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Abstract

In this paper, we study choice under growing awareness in the wake of new discover-

ies. The decision maker’s behavior is described by two preference relations, one before

and one after new discoveries are made. The original preference admits a subjective

expected utility representation. As awareness grows, the original decision problem ex-

pands and so does the state space. Therefore, the decision maker’s original preference

has to be extended to a larger domain, and consequently the new preference might ex-

hibit ambiguity aversion. We propose two consistency notions that connect the initial

and new preferences. Unambiguity Consistency requires that the original states remain

unambiguous while new states might be ambiguous. This provides a novel interpreta-

tion of ambiguity aversion as a systematic preference to bet on old states than on newly

discovered states. Likelihood Consistency requires that the relative likelihoods of the

original states are preserved. Our main results axiomatically characterize a maxmin

expected utility representation of the new preference that satisfies the two consistency

notions. Moreover, we introduce a comparative notion of ambiguity aversion under

growing awareness and characterize a parametric version of our model.
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1 Introduction

When modeling choice behavior under uncertainty, economists take for granted that the

description of the underlying decision problem – including the states of nature, actions and

consequences – is fixed. However, in many real life situations, a decision maker (henceforth,

DM) makes new discoveries that might change the decision problem. New scientific insights,

novel technologies, new medical treatments, new financial instruments, or new goods/services

emerge on a almost daily basis. Such discoveries might reveal contingencies of which the

DM was unaware. As awareness grows, the DM’s universe (i.e., state space) expands and

this might affect her preferences. In this paper, we explore how the DM’s beliefs and tastes

evolve after discovering new acts or new consequences.

In particular, we provide a theory of choice under growing awareness in which a subjective

expected utility (SEU) preference extends to a maxmin expected utility (MEU) preference.

While the extended preference captures ambiguity aversion, it inherits some properties of

the initial SEU preference. Our theory provides a novel interpretation of ambiguity aversion.

In particular, ambiguity arises because the DM treats new and old states differently. There

is no exogenous information about states. In contrast, in the Ellberg experiments exogenous

information about states is provided and ambiguity arises since the DM treats states with

known and unknown probabilities differently.

To illustrate changes in beliefs and tastes due to growing awareness, consider a patient

who suffers from a disease and needs to choose an appropriate treatment. There are two

standard treatments, A and B. Each treatment leads to one of two possible outcomes: a

success or a failure. The patient knows that there are two health factors that determine the

outcome of each treatment, factor x and factor y, each being either good or bad. Treatment

A is successful only when factor x is good, while treatment B works out only when her factor

y is good. The patient believes that both factors are good with probability 0.5.

Suppose now that the patient discovers that there is a new treatment C. While consulting

her doctor, she becomes aware of a third factor z that matters: treatment C is successful

when factor z is good. Since treatment C and factor z are new to the patient, she cannot

come up with a unique probability that factor z is good and becomes pessimistic about the

novel treatment. Moreover, the discovery of the new factor z causes the patient to reevaluate

the standard treatments A and B and her original beliefs regarding factors x and y.

Given the discovery of treatment C, the patient’s preferences might change fundamen-

tally. To discipline the effect of new discoveries, we consider two consistency notions between

the patient’s behavior before and after the discovery.

Behaviorally, our consistency notions can be described by the way the old treatments are
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evaluated after awareness has changed. To illustrate the main idea of the first consistency

notion, suppose that the new treatment C can be seen as a combination of the standard

treatment A and another new treatment D. Then it requires that the evaluation of A is

independent of D. Since the patient evaluated A previously and is familiar with it, the new

component D should not affect how A is evaluated. However, this consistency notion allows

the values of A and B to change as the patient’s beliefs change after the discovery.

The second consistency notion requires that the ranking over the old treatments A and B

does not change as awareness grows. The two consistency notions are independent in general,

but the second notion implies the first notion when the discovery is a new consequence. Our

goal is to axiomatically characterize each consistency notion by connecting the patient’s

initial and new preferences.

Recently, Karni and Vierø (2013) have introduced an elegant theory of choice under

growing awareness called reverse Bayesianism. They focus on SEU preferences and charac-

terize the evolution of subjective beliefs in the decision theoretic framework of Anscombe

and Aumann (1963). However, in reverse Bayesianism growing awareness does not affect the

SEU form of preferences and thus it precludes ambiguity in an expanded state space.

In contrast, we allow the DM’s behavior to change fundamentally as awareness grows.1

In our theory, while being originally a SEU maximizer, the DM might become ambiguity

averse in an expanded universe. More specifically, the DM’s behavior is described by two

preference relations, one before and one after a discovery is made. The initial preference takes

the SEU form. One can think of this assumption as follows. The DM is relatively familiar

with the original decision problem and therefore she came up with a (unique) probability

measure over the states. As awareness grows, the new extended preference admits a MEU

representation of Gilboa and Schmeidler (1989) since the DM faces a new decision problem.

Our main results behaviorally characterize the evolution of an original SEU preference

to a new, extended MEU preference under two consistency notions. The first consistency

notion, called Unambiguity Consistency, requires that growing awareness does not interfere

with unambiguity of the original preference. More precisely, the new events that correspond

to the old states are unambiguous; only the new states may be ambiguous.2

1There is empirical evidence suggesting that individuals’ awareness and ambiguity are related. For in-
stance, Giustinelli and Pavoni (2017) ask Italian middle schoolers about their likelihoods to successfully
graduate from different high school tracks. The authors find that students who were initially unaware of
some school tracks (but learn their existence during the survey) perceive significant ambiguity about the
success of alternative curricula that have these tracks. Related to our patient story, there is a growing body
of evidence reporting people’s ambiguity averse attitude when they face new medical tests and treatments
(e.g., see Han et al. (2009) and Taber et al. (2015)).

2Unambiguity Consistency builds on the notion of unambiguous events in the sense of Nehring (1999)
and Ghirardato et al. (2004). An event is unambiguous if all probabilities assign the same value to the event.
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An extended MEU preference that satisfies Unambiguity Consistency is characterized by

a novel axiom called Negative Unambiguity Independence (NUI) in Theorem 1. NUI states

that the DM can hedge against the ambiguity of the new acts (e.g., the new treatment C).

However, she cannot use the old acts (e.g., the standard treatments A, B) to hedge since

such acts are always evaluated independently of new components (e.g., D).3

Under Unambiguity Consistency, new discoveries might affect the DM’s ranking over the

old acts since her beliefs (as well as her risk preferences) might change. For instance, after

the discovery of the new health factor z, the patient might believe that factor x is more likely

to be good than factor y, leading her to strictly prefer the standard treatment A over B.

Our second consistency notion, called Likelihood Consistency, requires that the new

extended preference maintains the relative likelihoods of the original states. Preserving the

original likelihoods might be a reasonable property in choice situations where the original

preferences are supported by hard facts or objective information. Likelihood Consistency

is characterized by Binary Awareness Consistency (BAC), which requires that the DM’s

ranking of old acts (standard treatments A and B) is not affected by growing awareness.

Theorem 2 shows that under BAC, the relative likelihoods of old states remain preserved

by the extended MEU preference. Moreover, the DM’s risk preferences (i.e., her ranking of

constant acts) do not change as awareness grows.

The theory of extended MEU preferences satisfying Unambiguity Consistency and Like-

lihood Consistency is called generalized reverse Bayesianism. In the special case in which all

the newly discovered contingencies are unambiguous, the extended preference is SEU and

our theory coincides with the theory of reverse Bayesianism of Karni and Vierø (2013).4

Interestingly, the theory of generalized reverse Bayesianism can be behaviorally disen-

tangled between choice situations in which awareness grows due to discoveries of new acts

versus discoveries of new consequences. When the new treatment C is discovered, each orig-

inal state is extended by indicating whether factor z is good or bad (equivalently, whether

treatment C leads to a success or failure). In this context, our theory implies that the old

treatments A and B are unambiguous acts while the new treatment C is ambiguous. Conse-

quently, an ambiguity averse DM tends to prefer the old and unambiguous acts to the newly

discovered ones.

However, when a new consequence is discovered, ambiguity aversion will be exhibited

differently. Suppose that the patient discovers that the standard treatments A and B might

3The spirit of our axiom is reminiscent of the Negative Certainty Independence axiom introduced by
Dillenberger (2010) and used by Cerreia-Vioglio et al. (2015) to derive the Cautious Expected Utility model
in the context of choice under risk. However, in our framework, NUI has different behavioral implications
since we allow for ambiguity.

