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Abstract

We study a continuous-time, heterogeneous agent economy with aggregate shocks

and financial frictions. Households cannot invest directly in risky capital. Instead,

they lend to a leveraged expert through risk-free bonds. To solve the model, we ex-

tend the Krusell-Smith approach to accommodate a nonlinear law of motion for the

aggregate endogenous variables by employing machine learning techniques. We take

the model to the data by building the likelihood function associated with the solution

described above. Regarding results, we document, first, the strong nonlinearities cre-

ated by financial frictions and why our solution method is required. Second, we show

how the economy displays more leverage and higher wealth inequality in the stochastic

steady-state than in the deterministic one. Third, we report how the impulse-response

functions are highly state dependent. In particular, we find that the recovery after a

negative capital shock hits the economy is more sluggish if experts are more leveraged.
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1 Introduction

The decades before the Great Recession witnessed both an increase in credit and leverage

and wealth inequality. See Adrian and Shin (2010), and Nuño and Thomas (2017), for

evidence on the increase in debt and leverage and Alvaredo, Chancel, Piketty, Saez, and

Zucman (2017), for evidence on the increase in wealth inequality. A natural question is to

ask to what extent these two trends were related and which role did they play in bringing

about the financial crisis of 2007-8 and the subsequent sluggish output recovery. In this paper,

we take a step in the direction of addressing these questions by analyzing the links between

financial frictions and the wealth distribution in a stochastic general equilibrium model with

heterogeneous agents.

We extend the neoclassical model with heterogeneous households and aggregate capital

à la Aiyagari (1994) along several dimensions. First, we introduce aggregate shocks, making

capital a risky asset. Second, we consider limited financial markets participation as in Basak

and Cuoco (1998) or Brunnermeier and Sannikov (2016, Section 2). There are three agents

in the economy: a representative firm, a representative expert, and heterogeneous households

subject to idiosyncratic shocks. Only the expert can hold physical capital, which is rented to

the firm. The expert cannot issue state-contingent assets (i.e., outside equity) and, thus, she

can only finance her capital holdings through debt sold to households plus her wealth (i.e.,

inside equity). Third, we analyze the model in continuous-time.

A major technical challenge is how to efficiently compute a solution to this model and

take it to the data. The two state variables of the model are the expert’s equity and house-

holds’ income-wealth distribution. As the latter is an infinite-dimensional object, standard

dynamic programming techniques cannot be employed. Several numerical techniques have

been developed in the last two decades to analyze this kind of problems, being the most

popular the approach introduced by Krusell and Smith (1998). These authors approximate

the cross-sectional distribution with a finite set of moments. To compute the law of motion of

these moments, they propose an iterative scheme that starts with an initial guess to compute

individual policies and then simulate the economy based on these policies to obtain a time

series for the moments. The law of motion is obtained from a regression problem of the

simulated time series.

In the original paper by Krusell and Smith (1998) and most of the subsequent literature,

the perceived law of motion (PLM) of the aggregate variables is approximately linear in the

endogenous state variables (but nonlinear in the exogenous states, since the coefficients of the

regression are allowed to vary across shocks). Hence a standard least-squares method can be

employed to estimate the coefficients based on the simulated data conditional on the realiza-

tion of the exogenous states. This is not the case in our model, in which the nonlinearities of
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the endogenous state variables play a central role and where, because of the use of continuous

time, exogenous states are incorporated into the endogenous states instantaneously. To over-

come this problem, we rely on the machine learning literature and employ a neural network

to obtain a flexible parametric function of the PLM. The universal approximation theorem

(Hornik, Stinchcombe, and White 1989; Cybenko 1989) states that a neural network can

approximate any Borel measurable function. More importantly, perhaps, the neural network

breaks the curse of dimensionality for a large class of approximated functions. The parame-

ters of the neural networks can be efficiently estimated using a combination of the stochastic

gradient descent and the back-propagation algorithms. Not only is this an efficient and easy

to code algorithm, but also one that is particularly amenable to massive parallelization in

graphic or tensor processing units.

We take our model to match some features of the US economy, such as the leverage of the

corporate sector and solve the model numerically. We find that the introduction of aggregate

risk modifies the wealth distribution in the stochastic steady state, SSS(s) (i.e., a fixed-point

of the equilibrium conditions of the model when the realization of the aggregate shock is zero)

in comparison to the deterministic steady state, DSS (i.e., a fixed-point of the equilibrium

conditions of the model when the volatility of the aggregate shock is zero). More concretely,

the most-visited SSS has a higher share of wealthy households because of precautionary

savings. Consequently, this SSS displays more debt, leverage, and wealth inequality than

the DSS. We also analyze the aggregate ergodic distribution of debt and equity based on the

simulations of the model. The economy spends most of the time around the most-visited SSS,

but may occasionally travels either to a high-leverage and a low-leverage region, generating

transient dynamics with different features from the average ones.

Next, we study whether different wealth distributions modify the transmission of aggregate

shocks. To this end, we consider three different pairs of distributions and equity levels,

corresponding to the most-visited SSS and the high- and low-leverage regions visited in the

paths pertaining to the ergodic distribution. We compute the generalized impulse response

functions and the distributional impulse response functions to a negative capital shock. The

responses are very similar on impact, but the ensuing recession is more persistent if the

initial distribution is located in the high-leverage region. This higher persistence is due to

the dynamics of aggregate household consumption. In a high-leverage economy, the decline

in consumption of wealthy households is less severe than in the most-visited SSS. This milder

decline produces a slower path of capital accumulation and, hence, creates a slow recovery

path. From an individual perspective, the attenuation in the decline of consumption is

consistent with the expected path of interest rates, which is more persistent in the high-

leverage economy due to capital dynamics.
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Overall, our findings shed light on how the increase in leverage and wealth inequality before

a financial crisis may explain why the effects of the ensuing recession are more persistent and

why nonlinearities matter for this mechanism.

2 Related literature

Our work relates to several important threads of recent work in macroeconomics. First, we

build on the recent macro-finance literature pioneered by Basak and Cuoco (1998), Adrian and

Boyarchenko (2012), He and Krishnamurthy (2012, 2013), and Brunnermeier and Sannikov

(2014), among others (for a more comprehensive survey, see Brunnermeier and Sannikov

(2016)). This literature has emphasized the importance of the wealth distribution in the

economy. However, most of these papers only consider a basic form of heterogeneity between

two representative groups, typically households and experts/intermediaries (or just dealt

with models where the heterogeneity is trivially collapsed into an economic-wide average

of leverage). Instead, in our paper, we can also deal with a more complex –and empirically

relevant– form of heterogeneity, namely a non-trivial heterogeneous wealth distribution across

households. The use of continuous time allows us to characterize much of the equilibrium

dynamics analytically and to worry only about local derivatives (instead of the whole shape

of equilibrium functions) even when solving the model globally.

Related to this latter point, our paper also makes a technical contribution to the literature

on global solution methods for heterogeneous agent models with aggregate shocks such as

Den Haan (1996); Den Haan (1997), Algan, Allais, and Den Haan (2008), Reiter (2009, 2010),

Den Haan and Rendahl (2010), Maliar, Maliar, and Valli (2010), Sager (2014), and Pröhl

(2015) (a recent survey of the field can be found in Algan, Allais, Den Haan, and Rendahl

(2014)). The presence of a nonlinear PLM allows us to investigate how aggregate risk affects

the wealth distribution and in turn how different distributions modify the transmission of

aggregate shocks.

To the best of our knowledge, ours is the first paper to generalize the celebrated algorithm

of Krusell and Smith (1998) to accommodate a universal nonlinear law of motion in the

endogenous state variables. As explained above, we employ a neural network to this end

as it provides a flexible approach to the problem of estimation of an unknown nonlinear

function. Naturally, other machine learnings schemes may also be proposed (or, for the

matter, other nonlinear universal approximators such as series expansions or splines). We

will explain in detail, however, why our approach is particularly convenient, both regarding

theoretical properties and practical considerations. A further advantage of our approach is

that it reflects in a fairly transparent way the self-confirming equilibrium (SCE) nature of the
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“bounded rationality” solution. The PLM is computed based on the samples drawn in the

simulation of paths within the aggregate ergodic distribution. The agents employ the neural

network to extrapolate the dynamics outside of the equilibrium region.

The use of continuous-time methods is widespread in the macro-finance literature de-

scribed above. In the case of models with heterogeneous agents, it is becoming more popular

due to its advantages when performing numerical computations, as discussed in Achdou, Han,

Lasry, Lions, and Moll (2017) or Nuño and Thomas (2017). Ahn, Kaplan, Moll, Winberry,

and Wolf (2017) introduced a method to compute the solution to heterogeneous agent mod-

els with aggregate shocks. However, theirs is a local solution method, based on first-order

perturbation around the deterministic steady state and, thus, unable to analyze the class of

nonlinearly-related questions posed in our paper.

Finally, our paper contributes to the nascent literature on the application of machine learn-

ing techniques to improve the computation of dynamic general equilibrium models. Their

methods have so far been concerned with the solution of high dimensional dynamic program-

ming (DP) problems. Scheidegger and Bilionis (2017) combine Gaussian process regression

with an active subspace method to solve discrete-time stochastic growth models of up to 500

dimensions. Duarte (2018) instead employs a reinforcement learning algorithm together with

a neural network to solve a two-sector model with 11 state variables. In contrast to these

papers our machine learning algorithm is not used to overcome the curse of dimensionality

in DP, but to provide a nonlinear forecast of aggregate variables within the model itself. In

this respect, our paper is loosely related to an early literature using neural networks to model

bounded rationality and learning, such as Barucci and Landi (1995), In-Koo (1995), Cho and

Sargent (1996), or Salmon (1995).

Our methodological work may be useful to analyze other heterogeneous agents models

with aggregate shocks. An obvious candidate is the analysis of the zero lower bound (ZLB) in

heterogeneous agent New Keynesian (HANK) models models such as Auclert (2016), Gorne-

mann, Kuester, and Nakajima (2012), Kaplan, Moll, and Violante (2018), Luetticke (2015),

or McKay, Nakamura, and Steinsson (2016). The ZLB naturally introduces a nonlinearity in

the state space of aggregate variables that cannot be addressed either with local methods or

with global methods based on linear laws of motion. Another potential candidate is models in

which the “quasi-aggregation” result does not hold, that is, models in which the higher-order

moments are necessary to provide an accurate characterization. There is a priori no reason to

assume that the law of motion of higher order moments should be linear and hence nonlinear

techniques are required.
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3 Model

We postulate a continuous-time, infinite-horizon model in the tradition of Basak and

Cuoco (1998) and Brunnermeier and Sannikov (2014). Three types of agents populate our

economy: a representative firm, a representative expert, and a continuum of households.

There are two assets: a risky asset, which we identify as capital, and a risk-free one, which

we call bonds. Only the expert can hold the risky asset. In the interpretation implicit in

our terminology, this is because the expert is the only agent with knowledge in accumulating

capital. However, other interpretations, such as the expert standing in for the financial

intermediaries in the economy, are possible. In contrast, households can lend to the expert at

the riskless rate, but cannot hold capital themselves, as they lack the required skill to handle

it. The expert cannot issue outside equity, but she can partially finance her holdings of the

risky asset by issuing bonds to households. Together with market clearing, our assumptions

imply that the economy has a risky asset in positive net supply, capital, and a risk-free asset

in zero net supply, bonds. As it will be clear below, there is no need to separate between the

representative firm and expert, and we could write the model consolidating both agents in

a single type. Keeping both agents separate, though, clarifies the exposition at the cost of

little additional notation.

