the productivity bins rather than the firms:

∀n ∈ [|0,Mk|],











s(k, n) =
(

µ(k, n)(ϕn
k )−γk

εk−1

εk

)1−εk Xk

µ(k, n) =
εk−(εk−1)s(k,n)

εk−1−(εk−1)s(k,n)

and Xk =





Mk
∑

n=0

µ(k, n)
1−εk (ϕ

n
k )

γk(εk−1)

(

εk

εk − 1

)εk−1

g
(k)
t,n





−1
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where µ(k, n) and s(k, n) stand for the markup and the sales share of firms with productivity level ϕn
k . The

number of equations in this system is the number of productivity bins Mk in sector k and is independent of
the number of firms Nk in sector k.
With the distribution of sales share and markups across firms in each sector, I can compute sector-level pro-
ductivities and markups as they are defined in Section 3.2. Given these sector-level markups and productivi-
ties, the equilibrium allocation is entirely characterized by Proposition 8.

D Elastic Labor Supply

In this appendix, I show how the main results are affected by relaxing the inelastic-labor-supply assumption.
I consider the case of separable and GHH preferences. In both cases, aggregate output Yt is a function of
the equilibrium wage and the profit share as in the inelastic cases (Equation 7). With separable preferences

U(C, L) = C1−η

1−η
− θL1+1/f

1+1/f
, where f is the Frisch elasticity of the labor supply, η is the coefficient of relative

risk aversion, and aggregate output is log Yt =
(
1 + 1−η

1/f+η

)
logwt −

(
1− η

1/f+η

)
log
(
1− Prot/(P

C
t Ct)

)
. With GHH

preferences U(C,L) = 1
1−η

(
C − θL1+1/f

1+1/f

)1−η

, aggregate output is log Yt = (1 + f) logwt − log
(
1− Prot/(P

C
t Ct)

)
.

Let us define the “downstream” and “upstream” parts of aggregate output as in Section 4, that is, the (log) labor
income and the (log) inverse of the labor income share, respectively. With GHH preferences, the elasticity in
Proposition 9 is multiplied by (1+f), whereas the result in Proposition 10 is unaffected. With these preferences,
the income effect does not affect the labor supply, and labor income is only a function of the equilibrium

wage: wtLt = w1+f
t θ−f . With separable preferences, labor income is a function of aggregate output, wtLt =

w1+f
t θ−fC−ηf

t , and the elasticity of the “downstream” part is a weighted sum of the elasticities in Propositions
9 and 10. The elasticity of the “upstream” part is unaffected.
The relative standard deviation of the “downstream” and “upstream” parts of aggregate output with respect to
aggregate volatility for different preferences can be found in Table 6. The first row is for separable preferences,
whereas the second is for GHH preference. In every row, the calibration is as in the baseline case of Table 2 with
η = 1 and a Frisch elasticity of f = 2. Figure 7 plots these relative standard deviations for a Frisch elasticity
varying from 0 to 2.

Table 6: Aggregate Volatility and Elastic Labor Supply

Downstream Upstream

Inelastic 93.55 11.29

Separable 94.90 12.02

GHH 98.16 4.01

NOTE: Each row is the relative standard deviation with respect to (log) aggregate output of the (log) labor income and

(log) labor share, that is, the “downstream” and “upstream” parts of aggregate output. The first row is the baseline case of

inelastic labor supply (as in Table 3). The second row is the case of separable preference: U(C,L) = C1−η

1−η
− θL1+1/f

1+1/f
. The

third row is the case of GHH preferences: U(C, L) = 1
1−η

(
C − θL1+1/f

1+1/f

)1−η

. The calibration is as in Table 2 with η = 1 and

f = 2. Numbers are reported in percentage points. These statistics come from 4, 000-period simulations.
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Figure 7: Aggregate Volatility and Frisch
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NOTE: Relative standard deviation with respect to the (log) aggregate output of the (log) labor income and the (log) labor

share as a function of the Frisch elasticity of labor supply. Left panel: for separable preferences, U(C,L) = C1−η

1−η
− θL1+1/f

1+1/f
.

Right panel: for GHH preferences, U(C, L) = 1
1−η

(
C − θL1+1/f

1+1/f

)1−η

. The calibration is as in Table 2 with η = 1 and f = 2.