4Notice that Unambiguity Consistency is trivially satisfied in the setup of Karni and Vierø (2013).
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cause a health complication. In this case, the original state space expands differently. The

original state space is extended by new states indicating whether treatments A and B lead to

the health complication or not. If the patient perceives ambiguity about the new states, then

the standard treatments become ambiguous acts. Therefore, the patient prefers combinations

of the old treatments A and B as a hedge against the ambiguity of A and B.

At a fundamental level, our theory provides a novel interpretation of the widely-studied

ambiguity phenomenon. Typically, as in the classical Ellsberg experiments, ambiguity is

exogenously created. That is, subjects are informed about exogenous probabilities for some

events in a given state space; for other states such information is missing. The task is to elicit

subjects’ attitudes towards ambiguity. A preference for betting on known probability events

rather than betting on unknown probability events is understood as ambiguity aversion.

In our theory, the DM perceives ambiguity about states of which she was originally

unaware. In other words, an expanding universe can be seen as a “source” of ambiguity.

As awareness grows, the DM might be unable to extend her subjective beliefs so that her

new beliefs cannot be represented by a unique probability measure. Therefore, in our theory

ambiguity aversion is displayed differently as a preference for betting on old, familiar states

rather than betting on the newly discovered states.5

The rest of the paper is organized as follows. Section 2 presents the basic setup and

illustrates how new discoveries expand the original state space. In Section 3, we discuss

the SEU and MEU representations of the original and new preferences, and provide our

definitions of consistent evolution of beliefs. In Section 4, we provide representation theorems

that characterize our two consistency notions. In Section 5, we develop a comparative notion

of ambiguity under growing awareness in the spirit of Ghirardato and Marinacci (2002). In

Section 6, we also derive a parametric version of our MEU representation. A brief overview

about the literature on choice under (un)awareness is provided in Section 7. All proofs are

collected in Appendix A. The online appendix discusses evolution of beliefs with a fixed level

of awareness.

2 State Space Construction

To explore how growing awareness affects preferences of a decision maker (henceforth, DM),

we adopt the formal setup developed in Karni and Vierø (2013).

5Indeed, Daniel Ellsberg describes ambiguity as a much broader phenomenon than a comparison between
known and unknown probabilities. In his words (Ellsberg (1961, p. 657)), ambiguity refers to “a quality
depending on the amount, type, reliability and ‘unanimity’ of information, and giving rise to one’s degree
of ‘confidence’ in an estimate of relative likelihoods.” In this paper, we introduce a specific scenario where
ambiguity might arise even if there are no objective probabilities.
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There are a nonempty, finite set F of feasible acts and a nonempty, finite set C of feasible

consequences. These two sets together determine a conceivable state space, S ≡ CF . The

elements of S represent all the possible resolutions of uncertainty. That is, a state s specifies

a unique consequence associated with each feasible act, thereby resolving all uncertainty.6

Once the set of conceivable states is fixed, the set of acts expands to include a set of

conceivable acts. That is, it is assumed that the DM can imagine acts whose outcomes are

lotteries with consequences in C as prizes, the so-called Anscombe-Aumann acts. Denote by

∆(C) the set of lotteries on C, i.e., functions p : C → [0, 1] such that
∑

c∈C p(c) = 1. The

set of conceivable acts F̂ contains all functions that map states to lotteries:

(1) F̂ ≡ {f : S → ∆(C)}.

A collection D ≡ {C,F, S, F̂} describes a choice problem under uncertainty, called the

original decision problem. The DM’s behavior is modeled via a preference relation on F̂ ,

denoted by <F̂ . As usual, �F̂ and ∼F̂ refers to the asymmetric and symmetric parts of <F̂ ,

respectively.

Our primary goal is to examine how the DM’s behavior might change in response to

growing awareness in the wake of new discoveries. In other words, we investigate how

discoveries of new acts or new consequences affect the DM’s original preference relation <F̂ .

In order to do that, the original decision problem needs to be reformulated to incorporate

new discoveries into a new choice problem.

We begin our analysis by describing how the original decision problem and the set of

conceivable states expand when a new act or a new consequence is discovered. For simplicity,

we focus on a single discovery throughout the paper.

The example below illustrates how the construction of the conceivable state space works.

Original model. Let us consider the choice problem discussed in the introduction. Let

C = {c1, c2} be the set of consequences and F = {f1, f2} be the set of feasible acts. The

corresponding conceivable state space S consists of four conceivable states.

xg yg xgyb xb yg xbyb

F \ S s1 s2 s3 s4

f1 c1 c1 c2 c2

f2 c1 c2 c1 c2

Table 1: Original state space

6This way to construct a state space was suggested by Schmeidler and Wakker (1987) and Karni and
Schmeidler (1991).
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In the language of our example, consequences c1 and c2 correspond to a success and a

failure, respectively. Acts f1 and f2 correspond to treatment A and treatment B, respectively.

Recall that f1 (treatment A) is successful only when the patient’s health factor x is good

and f2 (treatment B) is successful only when her health factor y is good.

In Table 1, xg and xb (likewise, yg and yb) represent the cases in which factor x (resp.,

y) is good and bad, respectively. State s1 corresponds to the case where x is good and y is

good, state s2 corresponds to the case where x is good and y is bad, and so on. Hence, both

treatments lead to a success in state s1 and to a failure in state s4. In state s3, f1 (treatment

A) will be a failure while f2 (treatment B) will be successful.

Discoveries of new acts. When the DM discovers a new act f̄ , the set of acts expands to

Ff̄ ≡ F ∪ {f̄} and so does the original state space.

Coming back to our example, suppose that the patient discovers f̄ , the new treatment C.

The original set of acts F expands to Ff̄ ≡ {f1, f2, f̄}. The expanded state space, Sf̄ ≡ CFf̄ ,

consists of eight (i.e., 23) conceivable states:

xgygzg xgybzg xbygzg xbybzg xgygzb xgybzb xbygzb xbybzb

Ff̄ \ Sf̄ s1
1 s1

2 s1
3 s1

4 s1
5 s1

6 s1
7 s1

8

f1 c1 c1 c2 c2 c1 c1 c2 c2

f2 c1 c2 c1 c2 c1 c2 c1 c2

f̄ c1 c1 c1 c1 c2 c2 c2 c2

Table 2: Extended state space: new act f̄

Since the outcome of the new treatment C depends on the health factor z, each state

will now determine whether each of the three relevant factors, x, y and z is good or bad. For

instance, state s1
1 corresponds to the case that all factors are good and state s1

5 corresponds

to the case that health factors x, y are good, but factor z is bad.

It should be noted that the discovery of a new feasible act changes the state space in

a specific way. The expanded state space Sf̄ represents a uniform refinement (filtration) of

the original state space S (see Karni (2015, p. 8)). To put it differently, each original state

s in S corresponds to an event Es in Sf̄ that refines s; i.e., Es = {s1 ∈ Sf̄ : ∃c ∈ C s.t. s1 =

(s, c)}. For example, consider state s1 = (c1, c1). This state corresponds to the new event

Es1 = {s1
1, s

1
5} that refines s1 by incorporating consequences c1 and c2 associated with the

new act f̄ , i.e., s1
1 = (c1, c1, c1) and s1

5 = (c1, c1, c2). In other words, state s1, originally

indicating that both factors x, y are good, expands now to two states, s1
1 and s1

5. In state

s1
1 all factors x, y and z are good while in state s1

5 only x, y are good and factor z is bad.

Likewise, the original state s2 = (c1, c2) corresponds to the new event Es2 = {s1
2, s

1
6}, and
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so on. The collection of events {Es}s∈S forms a partition of the expanded state space Sf̄ .

Therefore, Sf̄ = E(S) ≡ ∪s∈SEs when a new act is discovered.

Given the set of newly discovered contingencies, the set of conceivable acts is defined by

(2) F̂f̄ ≡ {f : Sf̄ → ∆(C)}.

As awareness grows, the patient’s original preference <F̂ has to be extended to a new

preference relation <F̂f̄
defined over the new set of conceivable acts F̂f̄ .

Discoveries of new consequences. When the DM discovers a new consequence c̄, the set

of consequences expands to Cc̄ ≡ C ∪ {c̄}. The new consequence needs to be incorporated

into the range of the feasible acts in F , thus the original set of feasible acts changes. Denote

by Fc̄ the set of feasible acts with extended range due to the discovery of c̄.

Consider the original decision problem with the state space S depicted in Table 1. Sup-

pose that the patient discovers that a health complication c̄ is possible. Since Cc̄ ≡ {c1, c2, c̄},
the new state space Sc̄ ≡ CFc̄

c̄ consists of nine (i.e., 32) states:

Fc̄ \ Sc̄ s1
1 s1

2 s1
3 s1

4 s1
5 s1

6 s1
7 s1

8 s1
9

f1 c1 c1 c2 c2 c1 c̄ c2 c̄ c̄
f2 c1 c2 c1 c2 c̄ c1 c̄ c2 c̄

Table 3: Extended state space: new consequence c̄

After discovering the new consequence c̄, the patient becomes aware of new states. In

states s1
6, s1

8 and s1
9 , f1 (treatment A) leads to the health complication. In states s1

5, s1
7 and

s1
9, f2 (treatment B) leads to the health complication.