3.1 The firm

A representative firm rents aggregate capital, Kt, and aggregate labor, Lt, to produce

output with a Cobb-Douglas technology:

Yt = F (Kt, Lt) = Kα
t L

1−α
t .

Since input markets are competitive, wages, wt, are equal to the marginal productivity of

labor:

wt =
∂F (Kt, Lt)

∂Lt
= (1− α)

Yt
Lt

(1)

and the rental rate of capital, rct, is equal to the marginal productivity of capital:

rct =
∂F (Kt, Lt)

∂Kt

= α
Yt
Kt

. (2)

During production, capital depreciates at a constant rate δ and receives a growth rate

shock Zt that follows a Brownian motion with volatility σ. Thus, aggregate capital evolves

according to:
dKt

Kt

= (ιt − δ) dt+ σdZt, (3)
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where ιt is the reinvestment rate per unit of capital that we will characterize below. The

capital growth rate shock is the only aggregate shock to the economy. Following convention,

the rental rate of capital rct is defined over the capital contracted, Kt, and not over the capital

returned after depreciation and the growth rate shock. Thus, we define the instantaneous

return rate on capital drkt as:

drkt = (rct − δ) dt+ σdZt.

The coefficient of the time drift, rct − δ, is the profit rate of capital, equal to the rental rate

of capital less depreciation. The volatility σ is the capital gains rate.

3.2 The expert

The expert holds capital K̂t (we denote variables related to the expert with a caret). She

rents this capital to the representative firm. And, to finance her holding of K̂t, the expert

issues risk-free debt B̂t at rate rt to the households. The financial frictions in the model come

from the fact that the expert neither can issue state-contingent claims (i.e., outside equity)

against K̂t nor have net savings in the risk-free asset. In particular, the expert must absorb

all the risk from holding capital.

The net wealth (i.e., inside equity) of the expert, N̂t, is the difference between her assets

(capital) and her liabilities (debt):

N̂t = K̂t − B̂t.

We allow N̂t to be negative, although this would not occur along the equilibrium path.

Let Ĉt be the consumption of the expert. Then, the dynamics of N̂t are given by:

dN̂t = K̂tdr
k
t − B̂trtdt− Ĉtdt

= ω̂tN̂tdr
k
t +

[
(1− ω̂t) N̂trt − Ĉt

]
dt

=
[
(rt + ω̂t (rct − δ − rt)) N̂t − Ĉt

]
dt+ σω̂tN̂tdZt, (4)

where ω̂t ≡ K̂t
N̂t

is the leverage ratio of the expert. The term rt + ω̂t (rct − δ − rt) is the

deterministic return on net wealth, equal to the return on bonds, rt, plus ω̂t times the excess

return on leverage, rct − δ − rt. The term σω̂tN̂t reflects the risk of holding capital induced

by the capital growth rate shock.
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The previous expression allows us to derive the law of motion for K̂t:

dK̂t = dN̂t + dB̂t

=
[
(rt + ω̂t (rct − δ − rt)) N̂t − Ĉt

]
dt+ σω̂tN̂tdZt + dB̂t.

The expert’s preferences over Ĉt are representable by:

Ûj = Ej
[∫ ∞

j

e−ρ̂t log(Ĉt)dt

]
, (5)

where ρ̂ is her discount rate. Using a log utility function will make our derivations below

easier, but could be easily generalized to the class of recursive preferences introduced by

Duffie and Epstein (1992).

The expert decides her consumption levels and leverage ratio to solve the problem:

max
{Ĉt,ω̂t}

t≥0

Û0, (6)

subject to evolution of her net wealth (4), an initial level of net wealth N0, and the No-Ponzi-

game condition:

lim
T→∞

e−
∫ T
0 rτdτBT = 0. (7)

3.3 Households

There is a continuum of infinitely-lived households with unit mass. Households are hetero-

geneous in their wealth am and labor supply zm for m ∈ [0, 1]. The distribution of households

at time t over these two individual states is Gt (a, z). To save on notation, we will drop the

subindex m when no ambiguity occurs.

Each household supplies zt units of labor valued at wage wt. Idiosyncratic labor productiv-

ity evolves stochastically following a two-state Markov chain: zt ∈ {z1, z2} , with 0 < z1 < z2.

The process jumps from state 1 to state 2 with intensity λ1 and vice versa with intensity λ2.

The ergodic mean of z is 1. As in Huggett (1993), we identify state 1 with unemployment

(where z1 is the value of leisure and home production) and state 2 with working. We will

follow this assumption when the model faces the data, but nothing essential depends on it.

Also, increasing the number of states of the chain is trivial, but notationally cumbersome.

Households can save an amount at in the riskless debt issued by the expert at interest

rate rt. Hence, a household’s wealth follows:

dat = (wtzt + rtat − ct) dt = s (at, zt, Kt, Gt) dt, (8)
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where the short-hand notation s (at, zt, Kt, Gt) denotes the drift of the wealth process. The

first two variables, at and zt, are the household individual states, the next two, Kt and Gt,

are the aggregate state variables that determine the returns on its income sources (labor and

bonds). All four variables pin down the optimal choice, ct = c (at, zt, Kt, Gt), of the control.

The households also faces a borrowing limit that prevents them from shorting bonds:

at ≥ 0. (9)

Households have a CRRA instantaneous felicity function over consumption flows c (·) :

u (ct) =
c1−γ
t − 1

1− γ

discounted at rate ρ > 0. As before, we could substitute the CRRA felicity function with a

more general class of recursive preferences.

Two points are worth discussing here. First, we have a CRRA felicity function to allow

different risk aversions in the households and the expert. Second, we make the households

less patient than the expert, ρ > ρ̂. We will show later how the risk-free rate in the DSS

(recall, the deterministic steady state) is pinned down by the discount factor of the expert,

i.e., r = ρ̂ (we drop the subindex when we denote a variable evaluated at the DSS). But,

if ρ ≤ r = ρ̂, the households would want to accumulate savings without bounds to self-

insure against idiosyncratic labor risk (Aiyagari, 1994). Hence, we can only have a DSS

–and an associated ergodic distribution of individual endogenous variables– if we increase the

households’ discount rate above the expert’s.1

In summary, households maximize

max
{ct}t≥0

E0

[∫ ∞
0

e−ρt
c1−γ
t − 1

1− γ
dt

]
, (10)

subject to the budget constraint (8), initial wealth a0, and the borrowing limit (9).

1This property of our economy stands in contrast with models à la Bernanke, Gertler, and Gilchrist (1999),
where borrowers are more impatient than lenders to prevent the former from accumulating enough wealth
as to render the financial friction inoperative. But in these models, borrowers are infinitesimal and subject
to idiosyncratic risk, and the lenders’ discount rate determines the DSS risk-free rate. In our model, the
situation is reversed, with the lenders being infinitesimal and subject to idiosyncratic risk and the borrower’s
discount rate controlling the DSS risk-free rate. We have framed our discussion for the case without aggregate
shocks since we want to ensure the existence of a DSS. The characterization of the admissible region for ρ in
relation with ρ̂ when we only care about the properties of the economy with aggregate shocks is beyond the
scope of our paper.
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3.4 Market clearing

There are three market clearing conditions. First, the total amount of debt issued by the

expert must equal the total amount of households’ savings:

Bt ≡
∫
adGt (da, dz) = B̂t, (11)

which also implies dBt = dB̂t.

Second, the total amount of labor rented by the firm is equal to labor supplied:

Lt =

∫
zdGt.

Due to the assumption about the ergodic mean of z, we have that Lt = 1. Then, total

payments to labor are given by wt. If we define total consumption by households as

Ct ≡
∫
c (at, zt, Kt, Gt) dGt (da, dz) ,

we get:

dB̂t = dBt = (wt + rtBt − Ct) dt, (12)

which tells us that the evolution of aggregate debt is the labor income of households (wt)

plus its debt income (rtBt) minus their aggregate consumption Ct.

Third, the total amount of capital in this economy is owned by the expert,

Kt = K̂t

and, therefore, dKt = dK̂t and ω̂t = Kt
Nt

, where Nt = N̂t = Kt − Bt. With these results, we

derive

dKt =
(

(rt + ω̂t (rct − δ − rt)) N̂t − Ĉt
)
dt+ σω̂tN̂tdZt + dB̂t

=
(

(rct − δ)Kt + wt − Ct − Ĉt
)
dt+ σKtdZt

=
(
Yt − δKt − Ct − Ĉt

)
dt+ σKtdZt, (13)

where the last line uses the fact that, from competitive input markets and constant-returns-

to-scale, Yt = rctKt + wt. Recall, from equation (3), that

dKt = (ιt − δ)Ktdt+ σKtdZt.
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Then, equating (13) and (3) and cancelling terms, we get

ιt =
Yt − Ct − Ĉt

Kt

,

i.e., the reinvestment rate is output less aggregate consumption divided by aggregate capital.

3.5 Density

The households distribution Gt (a, z) has a density on assets a, git(a), conditional on the

labor productivity state i ∈ {1, 2}. The density satisfies the normalization

2∑
i=1

∫ ∞
0

git(a)da = 1.

The dynamics of this density conditional on the realization of aggregate variables are

given by the Kolmogorov forward (KF) equation:

∂git
∂t

= − ∂

∂a
(s (at, zt, Kt, Gt) git(a))− λigit(a) + λjgjt(a), i 6= j = 1, 2. (14)

Reading equation (14) is straightforward: the density evolves according to the optimal

consumption-saving choices of each household plus two jumps corresponding to households

that circulate out of the labor state i (λigit(a)) and the households that move into state j

(λjgjt(a)).

4 Equilibrium

An equilibrium in this economy is composed by a set of prices
{
wt, rct, rt, r

k
t

}
t≥0

, quantities{
Kt, Nt, Bt, Ĉt, cmt

}
t≥0

and a density {git (·)}
t≥0

for i ∈ {1, 2} such that:

1. Given wt, rt, and gt, the solution of householdm’s problem (29) is cmt = c (at, zt, Kt, Gt) .

2. Given rkt , rt, and Nt, the solution of the expert’s problem (6) is Ĉt, Kt, and Bt.

3. Given Kt, the firm maximizes their profits and input prices are given by wt and rct and

the rate of return on capital by rkt .

4. Given wt, rt, and ct, git is the solution of the KF equation (14).

5. Given rt, git, and Bt, the debt market (11) clears and Nt = Kt −Bt.
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4.1 Equilibrium characterization

Several properties of the equilibrium are characterized with ease. We proceed first with

the expert’s problem. The use of log-utility implies that the expert consumes a constant

share ρ̂ of her net wealth and chooses a leverage ratio proportional to the difference between

the expected return on capital and the risk-free rate:

Ĉt = ρ̂Nt

ωt = ω̂t =
1

σ2
(rct − δ − rt) .

Second, rewriting the latter result, we get that the excess return on leverage,

rct − δ − rt = σ2Kt

Nt

,

depends positively on the variance of the aggregate shock, σ2, and the leverage of the economy
Kt
Nt

. The higher the volatility or the leverage ratio in the economy, the higher the excess return

that the expert requires to isolate households from dZt. A positive capital growth rate shock,

by increasing Nt relatively to Kt, lowers the excess return. Analogously, a higher volatility

of the aggregate shock increases the excess return.