Numbers are reported in percentage points. These statistics come from 4, 000-period simulations.
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Figure 8: Sectors’ Concentration Distribution
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smoothing-function estimate of the probability distribution function (right) of the top four firms’ share of total revenues

for 6-digit NAICS industries (top panel) and of the Herfindahl-Hirschman Index for the 50 largest companies for the 6-digit

NAICS manufacturing industries (31-33). Data: US Census Bureau.
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Figure 9: Sector Concentration
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Figure 10: Approximation of Firms’ Sales Share (Slope)
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NOTE: For εk = 5. The left panel shows the slope of the Bertrand sales share, and the slopes of the second- and the third-

order approximations in Proposition 2 as a function of the monopolistic sales share. The right panel shows the percentage

deviation of the slope of both approximations with respect to the numerical solution.

Figure 11: Approximation of Firms’ Sales Share (Different εk)
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deviation of the second-order approximation with respect to the numerical solution.
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F Proof Appendix

F.1 Proof of Proposition 3 (Size-Volatility)

Let us first compute the variance of the growth rate of productivity. Let us call nt,k,i the integer such that the
productivity level of firm i in sector k is such that Zt(k, i) = ϕ

nt,k,i

k . Note that Zt(k, i) follows the Markovian
process described in Assumption 1; therefore, its growth rate satisfies

Zt+1(k, i)− Zt(k, i)

Zt(k, i)
=
ϕ
nt+1,k,i

k − ϕ
nt,k,i

k

ϕ
nt,k,i

k

= ϕ
nt+1,k,i−nt,k,i

k − 1 =





ϕ−1
k − 1 a

0 with proba b

ϕk − 1 c

Let us compute the conditional expected growth rate of the productivity of firm i in sector k:

Et

[
Zt+1(k, i)− Zt(k, i)

Zt(k, i)

]
= a

(
ϕ−1
k − 1

)
+ c (ϕk − 1) = aϕ−1

k + b+ cϕk − 1,

whereas the conditional variance of the growth rate of Zt(k, i) is

Vart

[
Zt+1(k, i)− Zt(k, i)

Zt(k, i)

]
= a

(
ϕ−1
k − 1

)2
+ c (ϕk − 1)2 − (aϕ−1

k + b+ cϕk − 1)2 = σ2
k,

These conditional moments are independent of the level Zt(k, i) at time t and they are equal to their uncondi-
tional counterpart. This completes the first part of the proof.

Let us now turn to the growth rate of the sales share st(k, i) of firm i in sector k. To this end, I use the ap-
proximation in Assumption 2. The first step is to find the growth rate of the sales share under monopolistic

competition ŝt(k, i). Note that ŝt(k, i) ∝ Zt(k, i)
−γk(1−εk). Keeping sectors’ price and the wage constant, at the

first-order, we have g
ŝ(k,i)
t+1 = −γk(1 − εk)g

Z(k,i)
t+1 , where gxt+1 = xt+1−xt

xt
.33 Let us focus on the case of Bertrand

competition. All the following calculation, are very similar under Cournot. Thanks to Assumption 2, the sales
share of firm i in sector k is such that st(k, i) = ŝt(k, i)− (1 − ε−1

k )ŝt(k, i)
2, which becomes

g
s(k,i)
t+1 =

ŝt(k, i)

st(k, i)
g
ŝ(k,i)
t+1 − 2

(1− ε−1
k )ŝt(k, i)

2

st(k, i)
g
ŝ(k,i)
t+1

Using the fact that g
ŝ(k,i)
t+1 = −γk(1 − εk)g

Z(k,i)
t+1 and after some simplification, we have

g
s(k,i)
t+1 =γk(εk − 1)

1− 2(1− ε−1
k )ŝt(k, i)

1− (1− ε−1
k )ŝt(k, i)

g
Z(k,i)
t+1

The conditional variance of the growth rate of firm i in sector k is

Vart

[
st+1(k, i)− st(k, i)

st(k, i)

]
=γ2k(εk − 1)2

(
1− 2(1− ε−1

k )ŝt(k, i)

1− (1− ε−1
k )ŝt(k, i)

)2

σ2
k.

The above equation shows the variance of the growth rate of the sales share of a firm is a strictly decreasing

function of its level. Indeed, the function gk : x 7→ γ2k(εk−1)2
1−2(1−ε−1

k )x

1−(1−ε−1
k )x

is strictly decreasing and the absolute

value of its slope |g′k(x)| = γ2k(εk − 1)2
(1−ε−1

k )

(1−(1−ε−1
k )x)2

is strictly increasing in εk. �

F.2 Proof of Proposition 6 (Sector k’s Productivity Distribution Dynamics)

In this section, I first derive equation 4 before solving for the stationary distribution in sector k.