When the new consequence c̄ is discovered, the original state space S = CF genuinely

expands. While states in CFc̄ ≡ {s1
1, s

1
2, s

1
3, s

1
4} correspond to the original states, the states

in Sc̄ \ CFc̄ are new. In other words, an event Es in Sc̄ that corresponds to an original

state s ∈ S is the state s itself; i.e., Es = {s} = {s1} for some s1 ∈ S1. For instance,

Es1 = {s1} = {s1
1} = {(c1, c1)}. The new event Sc̄ \ CFc̄ is the set of conceivable states in

which the health complication can happen. Therefore, Sc̄ ⊃ E(S) ≡ ∪s∈SEs when a new

consequence is discovered.

After discovering c̄, the patient’s original preference <F̂ has to be extended to a new

preference relation <F̂c̄
defined over the set of conceivable acts with an extended range, i.e.,

(3) F̂c̄ ≡
{
f : Sc̄ → ∆(Cc̄)

}
.
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The primary goal of this paper is to formally link preferences <F̂ and <F̂f̄
(resp., <F̂

and <F̂c̄
) in the wake of the DM’s growing awareness.

For any acts f, g ∈ F̂ and any event E ⊆ S, denote by f−E g the act in F̂ that returns

g(s) in state s ∈ S and f(s′) in state s′ ∈ S \ E. A state s ∈ S is said to be null if

f−s p ∼F̂ f−s q for all p, q ∈ ∆(C), otherwise s is nonnull. For notational simplicity, we will

assume that all states in S, Sf̄ , and Sc̄ are nonnull throughout the paper.7

3 Preferences and Consistency Notions

In this section, we illustrate our main idea of how new discoveries affect the DM’s preferences.

Although the state space expansion depends on whether the discovery is an act or con-

sequence, we provide unified notations, definitions, and characterization theorems that work

for both cases. We denote by F a family of sets of conceivable acts corresponding to increas-

ing levels of awareness. As reference to the original decision problem D, we fix F̂ ∈ F and

call F̂ the initial set of conceivable acts (i.e., the set of acts before a new discovery is made).

The DM’s initial preference relation on F̂ is denoted by <F̂ . When a new act or a new con-

sequence is discovered, the original decision problem expands and the preference relation <F̂

has to be extended to a larger domain. We denote by <F̂1
the extended preference relation

on a set of acts F̂1 in an extended decision problem D1 ≡ {C1, F1, S1, F̂1}. When a new act

f̄ is discovered, C1 ≡ C, F1 ≡ Ff̄ = F ∪ {f̄}, S1 ≡ Sf̄ = CFf̄ , and the extended preference

relation is defined on the expanded set of conceivable acts, i.e., <F̂1
≡<F̂f̄

. Likewise, when

a new consequence c̄ is discovered, C1 ≡ Cc̄ = C ∪ {c̄}, F1 ≡ Fc̄, S1 ≡ Sc̄ = (Cc̄)
Fc̄ , and

the extended preference relation is defined on the set of conceivable acts with an extended

range, i.e., <F̂1
≡<F̂c̄

.

As awareness grows, the representation of the DM’s preferences might change fundamen-

tally. To capture the idea of changing preferences formally, it will be taken for granted that

the initial preference is of the subjective expected utility form.

Definition 1 (Initial Preference). The initial preference relation <F̂ on F̂ is said to

admit a subjective expected utility (SEU) representation if there exist a probability measure

7Allowing for null states does not change our results. In fact, in the online appendix we consider a case
where a DM discovers that some links between acts and consequences become feasible whereas other links
become infeasible. Therefore, in this case, we explicitly study how the DM’s beliefs change when a nonnull
state becomes a null state and vice versa. Moreover, we discuss how a MEU preference consistently evolves
to another MEU preference after a discovery of new links. Therefore, the online appendix also illustrates
that our analysis can be extended to three periods in which the MEU preference in the third period inherits
properties of the MEU preference in the second period.
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µ ∈ ∆(S) and an expected utility functional U :∆(C)→ R such that for any f ∈ F̂ ,

(4) V SEU(f) =
∑
s∈S

U(f(s))µ(s).

However, a DM who behaves as a SEU maximizer might become ambiguity averse af-

ter new discoveries. To accommodate ambiguity under growing awareness, the extended

preference relation takes the familiar maxmin expected utility (MEU) form of Gilboa and

Schmeidler (1989).

Definition 2 (Extended Preference). The extended preference <F̂1
on F̂1 is said to

admit a maxmin expected utility (MEU) representation if there exist a nonempty, convex,

and compact set of probability measures Π1 ⊆ ∆(S) and an expected utility functional

U1 :∆(C1)→ R such that for any f ∈ F̂1,

(5) V MEU(f) = min
π∈Π1

∑
s1∈S1

U1(f(s1))π(s1).

Instead of a unique probability measure, the DM’s beliefs over the expanded state space

are represented by a set of priors. A DM whose preferences are governed by the MEU

functional in Equation (5) is said to be ambiguity averse. In contrast, when the min-operator

is replaced by a max-operator, a DM is said to be ambiguity loving.8

Our goal is twofold. First, we want to behaviorally underpin the representations (4) and

(5). Second, we will connect the initial preference <F̂ and the extended preference <F̂1
via

axioms characterizing how the DM’s beliefs and tastes evolve as awareness grows.

Notice that both preference relations <F̂ and <F̂1
are fully characterized by tuples (µ, U)

and (Π1, U1) from the respective representations (4) and (5). Therefore, to link the initial and

extended preference, we will relate (µ, U) and (Π1, U1). In order to make sharp conclusions

about how the initial preferences evolve in response to growing awareness, we will impose

two consistency conditions between µ and Π1.

Our first consistency notion requires that the extended MEU preference inherits unambi-

guity property of the initial SEU preference across the original states. We denote by
{
Es
}
s∈S

the family of events in the extended state space S1, each Es corresponding to an original state

s in S. The first consistency, called Unambiguity Consistency, requires that each event Es

is revealed to be unambiguous by the extended preference relation <F̂1
. Following Nehring

(1999) and Ghirardato et al. (2004), an event Es is unambiguous if each probability measure

in Π1 assigns the same value to Es; i.e., π(Es) = π′(Es) for all π, π′ ∈ Π1.

8The results of this paper also hold when the DM is ambiguity loving.
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Our first consistency notion is formalized as follows.

Definition 3 (Unambiguity Consistency). Let <F̂ be a SEU preference relation on F̂

with (µ, U) and <F̂1
be a MEU preference relation on F̂1 with (Π1, U1). Then, <F̂1

is said

to be an unambiguity consistent extension of <F̂ to F̂1, if each event Es that corresponds to

the original states is unambiguous according to <F̂1
, i.e., for all π, π′ ∈ Π1 and s ∈ S,

(6) π(Es) = π′(Es).

Unambiguity Consistency provides a novel view on ambiguity. In particular, ambiguity

appears since the DM treats new and old states differently.

Unambiguity Consistency implies that old acts are unambiguous. In the context of

our example, Unambiguity Consistency implies that the evaluation of the old treatment

A is independent of another new treatment D when evaluating treatment C, which is a

combination of A and D. However, under Unambiguity Consistency, the DM’s old belief µ

on S and her new belief Π1 on {Es
}
s∈S to be unrelated. Likewise, the DM’s risk preferences,

U and U1, may change as awareness grows.

Our second consistency notion, called Likelihood Consistency, directly connects µ and

Π1 by requiring that the DM’s new beliefs Π1 preserve the relative likelihoods of the old

belief µ. This consistency notion is formalized below.

Definition 4 (Likelihood Consistency). Let <F̂ be a SEU preference relation on F̂ with

(µ, U) and <F̂1
be a MEU preference relation on F̂1 with (Π1, U1). Then, <F̂1

is said to be

a likelihood consistent extension of <F̂ to F̂1, if the new beliefs in Π1 preserve the relative

likelihoods of µ on S; i.e., for all s, s′ ∈ S and π ∈ Π1:

(7)
µ(s)

µ(s′)
=
π
(
Es
)

π
(
Es′
) .

Likelihood Consistency implies that the rankings over old acts are preserved. In the

context of discovering new acts, Likelihood Consistency implies Unambiguity Consistency

because of
∑

s∈S π
(
Es
)

= 1. However, in the context of discovering new consequences, the

state space genuinely expands and
∑

s∈S π
(
Es
)
< 1. Therefore, the two consistency notions

are independent in this context.