Third, we can use the values of rct, Lt, and ωt in equilibrium to get the wage wt =

(1− α)Kα
t , the rental rate of capital rct = αKα−1

t , and the risk-free interest rate:

rt = αKα−1
t − δ − σ2Kt

Nt

. (15)

Since Kt = Nt + Bt, these three equations depends only on the expert’s net wealth Nt and

debt Bt.

Fourth, we can describe the evolution of Nt:

dNt =
[
(rt + ωt (rct − δ − rt))Nt − Ĉt

]
dt+ σωtNtdZt

=

(
αKα−1

t − δ − ρ̂− σ2

(
1− Kt

Nt

)
Kt

Nt

)
Ntdt+ σKtdZt (16)

as a function only of Nt, Bt, and dZt. Equation (16) shows the nonlinear dependence of

dNt on the leverage level Kt
Nt

. We will stress this point in the next pages repeatedly. For

convenience, some times we will write

dNt = µN(Bt, Nt)dt+ σN(Bt, Nt)dZt,
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where µN(Bt, Nt) =
(
αKα−1

t − δ − ρ̂− σ2
(

1− Kt
Nt

)
Kt
Nt

)
Nt is the drift ofNt and σN(Bt, Nt) =

σKt its volatility.

Fifth, we have from equation (12):

dBt = (wt + rtBt − Ct) dt

=

(
(1− α)Kα

t +

(
αKα−1

t − δ − σ2Kt

Nt

)
Bt − Ct

)
dt, (17)

which depends nonlinearly on Nt and Bt and linearly on aggregate household consumption,

Ct, an endogenous variable we must determine.

We can stack all the equilibrium conditions (except the optimality condition for house-

holds, which we will discuss in the next section) in two blocks. The first block includes all

the variables that depend directly on Nt, Bt, and dZt:

wt = (1− α)Kα
t (18)

rct = αKα−1
t (19)

rt = αKα−1
t − δ − σ2Kt

Nt

(20)

drkt = (rct − δ) dt+ σdZt (21)

dNt =

(
αKα−1

t − δ − ρ̂− σ2

(
1− Kt

Nt

)
Kt

Nt

)
Ntdt+ σKtdZt. (22)

The second block includes the equations determining the aggregate consumption of the house-

holds, dBt, dKt, and ∂git
∂t

:

Ct ≡
2∑
i=1

∫
c (at, zt, Kt, Gt) git (a) da (23)

dBt =

(
(1− α)Kα

t +

(
αKα−1

t − δ − σ2Kt

Nt

)
Bt − Ct

)
dt (24)

dKt = dNt + dBt (25)

∂git
∂t

= − ∂

∂a
(s (at, zt, Kt, Gt) git(a))− λigit(a) + λjgjt(a), i 6= j = 1, 2. (26)

The second block shows i) how the density {git (·)}
t≥0

for i ∈ {1, 2} matters to determine Ct,

ii) that Ct pins down dBt, and iii) that once we have dBt, we can calculate dKt. Therefore,

in practice, computing the equilibrium of this economy is equivalent to finding Ct. Once Ct

is known, all other aggregate variables follow directly.
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4.2 The DSS of the model

Before we explain our general solution in the next section, we use the previous equations

to analyze three interesting cases. In this subsection, we describe the DSS of the model where

there are no capital growth rate shocks, but we still have idiosyncratic household shocks. In

the next two subsections, we will look at the SSS (recall, a stochastic steady state, also

known as the risky steady state) of our economy and the representative household version of

the model.

To study the DSS, we can go to the law of motion for the expert net wealth (16), set

σ = 0, and get:

dNt =
(
αKα−1

t − δ − ρ̂
)
Ntdt. (27)

Since the drift of Nt, µ
N(B,N) = (αKα−1 − δ − ρ̂)N , must be zero in a DSS (remember that

we drop the t subindex to denote the DSS value of a variable), we get

K =

(
ρ̂+ δ

α

) 1
α−1

.

With this result, the DSS risk-free interest rate (15) equals the return on capital and the

rental rate of capital less depreciation:

r = rkt = rct − δ = αKα−1
t − δ = ρ̂. (28)

As mentioned above, this condition forces us to have ρ̂ < ρ. Otherwise, the households would

accumulate too many bonds and the DSS would not be well-defined.

Finally, the dispersion of the idiosyncratic shocks determines the DSS expert’s net wealth:

N = K −B = K −
∫
adG (da, dz) ,

a quantity that, unfortunately, we cannot compute analytically.

4.3 The SSS of the model

A SSS in our model is formally defined as a density gSSS(·) and equity NSSS that remain

invariant in the absence of aggregate shocks. Let Γσ(g(·), N,W ) be the law of motion of the

economy given an aggregate capital volatility σ and a realization of the Brownian motion W.

More precisely, Γσ(·, ·, ·) is an operator that maps income-wealth densities g(·) and equity

14



levels N into changes in these variables:

lim
∆t→0

1

∆t

[
gt+∆t(·)− gt(·)
Nt+∆t −Nt

]
= Γσ(gt(·), Nt,Wt).

The SSS, therefore, solves:

Γσ(gSSS(·), NSSS, 0) =

[
0

0

]
.

In general, we will have multiple SSSs that solve the previous functional equation. We will

document below how several of them appear in our quantitative exercise.

The difference between the SSS and the DSS is that the former is the steady state of an

economy where individual agents make their decisions taking into account aggregate risks

(σ > 0) −using equation (31)− but no shock arrives along the equilibrium path, whereas

in the latter agents live in an economy without aggregate risks (σ = 0) and arrange their

consumption paths accordingly. The DSS is then formally defined, using our notation above,

as

Γ0(gDSS(·), NDSS) =

[
0

0

]
.

4.4 The representative household version of the model

In this subsection, we eliminate the idiosyncratic labor risk of households. In that way,

we come up with a representative household version of the model where we keep the between-

agents heterogeneity (we still have an expert and a household), but we do not have any within-

agents heterogeneity (there are one representative expert and one representative household).

Equations (18) to (22) of the equilibrium, as well as equations (24) and (25), remain

unchanged. Instead of equation (23), the consumption rule of the household Ct = c (Bt, Nt)

depends now just on aggregate debt and capital and it solves the problem:

max
{Ct}t≥0

E0

[∫ ∞
0

e−ρt
C1−γ
t − 1

1− γ
dt

]
, (29)

subject to the budget constraint (24) (where input prices have already been substituted in),

initial wealth B0, and the borrowing limit Bt ≥ 0. Because of the absence of within-agents

heterogeneity, there is no need for an analogous of equation (26) in this version of the model.
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5 Solution

Our previous discussion highlighted the role of finding, in the general version of the model,

the households aggregate consumption, Ct, to compute the equilibrium of the economy given

some structural parameter values:

Ψ = {α, δ, σ, ρ̂, ρ, γ, z1, z2, λ1, λ2} .

To do so, we follow Krusell and Smith (1998) and assume that, when forming their

expectations, households only use a finite set of n moments of the cross-sectional distribution

of assets instead of the complete distribution. In contrast to Krusell and Smith (1998), in

which the income-wealth distribution is the only endogenous state variable, here the expert’s

net wealth Nt is also a state variable. At the same time, we do not have any exogenous

state variable, as Kt = Nt +Bt instantaneously incorporates the capital growth rate shocks.

For ease of exposition, we discuss the case with n = 1. All the techniques can be trivially

extended to the case with n > 1 at the cost of heavier notation.

More concretely, households consider a perceived law of motion (PLM) of aggregate debt:

dBt = h (Bt, Nt) dt, (30)

where h (B,N) is the conditional expectation of dBt given available information (Bt, Nt):

h (Bt, Nt) =
E [dBt|Bt, Nt]

dt
,

instead of the exact law of motion (17). We borrow the term PLM from the learning literature

(Evans and Honkapohja, 2001). Our choice of words accentuates that we allow h (·, ·) be a

general function, and not just a linear or polynomial function of its arguments (perhaps

with state-dependent coefficients). In fact, our methodology will let the PLM approximate,

arbitrarily well, equation (17).

In the original Krusell and Smith (1998) approach, the PLM is assumed to be log-linear

in the endogenous state variables and nonlinear in the exogenous state by making the coeffi-

cients of the log-linear specification dependent on the realization of the aggregate shock. As

explained in Subsection 5.3, we propose a more flexible methodology, in which the functional

form h (·, ·) is not specified, but obtained from simulated data by employing machine learning

techniques. This extra flexibility is key given the complex nonlinearities present in laws of

motion of Nt, equation (16), and Bt, equation (17).

Given the PLM, the household’s problem has an associated Hamilton-Jacobi-Bellman
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(HJB) equation:

ρVi (a,B,N) = max
c

c1−γ − 1

1− γ
+ s

∂Vi
∂a

+ λi [Vj(a,B,N)− Vi(a,B,N)]

+h (B,N)
∂Vi
∂B

+ µN (B,N)
∂Vi
∂N

+

[
σN (B,N)

]2
2

∂2Vi
∂N2

, (31)

i 6= j = 1, 2, and where we use the shorthand notation s = s (a, z,N +B,G). Notice how the

HJB incorporates h (B,N). Equation (31) complements the equilibrium conditions (18)-(26)

by making the problem of the household explicit.

5.1 An overview of the algorithm

The algorithm to find h(B,N) in (30) proceeds according to the following iteration:

1) Start with h0, an initial guess for h.

2) Using current guess for h, solve for the household consumption, cm, in the HJB equa-

tion (31). This solution can be obtained by using an upwind finite differences scheme

described in Appendix A (although other numerical algorithms such as complex differ-

entiation can be applied).

3) Construct a time series for Bt by simulating the cross-sectional distribution over time.

Given Bt, we can find Nt and Kt using equations (16) and (25).

4) Use a universal nonlinear approximator to obtain h1, a new guess for h.

5) Iterate steps 2)-4) until hn is sufficiently close to hn−1 given some pre-specified norm

and tolerance level.

Steps 1)-5) show that our solution has two main differences with respect to the origi-

nal Krusell-Smith algorithm: the use of continuous time and our employment of a universal

nonlinear approximator to update the guess of the PLM. Both differences deserve some ex-

planation.

5.2 Continuous time

Krusell and Smith (1998) wrote their model in discrete time. Our continuous-time for-

mulation, while not changing any fundamental feature of the model, enjoys several numerical

advantages with respect to discrete time (Achdou, Han, Lasry, Lions, and Moll, 2017). First,

continuous time naturally generates sparsity in the matrices characterizing the transition
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probabilities of the discretized stochastic processes. Intuitively, continuously moving state

variables such as wealth only drift an infinitesimal amount in an infinitesimal unit of time.

Therefore, in an approximation that discretizes the state space, households reach only states

that directly neighbor the current state. Second, the optimality characterizing consumption

has a simpler structure than in discrete time:

c−γi =
∂Vi
∂a

. (32)

Third, it is easier to capture occasionally binding constraints such as equation (9) in contin-

uous time than in discrete time as the optimality condition (32) for consumption holds with

equality everywhere in the interior of the state space. Fourth, the dynamics of the cross-

sectional wealth distribution are characterized by the KF equation (14). The discretization

of this equation yields an efficient way to simulate a time series of the cross-sectional distri-

bution (although this can also be performed in discrete time, as in Ŕıos-Rull 1997, Reiter

2009, and Young 2010, at some additional cost). Appendix A provides further details.

Regarding the generation of data, we simulate T periods of the economy with a constant

time step ∆t. We start from the initial income-wealth distribution at the DSS (although we

could pick other values). A number of initial samples is discarded as a burn-in. If the time

step is small enough, we have

Btj+∆t = Btj +

∫ tj+∆t

tj

dBs = Btj +

∫ tj+∆t

tj

h (Bs, Ns) ds ≈ Btj + h
(
Btj , Ntj

)
∆t.