33Equivalently, one can compute this growth rate under the stationary equilibrium, the steady-state of this economy
where aggregate and sectoral quantities and prices are constant (as if they were a continuum of sectors).
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Proof of Equation 4: For n such that 0 < n < Mk, Assumption 1 implies

g
(k)
t+1,n = fn,n−1

k,t+1 + fn,n
k,t+1 + fn,n+1

k,t+1 ,

where fn′,n
k,t+1 is the number of firms in productivity bin n′ at t + 1 that were in bin n at time t. Thanks to

Assumption 1, the 3 × 1 vector f .,n
k,t+1 = (fn−1,n

k,t+1 , f
n,n
k,t+1, f

n+1,n
k,t+1 )′ follows a multinomial distribution with the

number of trial, g
(k)
t,n , and event probabilities (ak, bk, ck)

′. It follows that the 3 × 1 vector f .,n
k,t+1 has a mean

Et

[
f .,n
k,t+1

]
= g

(k)
t,n (ak, bk, ck)

′ and a variance-covariance matrix equal to g
(k)
t,nΣk, where

Σk =

(
ak(1 − ak) −akbk −akck
−akbk bk(1− bk) −bkck
−akck −bkck ck(1− ck)

)
.

Note that f .,n
k,t+1 are independent across n, and thus

Et

[
g
(k)
t+1,n

]
= Et

[
fn,n−1
k,t+1

]
+ Et

[
fn,n
k,t+1

]
+ Et

[
fn,n+1
k,t+1

]
= akg

(k)
t,n+1 + bkg

(k)
t,n + ckg

(k)
t,n−1

Vart
[
g
(k)
t+1,n

]
= Vart

[
fn,n−1
k,t+1

]
+ Vart

[
fn,n
k,t+1

]
+ Vart

[
fn,n+1
k,t+1

]
= ak(1− ak)g

(k)
t,n+1 + bk(1− bk)g

(k)
t,n + ck(1− ck)g

(k)
t,n−1.

For completeness, let us look at the covariance structure of the g
(k)
t+1,n:

Covt
[
g
(k)
t+1,n; g

(k)
t+1,n′

]
= Covt

[
fn,n−1
k,t+1 + fn,n

k,t+1 + fn,n+1
k,t+1 ; fn′,n′−1

k,t+1 + fn′,n′

k,t+1 + fn′,n′+1
k,t+1

]
= 0 if |n− n′| > 2,

because the f .,n
k,t+1 are independent across n. For n′ = n+ 1, we have

Covt

[
g
(k)
t+1,n; g

(k)
t+1,n+1

]
= Covt

[
fn,n−1
k,t+1 + fn,n

k,t+1 + fn,n+1
k,t+1 ; fn+1,n

k,t+1 + fn+1,n+1
k,t+1 + fn+1,n+2

k,t+1

]

= Covt

[
fn,n
k,t+1; f

n+1,n
k,t+1

]
+ Covt

[
fn,n+1
k,t+1 ; fn+1,n+1

k,t+1

]

= −bkckg(k)t,n − akbkg
(k)
t,n+1

using the fact the variance-covariance matrix of f .,n
k,t+1 is equal to µ

(k)
t,nΣk for all n > 0. The same reasoning

apply for n′ = n+ 2.
For n = 0, Assumption 1 implies

g
(k)
t+1,0 = f0,0

k,t+1 + f0,1
k,t+1

and that the 2 × 1 vector f .,0
k,t+1 = (f0,0

k,t+1, f
1,0
k,t+1)

′ follows a multinomial distribution with the number of trial

g
(k)
t,0 and event probabilities (ak + bk, ck)

′. The same reasoning then applies than for n > 0.

For n =Mk, Assumption 1 implies

g
(k)
t+1,M = fM,M−1

k,t+1 + fM,M
k,t+1

and that the 2× 1 vector f .,M
k,t+1 = (fM−1,M

k,t+1 , fM,M
k,t+1)

′ follows a multinomial distribution with the number of trial

g
(k)
t,M and event probabilities (ak, ck + bk)

′. The same reasoning then applies than for n > 0.