3.1 Illustrations and Behavioral Implications

To illustrate our consistency notions, consider again the patient example. When confronted

with the original model (see Table 1), suppose she believes that each state is equally likely.

11



That is, her belief µ on S is given by

(8) µ(s1) = µ(s2) = µ(s3) = µ(s4) =
1

4
.

Thus the patient with a SEU preference <F̂ is indifferent between the two treatments (f1

and f2) and any mixture thereof (i.e., αf1 + (1− α)f2 ∼F̂ f1 ∼F̂ f2).

Consider now the patient’s extended preference <F̂1
after the new treatment f̄ is discov-

ered. Recall, in this case, each original state s ∈ S admits a finer description depending on

whether her factor z is good or bad. That is, S1 ≡ Sf̄ (see Table 2).

The patient might not be able to “split” her initial belief µ(si) across the new states s1
i

and s1
i+4 with i = 1, . . . , 4. For example, she might consider the following set of priors:

(9) Π1 =

{
π ∈ ∆(S1) :

π(s1
i ) + π(s1

i+4) = π(Esi) = β
2

for i = 1, 2;

π(s1
i ) + π(s1

i+4) = π(Esi) = (1− β)1
2

for i = 3, 4,

where β ∈ [0, 1
2
]. Notice that each event Esi = {s1

i , s
1
i+4} in S1 that corresponds to the

original state si ∈ S is unambiguous while each newly discovered state s1
i ∈ S1 is ambiguous.

Thus, for any β ∈ [0, 1
2
], the patient’s extended preference <F̂1

preserves unambiguity of the

initial preference <F̂ .

When β = 1
2
, the extended MEU preference is likelihood consistent since the set of

priors maintains the relative likelihoods of µ as µ(si)/µ(sj) = 1
4
/1

4
= π(Esi)/π(Esj) =

1
4
/1

4
. Moreover, the ambiguity averse patient is still indifferent between f1, f2, and any of

their mixtures. However, she strictly prefers either of the standard treatments to the new

treatment f3 (i.e., αf1 + (1 − α)f2 ∼F̂1
f1 ∼F̂1

f2 �F̂1
f3). As remarked before, Likelihood

Consistency implies Unambiguity Consistency.

Consider now the case in which the new consequence c̄ is discovered. See Table 3. Since

the states s1
5 through s1

9 are newly discovered, the patient might not be able to form a

unique prior over S1. Instead, she might consider a set of priors Π1. For instance, consider

the following set.

(10) Π1 =
{
π ∈ ∆(S1) : π(s1

i ) =
γ

16
and γ ∈ [1, γ] for all i = 1, . . . , 4

}
.

When new consequences are discovered, Likelihood Consistency and Unambiguity Con-

sistency are independent. For example, when γ = 1, the extended preference with respect to

Π1 reveals that the original states s1
1 through s1

4 are unambiguous while the newly discovered

states s1
5, s

1
6, s

1
7, s

1
8 and s1

9 are ambiguous. However, when γ = 2, the original states s1
1, s

1
2, s

1
3,

and s1
4 are ambiguous; i.e., Unambiguity Consistency is violated. Nevertheless, Π1 still

12



preserves the relative likelihoods of µ since µ(si)/µ(sj) = 1
4
/1

4
= π(Esi)/π(Esj) = γ

16
/ γ

16
.9

Moreover, the patient’s preference has different behavioral implications compared to the

case where a new act is discovered. Specifically, the patient, who is still indifferent be-

tween old treatment f1 and f2, strictly prefers any mixture of them over each of f1 and f2

alone. In other words, the patient reveals ambiguity aversion in the standard sense (i.e.,

αf1 + (1− α)f2 �F̂1
f1 ∼F̂1

f2).

To sum up, ambiguity arises differently depending on whether a new act or consequence

is discovered. When new acts are discovered, new acts are ambiguous, while when new con-

sequences are discovered, old acts are ambiguous. However, regardless of what is discovered,

(i) Unambiguity Consistency implies that new states are ambiguous while old states are

unambiguous, and (ii) Likelihood Consistency implies that the rankings over old acts are

preserved, f1 ∼F̂ f2 and f1 ∼F̂1
f2.

4 Behavioral Foundations

In this section, we axiomatically characterize Unambiguity and Likelihood Consistency. Al-

though the discovery of new acts expands the original state space differently than the dis-

covery of new consequences, our results are unified in a way that characterizing axioms are

the same in the both contexts.

4.1 Basic Preference Structure

We have the initial preference <F̂ from the initial decision problem D = (C,F, S, F̂ ) and the

extended preference <F̂1
from the expanded decision problem D1 = (C1, F1, S1, F̂1). We first

introduce the basic axioms on <F̂ and <F̂1
to obtain the representations (4) and (5).

For all f, g ∈ F̂ , and α ∈ [0, 1], αf + (1 − α)g ∈ F̂ is the act h ∈ F̂ defined by

h(s) = αf(s) + (1− α)g(s) for any s ∈ S. Then, F̂ is a convex subset in a linear space.

First, we assume that both <F̂ and <F̂1
satisfy the following basic axioms:

(A.1) (Weak order) For all F̂ ∈ F , the preference relation <F̂ is transitive and complete.

(A.2) (Archimedean) For all F̂ ∈ F and f, g, h ∈ F̂ , if f �F̂ g and g �F̂ h, then there exist

α, β ∈ (0, 1) such that αf + (1− α)h �F̂ g and g �F̂ βf + (1− β)h.

(A.3) (Monotonicity) For all F̂ ∈ F and f, g ∈ F̂ , if f(s) <F̂ g(s) for all s ∈ CF , then

f <F̂ g.

9Similar to (9), it is not difficult to construct an example in which s11, s
1
2, s

1
3, and s14 are unambiguous,

but Π1 does not preserve the relative likelihoods of µ.
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(A.4) (Nondegeneracy) For all F̂ ∈ F , there are f, g ∈ F̂ such that f �F̂ g.

To capture our idea that the DM’s behavior might change fundamentally as awareness

grows, we allow for <F̂ and <F̂1
to belong to different families of preferences. In particular,

we assume that the initial preference relation <F̂ satisfies the Independence Axiom:

(A.5) (Independence) For all f, g, h ∈ F̂ , and α ∈ (0, 1], f <F̂ g if and only if αf + (1 −
α)h <F̂ αg + (1− α)h.

That is, the initial preference relation <F̂ is assumed to admit the SEU representation (4)

with respect to a unique probability distribution µ on S and an expected utility functional

U : ∆(C)→ R (e.g., see Anscombe and Aumann, 1963).

So far, we only request that <F̂1
satisfies axioms (A.1) through (A.4). Therefore, the

extended preference <F̂1
might violate the Independence Axiom allowing for ambiguity.

4.2 MEU and Unambiguity Consistency

In this subsection, we obtain the MEU representation of the extended preference <F̂1
that

is an unambiguity consistent extension of the initial SEU preference <F̂ .

We introduce an axiom, called Negative Unambiguity Independence (henceforth, NUI).

Roughly speaking, NUI specifies how the new and old acts are evaluated by the extended

preference <F̂1
. The axiom has two parts. The first part states that if a new act f is weakly

preferred to a lottery q, then mixing the act with another act g is at least as good as mixing

the lottery with the new act g. The second part directly connects the new acts with the old,

binary acts (called bets). Specifically, it requires that bets on the events that correspond to

original states cannot be used to hedge against ambiguity of the new acts.10

Recall that, for each initial state s ∈ S, Es denotes the event in S1 which corresponds to

s ∈ S.11 A bet on Es is an act pEsr that yields a lottery p when Es obtains and q otherwise.

We can now state NUI formally.

(A.6) (Negative Unambiguity Independence (NUI)) For all f, g ∈ F̂1, q ∈ ∆(C1) and

α ∈ [0, 1],

if f <F̂1
q, then αf + (1− α)g <F̂1

αq + (1− α)g,

10In the context of the patient example, the second part of our axiom can be stated in the following way:
the evaluation of the old treatment A is independent of D when evaluating the new treatment C, which is
a combination of A and another new treatment D.

11When a new act is discovered, Es is the set of all new states that are obtained from s by extending it
by a consequence c in C. Formally, Es = {s1 ∈ S1 : ∃c ∈ C s.t. s1 = (s, c)}. When a new consequence is
discovered, Es is the original state itself, i.e., Es = {s} = {s1} for some s1 ∈ S1.
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and when g = pEsr for some s ∈ S and p, r ∈ ∆(C1),

if f ∼F̂1
q, then αf + (1− α)g ∼F̂1

αq + (1− α)g.