Our simulation
(
S, ĥ

)
is composed by a vector of inputs S = {s1, s2, ..., sJ}, where sj ={

s1
j , s

2
j

}
=
{
Btj , Ntj

}
are samples of aggregate debt and expert’s net wealth at J random

times tj ∈ [0, T ], and a vector of outputs ĥ =
{
ĥ1, ĥ2..., ĥJ

}
, where

ĥj ≡
Btj+∆t −Btj

∆t

are samples of the growth rate of Bt. The evaluation times tj should be random and uniformly

distributed over [0, T ] as, ideally, samples should be independent.

5.3 A universal nonlinear approximator

In the original Krusell-Smith algorithm, the law of motion linking the mean of capital

tomorrow and the mean of capital today is log-linear, with the coefficients in that function

depending on the aggregate shock. This approximation is highly accurate due to the near
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log-linearity of their models in the vicinity of the DSS. Indeed, in such a model, the DSS

and SSS almost coincide. But, as shown in equations (16) and (17), this linearity of the law

of motion of the endogenous variables with respect to other endogenous variables does not

carry out to our model.

This nonlinear structure causes two problems. First, we face the approximation problem:

we need an algorithm that searches for an unknown nonlinear functional instead of a simple

linear regression with aggregate-state-dependent coefficients. Second, we need to tackle the

extrapolation problem. While the theoretical domain of Bt and Nt is unbounded, practical

computation requires to limit it to a compact subset of R2 large enough as to prevent boundary

conditions from altering the solution in the subregion where most of the ergodic distribution

accumulates. But precisely because we deal with such a large area, the simulation in step

3) of the algorithm in Subsection 5.1 never visits an ample region of the state space. Thus,

the approximation algorithm should not only provide an accurate nonlinear approximation

in the visited region, but also a “reasonable” extrapolation to the rest of the state space. We

will return to what “reasonable” means in this context momentarily.

To address these two problems, we propose to employ a nonlinear approximation technique

based on neural networks. Our approach has four crucial advantages. First, the universal

approximation theorem (Hornik, Stinchcombe, and White 1989; Cybenko 1989) states that

a neural network with at least one hidden layer can approximate any Borel measurable

function mapping finite-dimensional spaces arbitrarily well. In particular, the theorem does

not require that the approximated function be differentiable and can handle cases with kinks

and occasionally binding constraints.2

Second, the neural network coefficients can be efficiently estimated using gradient descent

methods and back-propagation. This allows for an easier coding and shorter implementation

time than other approaches.

Third, neural networks are more economical, for middle and high dimensions, than other

approximators. More concretely, Barron (1993) shows that a one-layer neural network achieves,

for functions on the first moment of the magnitude distribution of the Fourier transform, in-

tegrated square errors of order O(1/n), where n is the number of nodes. In comparison,

for series approximations (polynomials, spline, and trigonometric expansions), the integrated

square error is of order O(1/(n2/d) where d is the dimensions of the function to be approxi-

mated. In other words: the “curse of dimensionality” does not apply to neural networks that

2Recall that Lusin’s theorem tells us that every measurable function is a continuous function almost
everywhere. Thus, we can approximate jumps in a finite number of points, but not functions with extremely
intricate shapes. Those complex functions, however, are unlikely to be of much relevance in solving standard
dynamic equilibrium models.
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approximate functions of the very wide class considered by Barron (1993).3 This advantage

is not present in our baseline model, with d = 2, but will appear in any extension with addi-

tional aggregate state variables. Even going to d = 3 or d = 4 saturates alternatives such as

Chebyshev polynomials.4

Fourth, neural networks extrapolate outstandingly. This is, in practice, key. Neural

networks have well-behaved shapes outside their training areas. In contrast, Chebyshev

polynomials (or other series) more often than not display explosive behaviors outside the

fitted area that prevent the algorithm from converging. Figures 15 and 16 in Appendix

B show this disappointing behavior of an approximation to the PLM in our model with

Chebyshev polynomials. The two figures document how, within the area of high density of

the ergodic distribution, Chebyshev polynomials approximate the law of motion for aggregate

debt fairly (compare them with panel c) in Figure 2, obtained with our neural network). But

Chebyshev polynomials start oscillating as soon as we abandoned the well-traveled area of

the simulation.

5.4 More on the neural network approximator

Here we briefly describe our neural network approximator of the PLM in more detail. For

excellent introductory treatments of this material, see Bishop (2006) and Goodfellow, Bengio,

and Courville (2016).

A single hidden layer neural network h (s; θ) is a linear combination of Q fixed nonlinear

basis (i.e., activation) functions φ(·):

h (s; θ) = θ2
0 +

Q∑
q=1

θ2
qφ

(
θ1

0,q +
2∑
i=1

θ1
i,qs

i

)
, (33)

where s is an two-dimensional input and θ a vector of coefficients (i.e., weights):

θ =
(
θ2

0, θ
2
1, ..., θ

2
Q, θ

1
0,1, θ

1
1,1, θ

1
2,1, ..., θ

1
0,Q, θ

1
1,Q, θ

1
2,Q

)
.

Note how we call θ “coefficients,” as they represent a numerical entity, in comparison with

the structural parameters, Ψ, that have a sharp economic interpretation.

The neural network provides a flexible parametric function h that determines the growth

3In fact, we can rely on the more general theorems shown by Bach (2017) that cover non-decreasing
positively homogeneous activation functions like the rectified linear unit and that show, beyond the break of
the curse dimensionality, approximation and the estimation errors.

4Similarly, approaches, such as Smolyak interpolation, that alleviate the “curse of dimensionality” in
standard problems are harder to apply here because we deal with shapes of the ergodic distribution are hard
to characterize ex-ante. Neural networks are more resilient to sparse initial information regarding such shapes.
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rate of aggregate debt:

ĥj = h (sj; θ) , j = 1, .., J,

and that satisfies the properties of universal approximation, breaking of the curse of dimen-

sionality, good extrapolative behavior, and easy implementation we discussed above.

Different alternatives are available for the activation function. For our model, we choose

a softplus function, φ(x) = log(1 + ex) for a given input x. The softplus function has a

simple sigmoid derivative, which avoids some of the problems caused by the presence of a

kink in rectified linear units, while keeping an excellent efficient computation and gradient

propagation.

The neural network (33) can be generalized to include many hidden layers, stacked one

after the other. In that case, the network is called a deep neural network. However, for the

particular problem of approximation a two-dimensional function a single layer is enough. The

size of the hidden layer is determined by Q. This hypercoefficient can be set by regularization

or simply by trial-and-error in relatively simple problems, such as the one presented here. In

our case, we set Q = 16 because the cost of a larger hidden layer is small.

The vector of coefficients θ is selected to minimize the quadratic error function E
(
θ; S, ĥ

)
given a simulation

(
S, ĥ

)
:

θ∗ = arg max
θ
E
(
θ; S, ĥ

)
= arg max

θ

J∑
j=1

E
(
θ; sj, ĥj

)
= arg max

θ

1

2

J∑
j=1

∥∥∥h (sj; θ)− ĥj
∥∥∥2

.

A standard approach to perform this minimization in neural networks is the stochastic

gradient descent algorithm. The stochastic gradient descent begins by drawing a random

initialization of θ0 from a known distribution Θ, typically a Gaussian or uniform:

θ0 ∼ Θ. (34)

Then, θ is recursively updated according to θm+1 = θm − εm∇E
(
θ; sj, ĥj

)
, where:

∇E
(
θ; sj, ĥj

)
≡

∂E
(
θ; sj, ĥj

)
∂θ2

0

,
∂E
(
θ; sj, ĥj

)
∂θ2

1

, ...,
∂E
(
θ; sj, ĥj

)
∂θ1

2,Q

>
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is the gradient of the error function with respect to θ evaluated at
(
sj, ĥj

)
. To improve

performance, it is typical to group several points of the simulation in each evaluation step –

instead of just one point– in what is known as a minibatch algorithm. This takes advantage of

the fast convergence of the gradient (think about it as a score of the error function) towards

its value with an infinite sample, but at a much lower computational cost. The step size

εm > 0 is selected in each iteration according to a line-search algorithm in order to minimize

the error function in the direction of the gradient. The algorithm is run until the distance

between θm+1 and θm is below a threshold ε:

‖θm+1 − θm‖ < ε.

An advantage of neural networks is that the error gradient can be efficiently evaluated

using a back-propagation algorithm, originally developed by Rumelhart, Hinton, and Williams

(1986), which builds on the chain rule of differential calculus. In our case, this results in:

∂E
(
θ; sj, ĥj

)
∂θ2

0

= h (sj; θ)− ĥj

∂E
(
θ; sj, ĥj

)
∂θ2

q

=
(
h (sj; θ)− ĥj

)
φ

(
θ1

0,q +
2∑
i=1

θ1
i,qs

i
j

)
, for q = 1, ..., Q

∂E
(
θ; sj, ĥj

)
∂θ1

0,q

= θ2
q

(
h (sj; θ)− ĥj

)
φ′

(
θ1

0,q +
2∑
i=1

θ1
i,qs

i
j

)
, for q = 1, ..., Q

∂E
(
θ; sj, ĥj

)
∂θ1

i,q

= sijθ
2
q

(
h (sj; θ)− ĥj

)
φ′

(
θ1

0,q +
2∑
i=1

θ1
i,qs

i
j

)
, for i = 1, 2 and q = 1, ..., Q,

where φ′(x) = 1
(1+e−x)

.

One concern with neural networks is that the algorithm might converge to a local mini-

mum. A way of coping with it is to implement a Monte Carlo multi-start. We select P initial

vectors θp0, with p = 1, ..., P from (34). For each of these vectors, we run the stochastic gradi-

ent descent until convergence. Once we achieve convergence, we select the θpm that yields the

minimum error across all the trials. Furthermore, since we are interested in approximating an

unknown function, not clearing a market or satisfying an optimality condition, local minima

that are close to a global minimum are acceptable solutions to the approximation problem.

Finally, notice that the algorithm is massively parallel, either in CPUs or GPUs (and, in

the middle-run, in the new generation of Tensor Processing Units or TPUs), a most convenient

feature for scaling and estimation. See Appendix xxx for details.
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6 Estimation

Once we have solved the model given some structural parameter values Ψ, the next step

is to take it to the data and let observations determine the values in Ψ and perform inference

on them. We will proceed in two stages. First, we will discuss the simple case where the

econometrician has access to output data and wants to build the likelihood associated with

it. Once we understand how to construct the likelihood function in this situation, we move

to describe how to add microeconomic observations from the cross-sectional distribution of

assets and evaluate a much more sophisticated likelihood. We will close this section by

showing the results of our estimation with real data.

6.1 Building the likelihood function

Let us assume that the econometrician has access to D + 1 observations of output, Yt, at

fixed time intervals [0,∆, 2∆, .., D∆, ]:

Y D
0 = {Y0, Y∆, Y2∆, ..., YD} .

The derivations below would be very similar for other observables. More important, though,

is that since we have one shock in the model, we can use one observable. If we wanted

to have more observables (such other aggregate variables or the states of model), we would

need to either enrich the model with more shocks or to introduce measurement shocks in

the observables. In those situations, we might need to resort to a sequential Monte Carlo

approximation to the filtering problem described by the associated Kushner-Stratonovich

equation of our dynamic system (see, for a related approach in discrete time, Fernández-

Villaverde and Rubio-Ramı́rez, 2007).