Gathering the above results, we have in matrix form,

g
(k)
t+1 = (P(k))′g

(k)
t + ǫ

(k)
t

where ǫ
(k)
t is the M × 1 vector of ǫ

(k)
t,n. This completes the derivation of Equation 4.�

Stationary Distribution in Sector k: Let us drop the (k) superscript and subscript to simplify notation.
The stationary distribution is a sequence that solves the following system:

(BC1) g0 = (a+ b)g0 + ag1

(BC2) gM = cgM−1 + (b + c)gM

(EH) gn = agn+1 + bgn + cgn−1.

Let us solve for the general solution of (EH). This equation is a second-order linear-difference equation equiv-
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alent to 0 = agn+1+(b− 1)gn+ cgn−1 = agn+1− (a+ c)gn+ cgn−1, with an associated second-order polynomial

aX2 − (a+ c)X + c = 0 that has roots 1 and c
a

. The general solution of (EH) is thus gn = K1 +K2

(
c
a

)n
, where

K1 and K2 are constant to solve for.
Let us substitute this general solution in the equation (BC1). Doing so yields

K1 +K2 = (a+ b)(K1 +K2) + aK1 + aK2
c

a
= (2a+ b)K1 + (a+ b+ c)K2

because a + b + c = 1, (BC1) implies K1 = (2a + b)K1. Because a < c and a + b + c = 1, 2a + b 6= 1 and thus

K1 = 0. The general solution of this system is then gn = K2

(
c
a

)n
. It is trivial to see that (BC2) is satisfied by

this general solution. Because n = logϕn

logϕ
,
(
c
a

)n
= exp

(
−s log a

c

)
= exp

(
− logϕn

logϕ
log a

c

)
= (ϕn)−δ

with δ =
log a

c

logϕ
.

It follows that gn = K2 (ϕ
n)

−δ

To solve for K2, let us use the fact that gn has to sum to Nk, the number of firms in sector k:

Nk =

M∑

n=0

gn = K2

M∑

n=0

(
ϕ−δ

)n
= K2

1−
(
ϕ−δ

)M+1

1− ϕ−δ
,

because ϕ−δ < 1. It follows that K2 = Nk
(1−ϕ−δ)

1−(ϕ−δ)M+1 and g
(k)
n = Nk

(1−ϕ−δ)

1−(ϕ−δ)M+1 (ϕ
n)−δ. �

F.3 Proof of Proposition 7 (Dynamics of Zt,k and ∆t,k)

Let us defineMZt,k(ξ) =
∑Nk

i=1 Zt(k, i)
ξ, the ξth moment of the productivity distribution within sector k at time

t. Note that because productivity evolves on the discrete state space Φk = {1, ϕk, · · · , ϕn
k , · · · , ϕMk

k }, we can

rewrite MZt,k(ξ) =
∑Nk

i=1 Zt(k, i)
ξ =

∑Nk

i=1 ϕ
ξnt,k,i

k , where nt,k,i is such that firm i in sector k has a productivity

level ϕnt,k,i at time t. It follows that MZt,k(ξ) =
∑Mk

n=0(ϕ
n
k )

ξg
(k)
t,n by, instead of summing over firms i, summing

over productivity level ϕn
k . Below, I show two lemmas that describe the dynamics of the momentsMZt,k(ξ) for

any ξ. With these results in hand, I characterize the dynamics of the two moments of interest: Zt,k and ∆t,k.

Lemma 4 (Dynamics of Moments of the Productivity Distribution) Under Assumption 1, the ξth moment of

the productivity distribution within sector k,MZt,k(ξ) =
∑Nk

i=1 Z(k, i)
ξ, satisfies

MZt+1,k(ξ) = ρk(ξ)MZt,k(ξ) +OM
t,k(ξ) + σt,k(ξ)εt

σt,k(ξ)
2 = ̺k(ξ)MZt,k(2ξ) +Oσ

t,k(ξ),

where εt is an iid (across t and k) random variable following a N (0, 1), where ρk(ξ) = akϕ
−ξ
k + bk + ckϕ

ξ
k, and

where ̺k(ξ) = akϕ
−2ξ
k + bk + ckϕ

2ξ
k − ρk(ξ)

2.