The spirit of our axiom is reminiscent of Negative Certainty Independence axiom intro-

duced by Dillenberger (2010) and used by Cerreia-Vioglio et al. (2015) to characterize the

Cautious Expected Utility theory in the context of choice under risk.12 However, in our

setup, NUI has different behavioral implications since we allow for ambiguity.

In the context of growing awareness, NUI has two behavioral consequences: First, the ax-

iom guarantees that the extended preference relation admits a MEU representation. Second,

NUI implies that all the events that correspond to the original states are unambiguous.

We can now formalize our main representation theorem.

Theorem 1. Let <F̂ by an initial preference from D = (C,F, S, F̂ ) and <F̂1
be an extended

preference from D1 = (C1, F1, S1, F̂1). Then, the following two statements are equivalent:

(i) <F̂ satisfies axioms (A.1)-(A.5), <F̂1
satisfies axioms (A.1)-(A.4), and NUI.

(ii) There exist a non-constant and affine function U : ∆(C) → R, and a probability

measure µ ∈ ∆(S), such that for all f, g ∈ F̂ :

f <F̂ g if an only if
∑
s∈S

U
(
f(s)

)
µ(s) >

∑
s∈S

U
(
g(s)

)
µ(s);

and there exist a non-constant and affine function U1 : ∆(C1) → R, and a nonempty,

convex and compact set of probability measures Π1 ⊆ ∆(S1), such that for all f, g,∈ F̂1:

f <F̂1
g if an only if min

π∈Π1

∑
s1∈S1

U1

(
f(s1)

)
π(s1) > min

π∈Π1

∑
s1∈S1

U1

(
g(s1)

)
π(s1).

Moreover, U and U1 are unique up to a positive linear transformation, µ and Π1 are

unique, and for every s ∈ S, the corresponding event Es ⊂ S1 is unambiguous, i.e.,

(11) π
(
Es
)

= π̃
(
Es
)

for all π, π̃ ∈ Π1.

12Riella (2015) also uses the Negative Certainty Independence axiom in the context of choice under un-
certainty. In particular, he extends the main result of Cerreia-Vioglio et al. (2015) and obtains a single-prior
expected multiple-utility representation for incomplete preferences. The idea behind NUI is also similar to
the Caution axiom of Gilboa et al. (2010). In their setup, the Caution axiom connects two preferences, called
objective and subjective rationality relations. The former relation admits a MEU representation while the
latter relation admits a representation à la Bewley (2002).
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Theorem 1 characterizes the SEU and MEU representations of <F̂ and <F̂1
and si-

multaneously establishes that the extended preference <F̂1
preserves unambiguity of <F̂ as

awareness grows.

Remark 1. Unambiguity Consistency has a stronger behavioral implication in the context

of discovering new consequences. In particular, when a new consequence c̄ is discovered, the

event E(S) = ∪s∈SEs in S1 corresponds to the original state space S whereas S1 \ E(S) is

the set of newly discovered states. In this context, the extended MEU preference admits an

additive decomposition across the unambiguous event E(S) and its complement S1 \ E(S).

This observation is formally stated in the following corollary.

Corollary 1. Suppose that C1 = C∪{c̄} and F1 = Fc̄. Let <F̂ be a SEU preference and <F̂1

be a MEU preference with (Π1, U1) as in Theorem 1. Then, there are δ ∈ (0, 1), µ̃ ∈ ∆(S),

and a nonempty, convex and compact set Π̃ ⊂ ∆(S1\E(S)) such that for any f ∈ F̂1,

min
π∈Π1

∑
s1∈S1

U1

(
f(s1)

)
π(s1) = δ

(∑
s∈S

µ̃(s)U1

(
f(Es)

))
+ (1− δ)

(
min
π̃∈Π̃

∑
s1∈S1\E(S)

U1

(
f(s1)

)
π̃(s1)

)
.

Under Unambiguity Consistency, the DM who discovers a new consequence shifts (1−δ)
of the original probability mass to the set of newly discovered states, S1\E(S). In other

words, (1−δ) is the subjective probability that one of the newly discovered states will occur.

However, the DM might not know how to “split” the probability mass (1 − δ) across the

newly discovered states in S1 \E(S) and thus she may perceive the new states as ambiguous.

However, when new acts are discovered, Unambiguity Consistency does not imply that

<F̂1
is additively separable across the unambiguous events {Es}s∈S.13

Notice that under Unambiguity Consistency, the DM solely inherits unambiguity prop-

erty of her original beliefs in response to growing awareness. The old and new beliefs might

be unrelated. To link µ and Π1 or U and U1, additional axioms are required.

To ensure that risk attitudes are not affected by awareness (i.e., U = U1 on ∆(C)), we

impose an axiom called Invariant Risk Preferences.14 It requires that the DM’s rankings of

lotteries remain the same at any awareness level. Formally,

(A.7) (Invariant Risk Preferences) For all p, q ∈ ∆(C), p <F̂ q if and only if p <F̂1
q.

By requesting that <F̂ and <F̂1
jointly satisfy (A.7), we get the following lemma.

13When new acts are discovered, the additive decomposition of the extended MEU preference is obtained
in Theorem 4 under a stronger version of NUI.

14The axiom was introduced by Karni and Vierø (2013) in their axiomatization of reverse Bayesianism.
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Lemma 1. Let <F̂ be a SEU preference with (µ, U) and <F̂1
be a MEU preference with

(Π1, U1). If <F̂ and <F̂1
jointly satisfy Invariant Risk Preferences, then there are α, β ∈ R

with α > 0 such that U(p) = αU1(p) + β for any p ∈ ∆(C).

As a consequence, when <F̂ and <F̂1
jointly satisfy Invariant Risk Preferences, in ad-

dition to the axioms of Theorem 1, then the extended MEU preference <F̂1
preserves both

unambiguity and the risk attitude of the initial SEU preference <F̂ .15

4.3 MEU and Likelihood Consistency

In this subsection, we behaviorally characterize Likelihood Consistency. In order to do that,

we impose another axiom called Binary Awareness Consistency (BAC) in addition to a weak

version of NUI. Recall that, for any f, g ∈ F̂ and E ⊆ S, f−E g is the act in F̂ that returns

g(s) in state s ∈ S and f(s′) in state s′ ∈ S \E. BAC directly connects the initial preference

<F̂ and the extended preference <F̂1
in the following way.

(A.8) (Binary Awareness Consistency (BAC)) For all p, p′, q, q′, r ∈ ∆(C) and all s ∈ S,

(p−s q) <F̂ (p′−s q
′) if and only if

(
r−E(S)(p−Es q)

)
<F̂1

(
r−E(S)(p

′
−Es q

′)
)
.

Roughly speaking, BAC requires that rankings over the old binary acts (p−s q) and

(p′−s q
′) are not affected by growing awareness. Since E(S) = S1 in the context of discovering

new acts,
(
r−E(S)(p−Es q)

)
is a “projection” of the old act (p−s q) on F̂1. When the new

discovery is a consequence, BAC is also reminiscent of the Sure-Thing Principle constrained

to binary acts. We also weaken NUI in the following way.

(A.9) (Weak Negative Unambiguity Independence (WNUI)) For all f, g ∈ F̂1, q ∈
∆(C1) and α ∈ [0, 1],

if f <F̂1
q, then αf + (1− α)g <F̂1

αq + (1− α)g,

and when g ∈ ∆(C1),

if f ∼F̂1
q, then αf + (1− α)g ∼F̂1

αq + (1− α)g.

Our second representation result is stated below.

15Recently, Ma and Schipper (2017) run an experiment in which subjects make risky choices under different
levels of awareness. They found no evidence for varying risk attitudes across different levels of awareness.
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Theorem 2. Let <F̂ be an initial preference from D = (C,F, S, F̂ ) and <F̂1
be an extended

preference from D1 = (C1, F1, S1, F̂1). Then, the following two statements are equivalent:

(i) <F̂ satisfies axioms (A.1)-(A.5), <F̂1
satisfies axioms (A.1)-(A.4), and WNUI, and

<F̂ and <F̂1
jointly satisfy BAC.

(ii) There exist a non-constant and affine function U : ∆(C1) → R, and a probability

measure µ ∈ ∆(S), such that for all f, g ∈ F̂ :

f <F̂ g if and only if
∑
s∈S

U
(
f(s)

)
µ(s) >

∑
s∈S

U
(
g(s)

)
µ(s);

and there exists a nonempty, convex and compact set of probability measures Π1 ⊆
∆(S1), such that for all f, g,∈ F̂1:

f <F̂1
g if and only if min

π∈Π1

∑
s1∈S1

U
(
f(s1)

)
π(s1) > min

π∈Π1

∑
s1∈S1

U
(
g(s1)

)
π(s1).