The likelihood function LD
(
Y D

0 |Ψ
)

for our observations of ouput has the form:

LD
(
Y D

0 |Ψ
)

=
D∏
d=1

pY
(
Yd∆|Y(d−1)∆; Ψ

)
,

where pY
(
Yd∆|Y(d−1)∆; Ψ

)
, the conditional density of Yd∆ given Y(d−1)∆, is equal to:

pY
(
Yd∆|Y(d−1)∆; Ψ

)
=

∫
fd∆(Yd∆, B)dB.

Our task is, therefore, to compute the sequences of these conditional densities. To do so,

first, we obtain the diffusion of Yt = (Bt +Nt)
α.
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Applying Itô’s lemma, we get:

dYt =
∂ (B +N)α

∂B
dBt +

∂ (B +N)α

∂N
dNt +

1

2

∂2 (B +N)α

∂N2
σ2 (B +N)2 dt

= αKα−1
t

[(
h(Bt, Nt) + µNt

)
dt+ σKtdZt

]
+

1

2
α (α− 1)Kα−2

t σ2K2
t dt

= αY
α−1
α

t

[
h(Bt, Y

1
α
t −Bt) + αYt − δY

1
α
t −

(
αY

α−1
α

t − δ − σ2 Y
1
α
t

Y
1
α
t −Bt

)
Bt − ρ̂

(
Y

1
α
t −Bt

)]
dt

+
σ2

2
α (α− 1)Ytdt+ σαYtdZt

= µY (Bt, Yt) dt+ σYt (Yt) dZt,

where

µY (Bt, Yt) = αY
α−1
α

t

∗

[
h(Bt, Y

1
α
t −Bt) + αYt +

[
(α− 1)σ2

2
− δ
]
Y

1
α
t

−

(
αY

α−1
α

t − δ − σ2 Y
1
α
t

Y
1
α
t −Bt

)
Bt − ρ̂

(
Y

1
α
t −Bt

)]
,

and

σY (Yt) = ασYt.

Once we have the diffusion for Yt, the density fdt (Y,N) follows the Kolmogorov forward

equation in the interval [(d− 1)∆, d∆]:

∂ft
∂t

= − ∂

∂Y

[
µY (Y,B)ft(Y,B)

]
− ∂

∂B

[
h(B, Y

1
α −B)fdt (Y,B)

]
+

1

2

∂2

∂Y 2

[(
σY (Y )

)2
ft(Y,B)

]
. (35)

A fundamental property of the operator in the KF equation (35) is that it is the adjoint

of the infinitesimal generator employed in the HJB. The intuition is that one can think

about the dynamic choices of the agents implied by the HJB as a probability distribution of

their future choices, and hence a distribution on observables such as output, induced by the

stochastic shocks of the model. There is, in other words, an intimate link between optimal

choices and likelihood functions. This result is remarkable, since it means that the solution

of the KF equation amounts to transposing an inverting a sparse matrix that has already

been computed when we solved the HJB. This provides a highly efficient way of evaluating
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the likelihood once the model is solved.5

The initial condition at the beginning of the interval is

f(d−1)∆(Y,B) = δ
(
Y − Y(d−1)∆

)
f(d−2)∆(B|Y(d−1)∆),

where f(d−1)∆(B|Y(d−1)∆) is the probability of B conditional on Y = Y(d−1)∆ :

f(d−2)∆(B|Y(d−1)∆) =
f(d−2)∆(Y(d−1)∆, B)

f(d−2)∆(Y(d−1)∆)
=

f(d−2)∆(Y(d−1)∆, B)∫
f(d−2)∆(Y(d−1)∆, B)dB)

,

if d ≥ 2, f−1(B) = f(B) is the ergodic distribution of B, and δ (·) is the Dirac delta function

(Lo, 1988).

6.2 Adding micro observations

A promising avenue to improve the estimation is to add micro observations, which bring

much additional information and help to integrate different levels of aggregation to assess

the empirical validity of the model. More concretely, let Xt ≡ [gt(a, z);Nt]
′, be a vector of

observations. Imagine, as before, that we have D+1 observations of Xt at fixed time intervals

[0,∆, 2∆, .., D∆, ]:

XD
0 = {X0, X∆, X2∆, ..., XD} .

At this moment, we need to assume –as it is typically done in models with heterogeneous

agents and aggregates shocks that the conditional no aggregate uncertainty (CNAU) condition

holds. See, for instance, Miao (2006), following Bergin and Bernhardt (1992). This implies

that if households are distributed on the interval I = [0, 1] according to the Lebesgue measure

Φ, then

Gt(A× Z) = Φ
(
i ∈ I :

(
ait, z

i
t

)
∈ A× Z

)
,

for any subsets A ⊂ [0,∞), Z ⊂ {z1, z2} that is, the probability under the conditional

distribution is the same as the probability according to the Lebesgue measure across the

interval I.

The likekihood that an individual agent i ∈ I at time t = d∆ is at state (aid∆, z
i
d∆, Bd∆, Nd∆)

is fdd∆(aid∆, z
i
d∆, Bd∆, Nd∆). The log-likelihood is then log

[
fdd∆(aid∆, z

i
d∆, Bd∆, Nd∆)

]
. Notice

that this log-likelihood is a function of i. The conditional aggregate log-likelihood across all

5If the KF would become numerically cumbersome in more general models, we could construct Hermite
polynomials expansions of the (exact but unknown) likelihood as in Aı̈t-Sahalia (2002). We could also consider
methods of moments in continuous time such as those pioneered by Andersen and Lund (1997) and Chacko
and Viceira (2003).
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agents is

log pX
(
Xd∆|X(d−1)∆; Ψ

)
=

∫
log
[
fdd∆(aid∆, z

i
d∆, Bd∆, Nd∆)

]
Φ(di),

and, taking into account the CNAU condition, we get:∫
log
[
fdd∆(aid∆, z

i
d∆, Bd∆, Nd∆)

]
Φ(di) =

∫
log
[
fdd∆(a, z, Bd∆, Nd∆)

]
Gd∆(da, dz)

=
2∑
i=1

∫ ∞
0

log
[
fdd∆(a, zi, Bd∆, Nd∆)

]
gd∆(a, z)da,

where in the second line we have applied the definition of the Radon-Nikodym derivative.

The density fdt (a, z, B,N) follows the KF equation:

∂fdt
∂t

= − ∂

∂a

(
st (a, zi) f

d
t (a, zi, B,N)

)
− λifdt (a, zi, B,N) + λjf

d
t (a, zj, B,N)

− ∂

∂B

[
h(B,N)fdt (a, zi, B,N))

]
− ∂

∂N

[
µNt (B,N)fdt (a, zi, B,N)

]
+

1

2

∂2

∂N2

[(
σNt (B,N)

)2
fdt (B,N)

]
, (i 6= j = 1, 2) (36)

where

fd(d−1)∆ = g(d−1)∆(a, z)δ
(
B −B(d−1)∆

)
δ
(
N −N(d−1)∆

)
,

which, again, is easy to evaluate.

More concretely, we use the notation fdi,j,l,m ≡ fdi (aj, Bl, Nm) and define a time step

∆t = ∆
S
, where 1 << S ∈ N is a constant. If we solve the KF equation (36) using a finite

difference scheme, we have, for t = (d− 1)∆ and s = 1, .., S − 1, where

fdt+s∆t =
(
I−∆tAT

)−1
fdt+(s−1)∆t,

fdt = gtδN(d−1)∆
δB(d−1)∆

,

where δ is the Kronecker delta and fdt is defined as

fdt =


f1,1,1,t

g1,1,1,2,t

...

g2,J,L,M,t

 .
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The conditional density pX
(
Xd∆|X(d−1)∆; γ

)
can be approximated by

pX
(
Xd∆|X(d−1)∆; γ

)
=

2∑
i=1

J∑
j=1

L∑
l=1

fdi,j,ld,mg
d
i,j∆a∆B,

where fd
i,j,ld,m

is the density evaluated at the observed equity point Nd∆, f
d
i (aj, Bl, N = Nd∆)

and gdi,j are the elements of the observed distribution gd∆.

6.3 Maximizing the likelihood

Once we have evaluated the likelihood, we can either maximize it or perform Bayesian

inference relaying on a posterior sampler. In this paper, for clarity of exposition, the follow

the former approach. Also, since we are dealing with a rather novel approach to solution and

estimation of models with heterogenous agents, we want to keep the estimation relatively

simple and we fix most of the structural parameters at conventional calibrated values for the

U.S. economy and use only aggregate data. This will help, for example, when we conduct

below robustness exercises.

In our presentation of the parameters, we report rates at an annual term. The capital

share parameter, α, is taken to be 0.35 and the depreciation rate of capital, δ, is 0.1. The

discount rate ρ, is set to 0.05. The intertemporal elasticity of substitution of the households
1
γ

is set to 0.5 so that the risk aversion is 2.

Table 1. Baseline parametrization

Parameter Value Description Source/Target

α 0.35 capital share standard

δ 0.1 capital depreciation standard

γ 2 risk aversion standard

ρ 0.05 households’ discount rate standard

λ1 0.986 transition rate unemp.-to-employment monthly job finding rate of 0.3

λ2 0.052 transition rate employment-to-unemp. unemployment rate 5 percent

y1 0.72 income in unemployment state Hall and Milgrom (2008)

y2 1.015 income in employment state E (y) = 1

ρ̂ 0.0497 experts’ discount rate K/N = 2

The idiosyncratic income process parameters are calibrated following our interpretation of

state 1 as unemployment and state 2 as employment. The transition rates between unemploy-

ment and employment (λ1, λ2) are chosen such that (i) the unemployment rate λ2/ (λ1 + λ2)
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is 5 percent and (ii) the job finding rate is 0.3 at monthly frequency or λ1 = 0.986 at annual

frequency.6 These numbers describe the ‘US’ labor market calibration in Blanchard and Gaĺı

(2010). We normalize average income ȳ = λ2

λ1+λ2
y1 + λ1

λ1+λ2
y2 to 1. We also set y1 equal to

71 percent of y2, as in Hall and Milgrom (2008). Both targets allow us to solve for y1 and

y2. We set experts’ discount rate ρ̂ such that the leverage ratio K/N in the most-visited

SSS is 2, which is roughly the average leverage from a Compustat sample of non-financial

corporations. Table 1 summarizes our baseline calibration.

0.013 0.0132 0.0134 0.0136 0.0138 0.014 0.0142 0.0144 0.0146 0.0148 0.015
-338.3

-338.25

-338.2

-338.15

-338.1

-338.05

-338

-337.95

-337.9

-337.85

-337.8

Figure 1: Log-likelihood for different values of σ and point estimate.

We solve the model according to the algorithm in Section 5 and sample of 5,000 years

at monthly frequency, using a minibatch comprising 64 observations. Then, we evaluate the

likelihood of those observations for different values of σ, where all the other parameter values

are fixed at their calibrated quantities. We use a grid between 0.008 and 0.018 with step

0.00025. We plot the resulting loglikelihood in Figure 1. The pseudo-true parameter value

is drawn as a vertical discontinuous red line. The loglikelihood picks, indeed, at this point.

The smoothness of the plot confirms, also, that our algorithm has successfully converged.