Proof of Lemma 4: Note first that

MZt+1,k(ξ) =

Nk∑

i=1

Zt+1(k, i)
ξ =

Nk∑

i=1

ϕ
ξnt+1,k,i

k =

Mk∑

n=0

(ϕn
k )

ξg
(k)
t+1,n

where g
(k)
t+1,n is a stochastic as shown in Proposition 6. In the proof of this proposition, we show that for n such

that 0 < n < Mk,

g
(k)
t+1,n = fn,n−1

k,t+1 + fn,n
k,t+1 + fn,n+1

k,t+1 ,

where fn′,n
k,t+1 is the number of firms in productivity bin n′ at t+1 that were in bin n at time t. Given Assumption

1, the 3 × 1 vector f .,n
k,t+1 = (fn−1,n

k,t+1 , f
n,n
k,t+1, f

n+1,n
k,t+1 )′ follows a multinomial distribution with the number of trial

g
(k)
t,n and event probabilities (ak, bk, ck)

′. In other words,

f .,n
k,t+1 =

(
f
n−1,n
k,t+1

f
n,n
k,t+1

f
n+1,n
k,t+1

)
 Multi

(
µ
(k)
t,n ,
( ak

bk
ck

))
.

57



Severini (2005) (p377 example 12.7) shows that a multinomial distribution can be approximated (i.e., converge
in distribution) by a multivariate normal distribution:

1√
g
(k)
t,n

(
f .,n
k,t+1 − g

(k)
t,n

( ak

bk
ck

))
D−→

g
(k)
t,n→∞

Z  N (0,Σk),

where Σk =

(
ak(1− ak) −akbk −akck
−akbk bk(1− bk) −bkck
−akck −bkck ck(1− ck)

)
.

For n = 0, thanks to Assumption 1, g
(k)
t+1,0 = f0,0

k,t+1 + f0,1
k,t+1 and the 2 × 1 vector f .,0

k,t+1 = (f0,0
k,t+1, f

1,0
k,t+1)

′

follows a multinomial distribution with the number of trial g
(k)
t,0 and event probabilities (ak + bk, ck)

′. Us-

ing the same result in Severini (2005), 1
√

g
(k)
t,0

(
f .,0
k,t+1 − g

(k)
t,0

(
ak+bk

ck

)) D−→
g
(k)
t,0 →∞

Z  N (0,Σ
(0)
k ), where Σ

(0)
k =

(
ck(1− ck) −ck(1− ck)
−ck(1− ck) ck(1 − ck)

)
.

For n = Mk, thanks to Assumption 1, g
(k)
t+1,0 = fM,M

k,t+1 + fM,M−1
k,t+1 and the 2 × 1 vector f .,M

k,t+1 = (fM−1,M
k,t+1 , fM,M

k,t+1)
′

follows a multinomial distribution with the number of trial g
(k)
t,M and event probabilities (ak, bk + ck)

′. Us-

ing the same result in Severini (2005), 1
√

g
(k)
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f .,M
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(M)
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(
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)
.

Let us keep these results in mind and let us go back to (I drop the subscript k to keep the notation parsimo-
nious)
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k,t+1 + f0,1

k,t+1 +

M−1∑

n=1

(ϕn)ξ
(
fn,n−1
k,t+1 + fn,n

k,t+1 + fn,n+1
k,t+1

)
+ (ϕM )ξ
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(
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)
+ (ϕξ)M

(
fM,M
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)

=
(

1
ϕξ
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f
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)
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(
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1
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


f
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f
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f
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
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(
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f
M,M
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)
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(
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(k)
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√
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(k)
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)
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n=1

(ϕξ)n
(
ρkg

(k)
t,n +

√
̺kg

(k)
t,nεt+1,n

)
. . .

. . .+ (ϕξ)M
(
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(k)
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√
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(k)
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)
.

Because

(
f
n−1,n
k,t+1

f
n,n
k,t+1

f
n+1,n
k,t+1

)
≈ Z  N

(
g
(k)
t,n

( ak

bk
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)
, g

(k)
t,nΣk

)
, it follows that

(
ϕ−ξ

1
ϕξ

)′
(

f
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f
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f
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)
≈
(

ϕ−ξ

1
ϕξ

)′

Z  

N
(
g
(k)
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(
x−ξ

1
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)′ ( ak

bk
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)
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(k)
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(
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1
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Σ

(
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1
ϕξ
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= N