Moreover, U is unique up to a positive linear transformation, µ and Π1 are unique,

and <F̂1
is a likelihood consistent extension of <F̂ , i.e., for all s, s′ ∈ S and all π ∈ Π1,

(12)
µ(s)

µ(s′)
=
π
(
Es
)

π
(
Es′
) .

Theorem 2 characterizes the representations (4) and (5) with U = U1 on ∆(C), and

simultaneously establishes that <F̂1
is a likelihood consistent extension of <F̂ .

Remark 2. Theorem 2 shows that BAC implies Invariant Risk Preferences. This is because

BAC requires that the rankings over old acts including constant acts are preserved. More-

over, if all the newly discovered states are unambiguous, Theorem 2 provides an alternative

foundation of reverse Bayesianism of Karni and Vierø (2013, Theorems 1-2).16

Interestingly, depending on whether the discovery is an act or consequence, Theorem 2

might have different implications about Unambiguity Consistency. In the context of discov-

ering new acts, Theorem 2 also characterizes Unambiguity Consistency. Formally,

16Karni and Vierø (2013) require two axioms in addition to SEU axioms; Invariant Risk Preferences
and Projection Consistency in the context of discovering acts and Awareness Consistency in the context of
discovering consequences. Our BAC is weaker than both Awareness Consistency and Projection Consistency.
In the online appendix, we discuss implications of Projection Consistency and Awareness Consistency under
MEU axioms.

18



Corollary 2. Suppose that C1 = C and F1 = F ∪ {f̄}. Let <F̂ be a SEU preference

with (µ, U) and <F̂1
be a MEU preference with (Π1, U) as in Theorem 2. Then <F̂1

is an

unambiguity and likelihood consistent extension of <F̂ , i.e., for all s ∈ S and all π, π̃ ∈ Π1,

(13) µ(s) = π
(
Es
)

= π̃
(
Es
)
.

Therefore, in the context of discovering new acts, the extended MEU preference inherits

all the properties of the initial SEU preferences, including the DM’s old beliefs as well as

her old risk attitude. For this reason, Theorem 2 establishes a behavioral foundation of the

theory of generalized reverse Bayesianism in the family of MEU preferences.

However, when the discovery is a consequence, the extended preference <F̂1
in Theorem

2 is not necessarily unambiguity consistent. The following corollary of Theorem 2 shows that

events in {Es}s∈S (even E(S) = ∪s∈S) are possibly ambiguous.

Corollary 3. Suppose that C1 = C ∪ {c̄} and F1 = Fc̄. Let <F̂ be a SEU preference with

(µ, U) and <F̂1
be a MEU preference with (Π1, U) as in Theorem 2. Then there is a set

[δ, δ]× Π̃ ⊂ [0, 1]×∆(S1 \ S) such that for any f ∈ F̂1,

min
π∈Π1

∑
s1∈S1

U
(
f(s1)

)
π(s1) = min

(δ,π̃)∈[δ,δ]×Π̃

{
δ
∑
s∈S

µ(s)U
(
f(s)

)
+ (1− δ)

∑
s1∈S1\S

U
(
f(s1)

)
π̃(s1)

}
.

We conclude this section by summarizing our characterization results in Table 4. Un-

ambiguity Consistency is characterized in Theorem 1 by NUI. Likelihood Consistency is

characterized in Theorem 2 by WNUI and BAC. Since Likelihood Consistency implies Un-

ambiguity Consistency when a new act is discovered, Theorem 2 also characterizes both

consistency notions. Finally, Theorems 1 and 2 characterize Unambiguity and Likelihood

Consistency by NUI and BAC in the context of discovering new consequences.

new act new consequence

Unambiguity Consistency Theorem 1 (NUI) Theorem 1 (NUI)

Likelihood Consistency Theorem 2 (WNUI+BAC) Theorem 2 (WNUI+BAC)

Unambiguity and Likelihood Theorem 2 (WNUI+BAC) Theorems 1, 2 (NUI+BAC)

Table 4: Summary of Characterization Results
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5 Comparative Ambiguity under Growing Awareness

In this section, we explore how two distinct discoveries might affect ambiguity. In other

words, we establish a comparative notion of ambiguity allowing an outside observer (a re-

searcher or a social planner) to elicit which discovery induces “more” ambiguity aversion.

For example, think of a firm that plans to introduce several new products to the market.

Since new discoveries may lead to ambiguity aversion among potential customers, and this

may lower their demand, the firm wants to know which product causes less ambiguity.

Our goal is to extend the comparative notion of ambiguity of Ghirardato and Marinacci

(2002) to decision problems under growing awareness. The idea is to compare two preference

relations in the following sense: “If a DM prefers a constant act to an ambiguous one, a more

ambiguity averse one will do the same.” However, in Ghirardato and Marinacci (2002), each

preference is associated with the same decision problem (i.e., the same set of acts). In our

setup, we compare two extended preferences, each corresponding to a new, distinct discovery.

The main challenge is that two different discoveries generate distinct expansions of the

original decision problem. To make the comparative notion applicable to our setup, few

modifications are necessary. Discoveries of distinct acts or consequences require two separate

analyses. Since the two analyses are similar, we focus here on discoveries of two distinct acts.

Let us consider two expanded decision problems D1 and D2 be generated by discoveries

of two different acts, i.e., F1 = F ∪{f̄} and F2 = F ∪{f ∗} such that f̄ 6= f ∗. Suppose that a

researcher wants to know which discovery induces more ambiguity aversion. Below, we first

illustrate that the standard method of ranking sets of priors with respect to set inclusion is

still intuitive in the context of growing awareness. Then we define a bijection that formally

connects the new state spaces S1 and S2 and the new sets of conceivable acts F̂1 and F̂2.

Set Inclusion: To illustrate the main idea, consider a DM facing the decision problem D1

with F1 = {f1, f2, f̄} and S1 depicted in Table 1. Let <F̂1
be her extended MEU preference

with (Π1, U) such that

(14) Π1 =
{
π ∈ ∆(S1) : π(s1

i , s
1
i+4) =

1

4
for all i = 1, . . . , 4

}
.

Suppose that there is another DM facing the decision problem D2 where F2 ≡ {f1, f2, f
∗}

and f ∗ is a newly discovered act such that f̄ 6= f ∗. The discovery of f ∗ induces the new

state space S2 ≡ CF2 as presented in Table 5. Let <F̂2
be his extended MEU preference with

(Π2, U) such that

(15) Π2 =
{
π ∈ ∆(S2) : π(s2

1) = π(s2
5) =

1

8
and π(s2

i , s
2
i+4) =

1

4
for all i = 2, 3, 4

}
.
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F2 \ S2 s2
1 s2

2 s2
3 s2

4 s2
5 s2

6 s2
7 s2

8

f1 c1 c1 c2 c2 c1 c1 c2 c2

f2 c1 c2 c1 c2 c1 c2 c1 c2

f ∗ c2 c2 c2 c2 c1 c1 c1 c1

Table 5: Extended state space: new act f ∗

Discoveries of f̄ and f ∗ induce two extended preferences, <F̂1
with (Π1, U) and <F̂2

with

(Π2, U). Our goal is to show that a comparison of the sets of priors Π1 and Π2 with respect

to their sets inclusion determines whether <F̂1
is more (or less) ambiguity averse than <F̂2

.

From Equation (15), we can conclude that each state in Es1 = {s2
1, s

2
5} is unambiguous

with probability 1
8

for the DM with <F̂2
. However, by Equation (14), for the DM with <F̂1

,

both states in Es1 = {s1
1, s

1
5} are ambiguous with probabilities ranging from 0 to 1

4
. Moreover,

both DMs have the same beliefs on all states in events Es2 through Es4 . Intuitively, the

researcher can infer that <F̂1
is more ambiguity averse than <F̂2

. In fact, although Π1 and

Π2 belong to different state spaces, the researcher can compare Π1 and Π2 with respect to

set inclusion. More formally, in order to compare Π1 and Π2 by set inclusion, we need to

show that S1 and S2 are “semantically” equivalent.

Semantic Equivalence: Notice that discoveries of f̄ and f ∗ expand the original state space

S differently. However, since C1 = C2 = {c1, c2}, the expanded state spaces S1 ≡ CF1 and

S2 ≡ CF2 are “semantically” equivalent. Consider events {s1
1, s

1
5} in S1 and {s2

1, s
2
5} in S2.