6Analogously to Blanchard and Gaĺı (2010, footnote 20), we compute the equivalent annual rate λ1 as

λ1 =
∑12

i=1 (1− λm1 )
i−1

λm1 , where λm1 is the monthly job finding rate.
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7 Results

7.1 The PLM

The resulting PLM generated by our solution algorithm for aggregate debt, h(B,N), is

reported in Figure 2. Panel (a), at the top left, displays three transversal cuts of h(B,N)

along a range of values of equity (N). The first cut is fixes B at its baseline SSS value

(B = 1.9669, N = 1.7442, with K = 3.7111), the second cut fixes B at a selected high-

leverage point (B = 2.15, N = 1.5, with K = 3.65), and the third cut fixes B at a SSS with

low-leverage point (B = 1.0259, N = 2.6714, with K = 3.6973). The thicker part of the

lines indicate the regions of the state space in which the ergodic distribution of aggregates

variables, to be described below, is nonzero. The white point indicates, in the first cut, the

baseline SSS; in the second cut, the high leverage point described above; in the third cut,

the SSS with low leverage point. Panel (b), at the top right, follows the same pattern that

panel (a), but switching the roles of equity (N) and debt (B). Finally, panel (c), at the

bottom, shows the complete three-dimensional representation of the PLM. The shaded area

in this bottom panels highlights the region of the PLM visited in the ergodic distribution

with (non-trivial) positive probability. The thin red line is the “zero” level intersected by the

PLM: to the right of the line, aggregate debt falls, and to the left, it grows.

Figure 2 demonstrates the non-linearity of h(B,N) even within the area of the ergodic

distribution that has positive mass. The agents in our economy expect very different growth

rates of Bt in each region of the state space, with the function switching from concavity to

convexity along the state space. While this argument is clear from the general shape of panel

(c), it encodes rich dynamics that deserve further explanation. For example, panel (b) shows

how, as leverages increases, h(B,N) becomes stepper and, in the ergodic distribution, more

concave. Given the same level of debt, a higher level of leverage induces larger changes in the

level of aggregate debt as the financial expert is exposed to comparatively more risk. This

result will resurface when we document the dynamics of the economy after a shock.

The general shape of panel (c) also documents that, as intuition suggests, h(B,N) is

generally decreasing in debt and equity.

Figure 3 reproduces the same three panels of Figure 2, except for dh(B,N) once we have

used equation (30). Similar comments regarding the non-linear structure of the solution apply

here. For example, now, dh(B,N) becomes less steep as a function of equity as the level of

leverage falls.
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Figure 2: The PLM h(B,N).
Note: White points in panels (a) and (b) indicate the most-visited SSS and selected points in the high- and

low-leverage regions of the ergodic distribution. The thicker part of the lanes in panels (a) and (b) and the

shaded area in panel (c) displays the region of the PLM visited in the ergodic distribution. The thin red line

is the “zero” level intersected by the PLM.
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Figure 3: The law of motion dh(B,N).
Note: White points in panels (a) and (b) indicate the most-visited SSS and selected points in the high- and

low-leverage regions of the ergodic distribution. The thicker part of the lanes in panels (a) and (b) and the

shaded area in panel (c) displays the region of dh(B,N) actually in the ergodic distribution. The thin red

line is the “zero” level intersected by dh(B,N).
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Figure 4: Forecasting error distribution at a 1-month horizon, linear PLM (left) and nonlinear
(right).

The non-linearity of the PLM confirms our conjecture that more traditional solution meth-

ods that rely on linear structures (conditional on aggregate shocks) might not be appropriate

for solving this class of models. We can document this argument more formally by looking

at the forecasting capability of our PLM. The R2 associated to the PLM we compute using

our neural network is 0.9922, with an RMSE of 0.0004. The forecasting errors, furthermore,

are nicely clustered around zero, with a mode roughly equal to zero. To compare it with the

standard Krusell and Smith (1998) algorithm of finding an OLS over a linear regression on

endogenous state variables, we have recomputed our model using the latter approach. The

R2, in that case, is 0.8275, considerably lower than typical values reported in the literature

for more standard variations of the stochastic neoclassical growth model with heterogeneous

agents, and with an RMSE of 0.0021. Figure 4 plots the histogram of forecasting errors at

a 1-month horizon (the time step selected in the simulation step). The linear Krusell-Smith

algorithm produces more volatile forecasting errors, which are also skewed to the right and

without a mode at zero. These results confirm the importance of taking into account the

nonlinearities of the model when computing the PLM.7

7In the Appendix, we discuss other alternatives to the standard Krusell and Smith (1998) algorithm and
argue that our method has advantages over them as well. Also, we checked that adding additional moments
to the OLS regression do not help much concerning accuracy.
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7.2 The phase diagram

Figure 5 plots the phase diagram of our model along the aggregate debt (B) on the x-axis

and equity (N) on the y-axis. The blue line represents the PLM when it takes zero value, i.e.,

h(B,N) = 0. The line inherits the non-linear dependence of the right-hand side of equation

(17), the object h(B,N) approximates, on B and N . In particular, there is a convex segment

for low levels of debt and a concave segment for high levels of debt. The discontinuous red line

represents the loci of zero changes in aggregate debt, dN(B,N) = 0.8 The arrows indicate

the movement of debt, B, and equity, N , when we are away from the blue and red lines. For

completeness, we also plot the point of high leverage that we use in Figures 2 and 3 (and

later, when we compute the GIRFs of the model) to illustrate the behavior of the economy

at a high leverage situation.
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Figure 5: Phase diagram and SSS.

The two lines intersect three times, defining three SSS. From the bottom right, the first in-

tersection is the baseline, stable SSS (recall, with B = 1.9669, N = 1.7442, and K = 3.7111).

We call this SSS “baseline” because of two reasons. First, this SSS (and its neighborhood) is

the most visited one in the ergodic distribution (see Figure 8 below). Second, this SSS is the

8These two lines are the intersections of the zero level with the PLM and dN(B,N) in Figures 2 and 3,
which we represented –in those figures– with a thin red line.
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closest to the DSS (green square). In comparison with the DSS (B = 1.8718, N = 1.8215,

with K = 3.6933), the baseline SSS has 5.1% more debt and 4.2% less equity. Furthermore,

this SSS has slightly more capital (0.5%) than the DSS.

The price mechanism that mediates the shift toward more debt and less equity is as

follows. Aggregate uncertainty (σ > 0) generates capital risk for the financial expert, as

its capital holdings suffer gain and losses. Thus, the financial expert lowers her demand

for capital and her willingness to issue debt (i.e., the supply curve of debt) to finance it.

Aggregate uncertainty creates additional consumption risk for the households due to the

stochastic variation of wages and the risk-free rate (remember that households are already

exposed to idiosyncratic risk regarding labor productivity in the DSS). This force increases

the household’s demand for debt for precautionary motives. Given a lower supply and higher

demand for debt, the risk-free rate must fall to clear the debt market. A lower risk-free rate

persuades the financial expert to rely more on debt (i.e., an increase in the quantity issued

given the new supply curve of debt) and less on equity when σ = 0.014 than when σ = 0.

In such way, the financial expert can gather the larger excess returns from leverage. For our

point estimate σ = 0.014, this effect on the excess return is so strong that capital ends up

being slightly higher in the baseline SSS than in the DSS. Consequently, at this baseline SSS,

the financial expert absorbs much of the aggregate risk in the economy. We will see below,

however, how different values of σ change the net effect of a lower willingness to issue debt

versus a higher amount issued due to a lower risk-free rate.

Mechanically, the risk-free interest rate in the SSS is given by equation (15):

rSSS = α
(
KSSS

)α−1 − δ − σ2K
SSS

NSSS
,

whereas in the DSS is given by equation (28):

rDSS = α
(
KDSS

)α−1 − δ.

From these two equations and the observation that, for our parameter values, KSSS =

3.7111 > KDSS = 3.6933, we get rDSS = 0.0497 > rSSS = 0.0488. This lower risk-free

rate is due to two terms. First, a higher capital lowers the marginal productivity of capital

from 0.1497 to 0.1492. Second, the term σ2KSSS

NSSS pushes down the risk-free rate an additional

4.17 basis points.

The second intersection in Figure 5 is at a middle SSS with less debt and more equity

(B = 1.3800, N = 2.3204, with K = 3.7004). This SSS is, however, unstable, and the

dynamics of the economy quickly move away from it. Thus, we will not spend much time

discussing it.
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Finally, the third intersection in Figure 5, at the top left, is a stable SSS with low leverage:

debt is much lower (B = 1.0259) and equity much higher (N = 2.6714) than in the basic

stable SSS, yielding K = 3.6973. In this point, we have the reverse situation from the first

SSS. The low leverage translates into a high risk-free rate, 0.0493, inducing the financial

expert to finance herself more through equity and less through debt. Also, due to the low

debt of this SSS, households are less capable of smoothing consumption after an aggregate

shock. Loosely speaking, at the low-leverage SSS, there is a “shortage” of debt from the

perspective of the households that does not exist in the baseline SSS. Because of this latent

desire of households for much higher savings as a response to relatively small changes in the

risk-free rate, the distance with the unstable SSS of this second stable SSS is smaller than

the distance between the unstable SSS and the first stable SSS and shocks are more likely

to push the economy from a point to the left of the unstable SSS toward the right of the

unstable SSS than the other way around. The practical consequence of this property of the

model is that, as we will document below, this low-leverage SSS occurs much less often than

the baseline SSS.
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Figure 6: Phase diagram as a function of σ.
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The previous discussion highlights how the equilibrium risk-free rate distributes the con-

sequences of aggregate risk among agents. We can push this argument further by exploring

the role of σ in determining the different SSS in Figure 6 through its effect on the risk-free

rate. Each panel plots, for a different value of σ, the phase diagram of the economy following

the same convention than Figure 5. For low values of σ, the financial experts can absorb

much of the aggregate risk and, therefore, the baseline SSS is to the right of the DSS, i.e.,

the baseline SSS has more debt and less equity than the DSS (we still have, nevertheless,

the second stable SSS with much more equity and less debt). However, as σ increases, the

situation changes and the baseline SSS gets closer to the DSS, until it crosses it for σ around

0.023 and we end up with a baseline SSS with less debt and more equity. Also, as σ rises,

h(B,N) = 0 becomes curvier and the additional SSS(s) disappear.
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Figure 7: SSS as a function of σ.

Figure 7 complements the previous results by plotting the values of the low-leverage SSS,

the unstable SSS, and the baseline SSS (plus, for reference, the DSS) as a function of σ. We

can see how the leverage in the baseline SSS is a negative function of σ, a roughly constant

function in the unstable SSS, and an increasing function in the low-leverage SSS (until these

additional SSS disappear). The mechanism for these three slopes is the same than the one

we highlighted above above. In the baseline SSS, as σ grows, the financial expert wants to
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unload some of the capital risk by reducing its leverage. In comparison, in the low-leverage

SSS, the households demand more and more debt as σ increases (recall that at low-leverage,

there is a “shortage” of debt that does not exist in the baseline SSS).

Does the economy converge the any of the SSS(s)? The state space (g(·), N) is infinite

dimensional and, hence, we cannot numerically analyze convergence for any possible initial

state. Instead, we analyze convergence for densities visited in the aggregate ergodic dis-

tribution. We consider different initial values, i.e.,income-wealth densities and equity levels

(g0(·), N0), selected from the simulations employed to compute the aggregate ergodic distribu-

tion above and analyze the transitional dynamics in the absence of aggregate shocks (even if

agent continue forming their expectations assuming the continuous arrival of aggregate shocks

with σ > 0). In all the cases considered the economy converges to the SSS. The convergence

path is very slow: for initial values in the high- or low-leverage regions convergence may take

several centuries. Notwithstanding, we cannot rule out that for other densities different to

the ones in the aggregate ergodic distribution the model would not converge to the SSS. This

is again related to the self-confirming nature of the solution. The PLM is computed based

on the income-wealth distributions visited along the paths of the ergodic distribution. Our

algorithm could potentially find distribution with different first moments that would lead to

alternative dynamics.