(
g
(k)
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(k)
t,n̺k

)
., where ρk = akϕ

−ξ + bk + ckϕ
ξ and

̺k = akϕ
−2ξ + bk + ckϕ

2ξ − ρ2k. The same reasoning applies for n =Mk with ρk,M = ρk + c(1−ϕξ) := ρk + ρ̃k,M
and ̺k,M = ̺k − c(1− c)(1−x2ξ)− 2cb(1−ϕξ)− 2ca(1−ϕξ) := ̺k + ˜̺k,M . The same reasoning applies for n = 0
with ρk,0 = ρk+a(1−ϕ−ξ) := ρk+ ρ̃k,0 and ̺k,0 = ̺k−a(1−a)(1−x−2ξ)−2ab(1−ϕ−ξ)−2ac(1−ϕ−ξ) := ̺k+ ˜̺k,0.
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From this, it follows that

MZt+1,k(ξ) =
(
ρ̃k,0g

(k)
t,0

)
+ ρk

M∑

n=0

(ϕξ)ng
(k)
t,n + (ϕξ)M

(
ρ̃k,Mg

(k)
t,M

)
+ σt,k(ξ)εt+1

= ρk(ξ)MZt,k(ξ) +OM
t,k(ξ) + σt,k(ξ)εt+1,

whereOM
t,k(ξ) = ρ̃k,0g

(k)
t,0 +(ϕξ)M ρ̃k,Mg

(k)
t,M . Because the εt+1,n are independent across n, the variance of σt,k(ξ)εt

is the sum of the variances of

√
̺kg

(k)
t,nεt+1,n; that is,

σt,k(ξ)
2 = ̺k,0g

(k)
t,0 +

M−1∑

n=1

(ϕ2ξ)n̺kg
(k)
t,n + (ϕ2ξ)M̺k,Mg

(k)
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(k)
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M∑

n=0

(ϕ2ξ)n̺kg
(k)
t,n + (ϕ2ξ)M ˜̺k,Mg(k)t,n

= ̺k(ξ)MZt,k(2ξ) +Oσ
t,k(ξ),

where Oσ
t,k(ξ) = ˜̺k,0g(k)t,0 + (ϕ2ξ)M ˜̺k,Mg(k)t,n . Moreover, εt+1 follows a standard normal distribution because the

εt+1,n are also normally distributed. �

Lemma 5 (Covariance of Moments of the Productivity Distribution) Under Assumption 1, the covariance be-
tween the ξth moment and the ξ′th moment of the productivity distribution within sector k is given by

Covt [MZt+1,k(ξ);MZt+1,k(ξ
′)] = ̺k(ξ, ξ

′)MZt,k(ξ
′ + ξ) +OC

t,k(ξ, ξ
′),

where MZt,k(ξ) =
∑Nk

i=1 Z(k, i)
ξ and ̺k(ξ, ξ

′) = ak(1− ak)ϕ
−(ξ+ξ′)
k + bk(1− bk) + ck(1− ck)ϕ

ξ+ξ′

k − akbk(ϕ
−ξ
k +

ϕ−ξ′

k )− akck(ϕ
−(ξ−ξ′)
k ϕξ−ξ′

k )− bkck(ϕ
ξ
k + ϕξ′

k ).

Proof of Lemma 5: In the proof of Lemma 4, we have

MZt+1,k(ξ) =
(

1
ϕξ

)′( f
0,0
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f
1,0
k,t+1

)
+

M−1∑
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(
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1
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f
n−1,n
k,t+1

f
n,n
k,t+1

f
n+1,n
k,t+1
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1

)′( f
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f
M,M
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)
.

Here, I drop the subscript k to keep the notation simpler. Let us compute the covariance between two mo-
ments of the productivity distribution in sector k:
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where in the second line, we use the fact that f .,0
k,t+1 and f .,M

k,t+1 are independent of the f .,n
k,t+1 for any 0 < n < M ,

and in the third line, that f .,n
k,t+1 are independent across n. Using the fact that Cov[A′X,B′Y ] = A′

Cov[X,Y ]B
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for vectorsA and B and that random vectorsX and Y are of appropriate size, we have
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Using the definition of Σ, Σ(0) and Σ(M) yields
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�

Proof of Proposition 7: Using Lemma 4 and the fact that Zt,k = MZt,k

(
(εk − 1)γk

)
and that ∆t,k =

Zt,k
2
MZt,k

(
2(εk − 1)γk

)
, we have
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Finally, Lemma 5 shows the covariance Covt

[
ε
(1)
t+1; ε

(2)
t+1

]
6= 0. �
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