Both events correspond to the original state s1 ∈ S. Moreover, they contain exactly the

same states since s1
1 = (c1, c1, c1) = s2

5 and s1
5 = (c1, c1, c2) = s2

1. In other words, state s1
1 is

“semantically” equivalent to state s2
5. Likewise, s1

5 is “semantically” equivalent to s2
1.

Recall, when a new act is discovered, each original state s is extended by adding a

consequence c ∈ C (i.e., (s, c)). One can thus identify each state s1 in S1 with a state s2 in

S2 such that both states s1 and s2 are generated by extending some original state s in S by

adding the same consequence c in C (i.e., s1 = s2 = (s, c)).

Formally, define a bijection ϕ : S1 → S2 such that ϕ(s1) = s2 ∈ S2 if and only if

s1 = s2 = (s, c) for some s ∈ S and c ∈ C. States s1 and ϕ(s1) = s2 are called semantically

equivalent. Notice that due to the construction of the extended state spaces S1 and S2, the

bijection ϕ is well-defined and unique.

Given the bijection ϕ, each act f in F̂1 can be associated with an act fϕ in F̂2 such

that fϕ ascribes the lotteries associated with f to the semantically equivalent states. More

specifically, if q is a lottery that act f returns in state s1 ∈ S1 (i.e., f(s1) = q), then also act

fϕ returns the lottery q in the semantically equivalent state ϕ(s1) (i.e., f(ϕ(s1)) = q). Thus,
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given the bijection ϕ, for each act f ∈ F̂1 there is a semantically equivalent act fϕ in F̂2.

Finally, we can define our comparative notion of ambiguity aversion under growing aware-

ness after discovering new but distinct acts.

Definition 5 (Comparative Ambiguity Aversion). Let <F̂1
be a preference relation on

F̂1 and <F̂2
be a preference relation on F̂2 where F1 = F ∪ {f̄} and F2 = F ∪ {f ∗}. Given a

bijection ϕ : S1 → S2, <F̂1
is said to be more ambiguity averse than <F̂2

if, for all lotteries

p, q ∈ ∆(C) and an act f ∈ F̂1, it is true that

(16) p <F̂2
q if and only if p <F̂1

q, and

(17) p <F̂2
f implies p <F̂1

fϕ and p �F̂2
f implies p �F̂1

fϕ.

Let Πϕ
1 be the set of priors in S2 that is semantically equivalent to Π1. That is, Πϕ

1 ≡
{π̃ ∈ ∆(S2) : ∃π ∈ Π1 s.t. π(s1) = π̃(ϕ(s1)) ∀s1 ∈ S1}. Now, our next result can be stated.

Theorem 3. Suppose that <F̂1
is a MEU extension of <F̂ to F̂1 with (Π1, U), and that <F̂2

is a MEU extension of <F̂ to F̂2 with (Π2, U) where F1 = F ∪{f̄} and F2 = F ∪{f ∗}. Then,

<F̂1
is more ambiguity averse than <F̂2

if and only if Π2 ⊆ Πϕ
1 .

Theorem 3 shows that the comparative notion of ambiguity can naturally be extended

choice problems with growing awareness. Since two different decision problems D1 and D2 –

generated by distinct discoveries – can be connected via semantically equivalent states and

acts, the comparative notion of ambiguity under growing awareness can be characterized in

a standard way by comparing the sets of priors Πϕ
1 and Π2 with respect to set inclusion.

6 Parametric Approach

In this section, we characterize a parametric version of our MEU representation that satisfies

Unambiguity Consistency and Likelihood Consistency. The suggested parametric MEU rep-

resentation makes our theory tractable for broad economic applications and empirical studies.

We also show that our parametric MEU model is particularly convenient for comparative

statics analysis.

6.1 Parametric MEU for Discoveries of New Acts

Consider a choice situation in which the DM discovers a new act f̄ . Under Unambiguity

Consistency and Likelihood Consistency, the extended MEU preference <F̂1
with respect to
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a set of priors Π1 inherits the old beliefs, i.e., µ(s) = π(Es) for each s ∈ S and π ∈ Π1.17

In the previous sections, we have argued that the DM perceives ambiguity because she does

not know how to “split” her old belief µ(s) across the newly discovered states of the event

Es. In this section, we suggest the following procedural way to “split” µ(s).

Suppose that the DM comes up with a probability measure ηs ∈ ∆(Es) on the new states

in Es. However, the DM might not be confident that ηs truthfully describes the likelihoods of

the newly discovered states. Therefore, the DM might “distort” ηs by a parameter αs ∈ [0, 1].

For a given αs ∈ [0, 1] and ηs ∈ ∆(Es), the DM forms her beliefs over Es defined as a convex

mixture between ηs and the set of all possible probability measures ∆(Es). That is,

(18) Π
(ηs, αs)
Es

= αs{ηs}+ (1− αs)∆(Es).

The parameter αs might be interpreted as the DM’s degree of confidence in ηs. When

αs = 1, the DM is confident that ηs accurately represents the likelihoods of the new states.

When αs = 0, she is not confident at all and her beliefs are represented by the set of all

priors ∆(Es). In this case, the DM is said be completely ignorant.

For example, in our patient example, when the patient is told by her doctor that the

probability that factor z is good is 0.7; i.e., ηs1 = (η(s1
1), η(s1

5)) = (0.7, 0.3) is a probability

measure over Es1 = {s1
1, s

1
5}. When her degree of confidence is α1 in Es1 ,

(19) Π
(η1, α1)
Es1

= α1 η1 + (1− α1) ∆(Es1) =
{(
π(s1

1), π(s1
5)
)

: π(s1
1) ∈ [

α1

2
, 1− α1

2
]
}
.

We allow the DM’s belief ηs on Es as well as her degree of confidence αs in ηs to vary

across the events in {Es}s∈S. In other words, different degrees of confidence αs might reflect

her perception that each original state s ∈ S is affected differently by the discovery of act

f̄ . For example, suppose that the patient also considers η4 = (0.7, 0.3) on Es4 . However, the

patient might be more cautious about factor z when she considers event Es4 , in which both

factors x, y are bad, as compared to event Es1 in which both factors x and y are good. As a

result, her degree of confidence α1 might be larger than α4.

To characterize our parametric MEU model, we need to strengthen NUI as follows.

(A.10) (Extreme Negative Unambiguity Independence (Extreme NUI)) For all f, g ∈
F̂1, q ∈ ∆(C1) and α ∈ [0, 1],

if f <F̂1
q, then αf + (1− α)g <F̂1

αq + (1− α)g,

and if for each s ∈ S, there is s1 ∈ Es such that f(s̃1) <F̂1
f(s1) and g(s̃1) <F̂1

g(s1)

17Recall, Es is the event corresponding to the old state s ∈ S (i.e., Es = {s1 ∈ S1 : ∃c ∈ C s.t. s1 = (s, c)}).
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for all s̃1 ∈ Es, then

f ∼F̂1
q implies αf + (1− α)g ∼F̂1

αq + (1− α)g.

Recall that NUI requires that bets g = pEsr cannot be used to hedge against ambiguity.

Notice that for any act f and a bet g = pEsr, f and g satisfy the following property in

Extreme NUI: for any s ∈ S, there exists s1 ∈ Es with f(s̃1) < f(s1), g(s̃1) < g(s1) for all

s̃1 ∈ Es. Therefore, Extreme NUI is stronger than NUI.

Under Extreme NUI, the extended MEU preference satisfies Unambiguity Consistency

and Likelihood Consistency. Moreover, the extended MEU representation admits an additive

decomposition across the events {Es}s∈S.

Theorem 4. Let <F̂ by an initial preference from D = (C,F, S, F̂ ) and <F̂1
be an extended

preference from D1 = (C1, F1, S1, F̂1). Suppose that F1 = F ∪ {f̄} and C1 = C. Then, the

following two statements are equivalent:

(i) <F̂ satisfies axioms (A.1)-(A.5), <F̂1
satisfies axioms (A.1)-(A.4), and Extreme NUI,

and <F̂ and <F̂1
jointly satisfy BAC.

(ii) There exist a non-constant and affine function U : ∆(C) → R, and a probability

measure µ ∈ ∆(S), such that for all f, g ∈ F̂ :

f <F̂ g ⇐⇒
∑
s∈S

U
(
f(s)

)
µ(s) >

∑
s∈S

U
(
g(s)

)
µ(s);

and there exists {(ηs, αs)}s∈S ∈
∏

s∈S (∆(Es)× [0, 1]) such that for all f, g,∈ F̂1,

f <F̂1
g if and only if

(20)
∑
s∈S

µ(s)
(

min
π∈Π

(ηs,αs)
Es

∑
s1∈Es

U
(
f(s1)

)
π(s1)

)
>
∑
s∈S

µ(s)
(

min
π∈Π

(ηs,αs)
Es

∑
s1∈Es

U
(
g(s1)

)
π(s1)

)
,

where

Π
(ηs, αs)
Es

= αs{ηs}+ (1− αs)∆(Es).