An interesting feature of the transitional dynamics is the curvature of the paths that

lie in regions with relatively low levels of high capital levels. In these cases, the paths are

bent because debt adjusts faster than equity, the latter mainly depending on the leverage

ratio. If equity and aggregate capital are below (above) their long-run values households (de-

)accumulate wealth increasing their leverage. Once they reach a point with still low (high)

equity –but a capital level closer to that in the SSS– there is a progressive redistribution

of wealth from households to the financial experts (or the other way around in the case of

initial high equity and capital). In the next subsection, we will discuss the model ergodic

distribution in more detail.

7.3 The aggregate ergodic distribution

Panel (a) of Figure 8 displays the aggregate ergodic joint distribution of debt and equity

F (B,N). This distribution is defined as

P {(B,N) ∈ Ω} =

∫
Ω

dF,

for any subset Ω of the state space. This distribution is not obtained directly from the PLM,

but from the simulation of the paths of the income-wealth distribution and equity processes
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(naturally, the PLM is employed in the HJB equation (31) to obtain the optimal consumption

policies of individual agents). A Monte Carlo simulation of 5,400 years of the economy at

monthly frequency has been employed to compute it, in which the model is initialized at the

deterministic steady state and the first 400 samples are discarded.
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Figure 8: Ergodic distribution F (B,N). Lighter colors indicate higher probability.

Panels (b) and (c) of Figure 8 plot the marginal distributions for debt and equity. These

panels show how the economy spends most of the time in a region with debt levels between

1.5 and 2.2 and equity between 1 and 2.5. Note how the marginal distribution of debt is much

more concentrated than the marginal distribution of equity and how the ergodic distribution

only presents one region of substantial mass, although it has a substantial tail in areas of

high equity and low debt. Finally, note how the total amount of capital (K = B +N) is on

average larger in the low leverage region than in the high leverage one.

We complement the previous discussion with Figure 9, which plots the histogram of

duration of spells of the economy around the baseline SSS and the low-leverage SSS. The

average duration a spell of the economy around the baseline SSS is 48.69 years, a long period
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Figure 9: Spell durations at each DSS.

of relatively high leverage. On the other hand, the average duration of a spell of the economy

around the low-leverage SSS is 4.75 years, a much shorter length, reflecting the strong push

effect of high risk-free rates on household accumulation decisions (and, therefore, on the re-

building of leverage). Nevertheless, the accumulated effects of repeated shocks also mean

that the spells around this low-leverage SSS can be much longer than 4.75 years, with some

lasting as long as a century.

When discussing the challenges of a nonlinear model with heterogenous agents and aggre-

gate shocks in Section 3, we mentioned the problem of extrapolation. In order to compute

the PLM based on simulated paths only a limited region of the state space is visited, that

of the ergodic distribution F (B,N) displayed in Figure 2 in a shaded area. However, when

forming expectations, households evaluate the PLM over the entire state space. Therefore

the PLM is extrapolated over the regions of the state space not included in the support of the

ergodic distribution. There is no guarantee that the dynamics of the model in the extrapo-

lated region −were it to be ever visited− coincide with the ones expected in the PLM. Thus,

the approximation employed both in Krusell and Smith (1998) and in this paper should be

understood as a particular instance of a self-confirming equilibrium (SCE). See also Brumm

and Scheidegger (2017) and Piazzesi and Schneider (2016) for related discussions. In a SCE
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households’ beliefs about the PLM coincide with the actual law of motion only in the equi-

librium paths. Off–equilibrium they may diverge, but households never discover it as this

region is never visited.

7.4 Wealth distributions in the DSS and SSS(s)

Figure 10 compares the wealth distribution in the DSS, the baseline SSS, and the low-

leverage SSS. The distribution shift to the left as we move from the DSS to the baseline SSS,

and from the baseline SSS to the low-leverage SSS.
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Figure 10: Wealth distribution in the DSS and SSS.

As we discussed before, everything else equal, the presence of σ > 0 lowers the risk-free

interest rate, and thus pushes the assets of the household to the left in the baseline SSS with

respect to the DSS. However, this move is small as the baseline SSS displays higher wages

and lower interest rates due to the higher capital level and the higher leverage ratio. The net

effect is that savings almost coincide for low-wealth households in the DSS and baseline SSS,

but are higher for high-wealth households in the DSS. There is, however, a thicker right tail

in the baseline SSS. Therefore, the presence of aggregate risk in this economy produces an

allocation with a higher level of aggregate savings and more wealth inequality, together with
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higher output and more leverage, compared to the allocation without aggregate risk.

When, in addition, KSSS

NSSS is high, the risk-free is considerable lower, as the financial expert

must be induced to take on the risk of holding a large amount of equity (baseline SSS vs.

low-leverage SSS). The effect now is much larger because, in addition, total capital (and with

it wages) is lower in the low-leverage SSS. The combination of a lower risk-free with a lower

wage reduces the savings of both high- and low-wealth households.

The bounded rationality solution introduce by Krusell and Smith (1998) assumes that

households only employ a finite set of moments of the income-wealth distribution to forecast

the dynamics of aggregate variables. In our case, as in the original Krusell and Smith paper,

we only consider the first moment, the total amount of wealth, aggregate debt in our case.

This ‘approximate aggregation’ holds well in our model as well as in theirs due to the lin-

earity of the consumption policy. Only agents close to the borrowing limit face a nonlinear

consumption policy but, being close to zero assets, they contribute relatively little to the

aggregate dynamics of capital.9

7.5 Dynamics

The analysis above has shown how, in this model, the introduction of aggregate fluc-

tuations modifies the distribution of wealth across households and between households and

experts. In this section we analyze instead whether different wealth distributions modify the

transmission of aggregate shocks.

Figure 11 displays the generalized impulse response functions to a negative shock. The

generalized impulse response is defined as the difference between the transition path if an ini-

tial shock hits the economy and that if no shock arrives. We consider initial states (g0(·), N0)

in the high- and low-leverage regions and the SSS.

We analyze first the response to a 1 standard deviation shock that hits the economy at

the SSS. The shock generates a destruction in capital and equity, as experts absorb all the

risk. The reduction in capital produces a contraction in output and a decline in wages. The

lower level of capital increase the return on capital and the risk-free interest rate. Despite

the fact that the output contraction necessarily reduces households’ total income, its effects

are going to be asymmetric due to the heterogeneity in asset holdings. Poor households will

undoubtedly loose, as they see their wages decline. However, the increase in interest rates

benefits wealthy households by raising their capital gains.

Figure 12 displays the consumption decision rules for high-productivity households (z =

9Note, however, that the quasi-linearity of the consumption function is only with respect to the household
state variables, not with respect to the aggregate state variables. This is why we can still have highly non-
linear behavior for the economy as a whole.
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Figure 11: Generalized impulse response functions for different initial states.

z2) (results for low-income households are qualitatively similar). It shows how after the shock

has hit the economy all households reduce their consumption –compared to the transition

path–, but poorer households do so by a larger amount, reflecting their lower income. This

explains the decline in aggregate consumption displayed in Figure 11. As all households

reduce their consumption, those wealthy enough will experience an increase in their asset

holdings. This can also be seen in Figure 13. Households with assets levels around 1 decline

as they increase their wealth in the around 2. This helps households to be less dependent

on reduced wage income and to enjoy the rise in interest rates. At the aggregate level, this

pattern explain the dynamics of aggregate debt.

Figure 13 displays what we have called the “distributional impulse response” (DIRF). It
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Figure 12: Consumption decision rules at different points in time after the shock.

is just the generalized impulse response of the wealth density gt(·), that is, the difference

between the density after the shock and that in the transition path (this is the aggregate

density across income levels). The DIRF displays the progressive transition of households

with wealth levels between 0 and 1 to a new level above a > 1.5.

The generalized impulse responses in Figure 14 also show how the response of the econ-

omy to the same aggregate shock may be strongly modified depending on the initial wealth

allocation. In particular, in the case of a high-leverage economy, the persistence of the shock

is greatly amplified. This is because in a high-leverage economy the decline in consumption

in the first decade after the shock is less pronounced. The comparison of the time-varying

consumption policies in Figure 12 shows how this is mainly driven by wealthy households.

As a consequence the path of wealth accumulation is slower, beginning to decline after the

initial decade, approximately.

The lower level of household’s debt compared to the SSS case discussed above implies a

lower capital level and thus less output. Therefore households with assets below 1 are forced

to consume less that in the SSS response after the initial decade, as displayed in Figure (13).

This also explains the progressive increase in the share of low-wealth households after three

decades, as the recovery is sluggish compared to the SSS case.

Notice that aggregate dynamics help to explain why wealthy households reduce less their

consumption. it is precisely because they expect a sluggish recovery, and thus higher interest
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Figure 13: Distributional impulse response at the SSS.

rates that they decide to consume relatively more.

The previous analysis confirms the strong nonlinearity of the model responses in terms

of its initial states. However, the model is approximately linear for small perturbations in

the vicinity of the SSS (not shown). Besides, the impulse response in the case of a low-

leverage economy is almost identical to that in the SSS as individual policies do not change

significatively compared to the SSS.

8 Conclusion

In this paper we have presented a “proof of concept” of how to efficiently compute and

estimate a continuous-time model of financial frictions and the wealth distribution. For the

computation, we have exploited tools borrowed from machine learning. For the estimation,

we have built on contributions from inference with diffusions.
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Figure 14: GIRFS, heterogeneous agent vs. representative agent.
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Appendix

A. Numerical algorithm

We describe the numerical algorithm used to jointly solve for the equilibrium value func-

tion, v (a, z, B,N), the density g(a, z, B,N) and the aggregate debt B and equity N . The

algorithm proceeds in 3 steps. We describe each step in turn.

Step 1: Solution to the Hamilton-Jacobi-Bellman equation The HJB equation is

solved using an upwind finite difference scheme similar to Candler (1999) and Achdou, Han,

Lasry, Lions, and Moll (2017). It approximates the value function vi(a,B,N), i = 1, 2 on a

finite grid with steps ∆a, ∆B, ∆N : a ∈ {a1, ..., aJ} , B ∈ {B1, ..., BL} , N ∈ {N1, ..., NM},
where

aj = aj−1 + ∆a = a1 + (j − 1) ∆a, 2 ≤ j ≤ J,

Bl = Bl−1 + ∆B = B1 + (l − 1) ∆L, 2 ≤ l ≤ L,

Nm = Nm−1 + ∆N = N1 + (m− 1) ∆N, 2 ≤ m ≤M.

The lower bound in the wealth space is a1 = 0, such that ∆a = aJ/ (J − 1). We use the

notation vi,j,l,m ≡ vi(aj, Bl, Nm), and similarly for the policy function ci,j,l,m. The derivatives

are evaluated according to

∂iv(aj, Bl, Nm)

∂a
≈ ∂fvi,j,l,m ≡

vi,j+1,l,m − vi,j,l,m
∆a

,

∂iv(aj, Bl, Nm)

∂a
≈ ∂bvi,j,l,m ≡

vi,j,l,m − vi,j−1,l,m

∆a
.

∂iv(aj, Bl, Nm)

∂B
≈ ∂Bvi,j,l,m ≡

vi,j,l+1,m − vi,j,l,m
∆B

,

∂iv(aj, Bl, Nm)

∂Z
≈ ∂Nvi,j,l,m ≡

vi,j,l,m+1 − vi,j,l,m
∆N

,

∂2
i v(aj, Bl, Nm)

∂N2
≈ ∂2

NNvi,j,l,m ≡
vi,j,l,m+1 + vi,j,l,m−1 − 2vi,j,l,m

(∆N)2 .

Note that at each point of the grid, the first derivative with respect to a can be approxi-

mated with a forward (f) or a backward (b) approximation. In an upwind scheme, the choice

of forward or backward derivative depends on the sign of the drift function for the state

variable, given by

si,j,l,m ≡ wl,mzi + rl,maj − ci,j,l,m, (37)
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where

ci,j,l,m =

[
∂vi,j,l,m
∂a

]−1/γ

, (38)

wl,m = (1− α)Z (Bl +Nm)α , (39)

rl,m = αZ (Bl +Nm)α−1 − δ − σ2 (Bl +Nm)

Nm

. (40)

Let superscript n denote the iteration counter. The HJB equation is approximated by the

following upwind scheme,

vn+1
i,j,l,m − vni,j,l,m

∆
+ ρvn+1

i,j,l,m =
(cni,j,l,m)1−γ

1− γ
+ ∂fv

n+1
i,j,l,ms

n
i,j,l,m,f1sni,j,n,m,f>0 + ∂Bv

n+1
i,j,l,ms

n
i,j,l,m,b1sni,j,l,m,b<0

+λi
(
vn+1
−i,j,l,m − v

n+1
i,j,l,m

)
+ hl,m∂Bvi,j,l,m + µNl,m∂Nvi,j,l,m

+

[
σNl,m

]2
2

∂2
NNvi,j,l,m

for i = 1, 2, j = 1, ..., J , l = 1, .., L, m = 1, ...,M , where where 1 (·) is the indicator function

and

hl,m ≡ h (Bl, Nm) ,

µNl,m ≡ µN (Bl, Nm) = αZ (Bl +Nm)α − δ (Bl +Nm)− rl,mBl − ρ̂Nm,

σNl,m ≡ σN (Bl, Nm) = σ (Bl +Nm) ,

sni,j,l,m,f = wl,mzi + rl,maj −

[
1

∂nf vi,j,l,m

]1/γ

,

sni,j,l,m,b = wl,mzi + rl,maj −
[

1

∂nb vi,j,l,m

]1/γ

Therefore, when the drift is positive (sni,j,l,m,f > 0), we employ a forward approxima-

tion of the derivative, ∂nf vi,j,l,m; when it is negative (sni,j,l,m,b < 0), we employ a backward

approximation, ∂nb vi,j,l,m. The term
vn+1
i,j,l,m−v

n
i,j,l,m

∆
→ 0 as vn+1

i,j,l,m → vni,j,l,m.

Moving all terms involving vn+1 to the left hand side and the rest to the right hand side,

we obtain:

vn+1
i,j,l,m − vni,j,l,m

∆
+ ρvn+1

i,j,l,m =
(cni,j,n,m)1−γ − 1

1− γ
+ vn+1

i,j−1,l,mα
n
i,j,l,m + vn+1

i,j,l,mβ
n
i,j,l,m + vn+1

i,j+1,l,mξ
n
i,j,l,m

+λiv
n+1
−i,j,l,m + vn+1

i,j,l+1,m

hl,m
∆B

+ vn+1
i,j,l,m+1κl,m + vn+1

i,j,l,m−1%l,m (41)

52



where

αni,j ≡ −
sni,j,B1sni,j,B<0

∆a
,

βni,j,l,m ≡ −
sni,j,l,m,f1sni,j,n,mF>0

∆a
+
sni,j,l,m,b1sni,j,l,m,b<0

∆a
− λi −

hl,m
∆B
−
µNl,m
∆N

−
(
σNl,m

)2

(∆N)2 ,

ξni,j ≡
sni,j,F1sni,j,F>0

∆a
,

κl,m ≡
µNl,m
∆N

+

(
σNl,m

)2

2 (∆N)2 =
[αZ (Bl +Nm)α − δ (Bl +Nm)− rl,mBl − ρ̂Nm]

∆N
+
σ2 (Bl +Nm)2

2 (∆N)2 ,

%l,m ≡
(
σNl,m

)2

2 (∆N)2 =
σ2 (Bl +Nm)2

2 (∆N)2 .

for i = 1, 2, j = 1, ..., J , l = 1, .., L, m = 1, ...,M . We consider boundary state constraints in

a (sni,1,B = sni,J,F = 0). The boundary conditions in B and N are reflections.

In equation (41), the optimal consumption is set to

cni,j,n,m =
(
∂vni,j,l,m

)−1/γ
. (42)

where

∂vni,j,l,m = ∂fv
n
i,j,l,m1sni,j,n,mF>0 + ∂bv

n
i,j,l,m1sni,j,l,m,b<0 + ∂v̄ni,j,l,m1sni,j,n,mF≤01sni,j,l,m,b≥0.

In the above expression, ∂v̄ni,j,l,m = (c̄ni,j,n,m)−γ where c̄ni,j,n,m is the consumption level such

that the drift is zero :

c̄ni,j = wl,mzi + rl,maj.
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We define

An
l.m =



βn1,1,l,m ξn1,1,l,m 0 0 · · · 0 λ1 0 · · · 0

αn1,2,l,m βn1,2,l,m ξn1,2,l,m 0 · · · 0 0 λ1
. . . 0

0 αn1,3,l,m βn1,3,l,m ξn1,3,l,m · · · 0 0 0
. . .

...
...

. . . . . . . . . . . . . . . . . . . . . . . .
...

0 0 · · · αn1,J−1,l,m βn1,J−1,l,m ξn1,J−1,l,m 0 · · · λ1 0

0 0 · · · 0 αn1,J,l,m βn1,J,l,m 0 0 · · · λ1

λ2 0 · · · 0 0 0 βn2,1,l,m ξn2,1,l,m · · · 0
...

. . . . . . . . . . . . . . .
...

. . . . . .
...

0 0 · · · 0 0 λ2 0 · · · αn2,J,l,m βn2,J,l,m



,

vn+1
l,m =



vn+1
1,1,l,m

vn+1
1,2,l,m

...

vn+1
1,J,l,m

vn+1
2,1,l,m

...

vn+1
2,J,l,m


and

An
m =



An
1,m

h1,m

∆K
I2J 02J · · · 02J 02J

02J An
2,m

h2,m

∆K
I2J · · · 02J 02J

02J 02J An
3,m · · · 02J 02J

...
. . . . . . . . . . . .

...

02J An
L−1,m

hL−1,m

∆K
I2J

02J 02J · · · 02J 02J

(
An
L,m +

hL,m
∆K

I2J

)


, vn+1

m =


vn+1

1,m

vn+1
2,m
...

vn+1
L,m

 ,

where In and 0n are the identity matrix and the zero matrix of dimension n×n, respectively.
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We can also define

An =



(An
1 + P1) X1 02J×L · · · 02J×L 02J×L

P2 An
2 X2 · · · 02J×L 02J×L

02J×L P3 An
3 · · · 02J×L 02J×L

...
. . . . . . . . . . . .

...

PM−1 An
M−1 XM−1

02J×L 02J×L · · · 02J×L PM (An
M + XM)


, vn+1 =


vn+1

1

vn+1
2
...

vn+1
M

 ,

Xm =



κ1,mI2J 02J · · · 02J 02J

02J κ2,mI2J · · · 02J 02J

...
. . . . . . . . .

...

02J κL−1,mI2J 02J

02J 02J 02J 02J κL,mI2J


,

Pm =



%1,mI2J 02J · · · 02J 02J

02J %2,mI2J · · · 02J 02J

...
. . . . . . . . .

...

02J %L−1,mI2J 02J

02J 02J 02J 02J %L,mI2J


,un =



(cn1,1,1,1)1−γ−1

1−γ
(cn1,2,1,1)1−γ−1

1−γ
...
...

(cn2,J,L,M )1−γ−1

1−γ


.

Then, equation (41) is a system of 2× J × L×M linear equations which can be written in

matrix notation as:
1

∆

(
vn+1 − vn

)
+ ρvn+1 = un + Anvn+1.

The system in turn can be written as

Bnvn+1 = dn (43)

where ,Bn =
(

1
∆

+ ρ
)
I−An and dn = un + 1

∆
vn.

The algorithm to solve the HJB equation runs as follows. Begin with an initial guess

v0
i,j,l,m. Set n = 0. Then:

1. Compute cni,j,l,m, i = 1, 2 using (42).

2. Find vn+1
i,j,l,m solving the linear system of equations (43).

3. If vn+1
i,j,l,m is close enough to vni,j,l,m, stop. If not, set n := n+ 1 and proceed to step 1.

Most programming languages, such as Julia or Matlab, include efficient routines to handle

sparse matrices such as An.
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Step 2: Solution to the Kolmogorov Forward equation The income-wealth distribu-

tion conditional on the current realization of aggregate debt B = Bl and equity N = Nm can

be characterized by the KF equation:

∂g

∂t
= − ∂

∂a
[si (a,B,N) gi,t(a)]− λigi,t(a) + λ−ig−i,t(a), i = 1, 2. (44)

1 =

∫ ∞
0

g(a)da. (45)

If we define a time step ∆t we also solve this equation using an finite difference scheme. We

use the notation gi,j ≡ gi(aj). The system can be now expressed as

gi,j,t+1 − gi,j
∆t

= −
gi,j,tsi,j,l,m,b1si,j,l,m,b>0 − gi,j−1,tsi,j−1,l,m,f1si,j−1,l,m,f>0

∆a

−
gi,j+1,tsi,j+1,l,m,b1si,j+1,l,m,b<0 − gi,j,tsi,j,l,m,b1si,j,l,m,b<0

∆a
− λigi,j,t + λ−ig−i,j,t,

In this case, let us define

gt =



g1,1,t

g1,2,t

...

g1,J,t

g2,1,t

...

g2,J,t


,

as the density conditional on the current state of Bl and Nm.We assume that g0 is the

density in the deterministic steady state (which coincides with the standard Aiyagari (1994)

economy), the update in the next time period is given by the KF equation:

gt+1 =
(
I−∆tAT

l,m

)−1
gt,

where AT
l,m is the transpose matrix of Al,m = limn→∞An

l,m, defined above.

Complete algorithm

We can now summarize the complete algorithm. We begin a guess of the PLM h0 (B,N).

Set s := 1 :

Step 1: Household problem. Given hs−1 (B,N) , solve the HJB equation to obtain an

estimate of the value function v and of the matrix A.
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Step 2: Distribution. Given A, simulate T periods of the economy using the KF equation

and obtain the aggregated ebt {Bt}Tt=0 and equity {Nt}Tt=0 . The law of motion of equity

is

Nt = Nt−1 + [αZ (Bt +Nt)
α − δ (Bt +Nt)− rtBt − ρ̂Nt] ∆t+ σ (Bt +Nt)

√
∆tεt,

where εt
iid∼ N(0, 1).

Step 3: PLM. Update the PLM using a neural netwok: hs. If ‖hs − hs−1‖ < ε, where ε is

a small positive constant, then stop. if not return to Step 1.

B. Chebyshev polynomials
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Figure 15: PLM with Chebyshev polynomials.
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Figure 16: PLM with Chebyshev polynomials (zoom).
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