Consistent with Corollary 2, Theorem 4 (specially, Equation (20)) implies that <F̂1
is

an unambiguity and likelihood consistent extension of the original preference <F̂ . Moreover,

the DM’s new beliefs Π1 on the expanded state space S1 take the following form:

(21) Π1 = ×s∈S µ(s) Π
(ηs, αs)
Es

= ×s∈S
{
µ(s)αs{ηs}+ µ(s)(1− αs)∆(Es)

}
.
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Remark 3. The idea behind the second part of Extreme NUI is adopted from Eichberger

and Kelsey (1999). The authors characterize the concept of E-capacities. Since E-capacities

are convex, Choquet expected utility preferences with respect to E-capacities constitute a

special case of MEU preferences (see Schmeidler, 1989). Our parametric MEU model is more

general and derived by imposing different axioms in a different choice theoretic context.

Remark 4. The parametric model in Theorem 4 has an equivalent representation. It can be

shown that there exist a probability measure µ on {Es}s∈S, a probability measure η ∈ ∆(S1)

that agrees with µ, a collection of real numbers {αs ∈ [0, 1]}s∈S, and an expected utility

functional U : ∆(C)→ R such that every act f ∈ F̂1 is evaluated via the functional:

(22) V (f) =
∑
s∈S

[ ∑
s1∈Es

αs U
(
f(s1)

)
η(s1) + (1− αs)µ(Es)ms(f)

]
,

where ms(f) := min
{
U(f(s1)) : s1 ∈ Es

}
, the smallest expected utility of f on Es.

6.2 Comparative Statics

In this subsection, we apply our parametric MEU representation to derive a parametric

version of comparative ambiguity aversion.

In light of Theorem 4, the extended MEU preference <F̂1
is entirely characterized by(

U, {(ηs, αs)}s∈S
)
. Now suppose that there are two distinct discoveries, i.e., F1 = F ∪ {f̄}

and F2 = F ∪ {f ∗}. Then, the comparative statics across different sources of growing

awareness reduces to comparing the parameters {(η1
s , α

1
s)}s∈S and {(η2

s , α
2
s)}s∈S. Our next

result shows that comparing the respective degrees of confidence (α1
s)s∈S and (α2

s)s∈S is

essentially sufficient to establish which discovery, f̄ or f ∗, induces more ambiguity aversion.

Theorem 5. Suppose F1 = F ∪ {f̄} and F2 = F ∪ {f ∗}. Let <F̂1
be a (parametric)

MEU preference with (U, {(η1
s , α

1
s)}s∈S) and <F̂2

be a (parametric) MEU preference with

(U, {(η1
s , α

1
s)}s∈S). Then, <F̂1

is more ambiguity averse than <F̂2
if and only if

α2
s

α1
s

≥ max
s1∈Es

{
η1
s(s

1)

η2
s(ϕ(s1))

;
1− η1

s(s
1)

1− η2
s(ϕ(s1))

}
for all s ∈ S.

Theorem 5 has two immediate implications. First, if <F̂1
is more ambiguity averse than

<F̂2
, then α2

s ≥ α1
s for all s ∈ S. Second, if η1

s(s
1) = η2

s(ϕ(s1)) for any s ∈ S and s1 ∈ Es,
then <F̂1

is more ambiguity averse than <F̂2
if and only if α2

s ≥ α1
s for all s ∈ S.
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6.3 Parametric MEU for Discoveries of New Consequences

Let us conclude this section by briefly discussing a parametric MEU representation in the

context of discovering new consequences. Similar to Theorem 4, we can obtain the following

parametric representation by slightly modifying Extreme NUI: there exist δ, α ∈ [0, 1] and

η ∈ ∆
(
S1\E(S)

)
such that every act f ∈ F̂1 is evaluated via the functional:

V (f) = δ
(∑
s∈S

µ(s)U(f(Es))
)

+ (1− δ)
(

min
π∈Π(η, α)

∑
s1∈S1\E(S)

U
(
f(s1)

)
π(s1)

)
,

where

Π(η, α) = α {η}+ (1− α) ∆
(
S1\E(S)

)
and E(S) = ∪s∈SEs.

Note that <F̂1
is characterized by a tuple (δ, α, η). With this representation, we can derive a

parametric version of comparative ambiguity aversion. Similar to Theorem 5, we can show

that <F̂1
with (δ1, α1, η1) is more ambiguity averse than <F̂2

with (δ2, α2, η2) if and only if

δ1 = δ2 and
α2

α1
≥ max

s1∈S1\E(S)

{
η1(s1)

η2(ϕ(s1))
;

1− η1(s1)

1− η2(ϕ(s1))

}
.

7 Related Literature

In this section, we overview the related literature on choice under unawareness. Following

Schipper (2014a,b,c), “unawareness refers to lack of conception rather than lack of infor-

mation.” Under lack of information, the DM does not know which conceivable states occur.

However, under lack of conception, she cannot even conceive that there are other states.

There are two main approaches on modeling unawareness and growing awareness: the

preference-based approach and the epistemic approach. The goal of the preference-based

approach is to investigate behavioral implications of unawareness and growing awareness.

This approach has been taken by Karni and Vierø (2013, 2015, 2017), Hayashi (2012), and

Schipper (2013, 2014b). In this paper, we also follow the preference-based approach.18

Since Dekel et al. (1998), economists acknowledge that the standard state space approach

used for modeling private information – via a given state space with a partition – cannot

capture unawareness. To model unawareness, the state space approach has to be augmented

18The epistemic approach develops formal models of unawareness and studies epistemic properties of
unawareness. This approach has been taken by Fagin and Halpern (1988), Dekel et al. (1998), Modica and
Rustichini (1994, 1999), Modica and Rustichini (1994, 1999), Halpern (2001), Heifetz et al. (2008), Halpern
and Rêgo (2009, 2013), Heifetz et al. (2006, 2008), Li (2009), Galanis (2011), Heinsalu (2012), and Piermont
(2017) among others. For comprehensive surveys of the epistemic literature and applications of unawareness
models to economic theory and game theory, see Schipper (2014a,c).
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with a structure that accommodates an expansion of the original state space, referring to

growing awareness (e.g., in our setup, S expands to S1).

Heifetz et al. (2006, 2008) derive an elegant model of unawareness. Instead of one

state space, unawareness is accommodated via a lattice of disjoint state spaces. Each space

corresponds to one level of awareness. As awareness grows, the DM discovers a new state

space with a higher level of awareness. Our model adopts the state space expansion procedure

developed by Karni and Vierø (2013) which admits the lattice structure of unawareness. In

our setup, discoveries induce a lattice of state spaces ordered by increasing levels of awareness.

The preference-based approach explores how unawareness and growing awareness affect

choice under uncertainty. The first rigorous study in this context is Karni and Vierø (2013).

As mentioned in previous chapters, the authors develop the theory of reverse Bayesianism

that characterizes a belief-consistent evolution of SEU preferences under growing awareness

due to discoveries of new acts, new consequences, or links between them.

Karni and Vierø (2015) extend the theory of reverse Bayesianism to a family of proba-

bilistically sophisticated preferences in the sense of Machina and Schmeidler (1992, 1995).

Beliefs are still represented by a unique probability measure as in the SEU theory. However,

preferences do not need to be linear in probabilities allowing for violations of SEU in the

spirit of the Allais paradox.19

Hayashi (2012) studies the evolution of subjective probabilities from the point of view of

dynamic behavior. In his setup, the state space expansion follows a product structure. By

imposing a form of dynamic consistency between choices made before and after a state space

expansion, he characterizes a consistent evolution of beliefs in the sense that the marginal

distribution of the new belief induced over the old state space coincides with the old belief.

Schipper (2013) characterizes awareness-dependent SEU preferences. He shows that un-

awareness has a different behavioral meaning than the notion of null events. In particular, a

DM is unaware of an event if and only if the event and its complement are null events. How-

ever, Schipper’s (2013) theory is silent about how beliefs across different levels of awareness

may be related to each other.

Karni and Vierø (2017) provide another interesting extension of reverse Bayesianism to

choice situations in which a DM is aware of her unawareness. Roughly speaking, the DM

anticipates discovery of unknown consequences. She assigns utilities to these unspecified

consequences even if these consequences may not even exist. Under the assumption that

preferences take the SEU form, they characterize the principle of reverse Bayesianism in

19Notice that our approach goes beyond this paradigm. As awareness grows, the DM’s preferences take the
form of MEU preferences allowing for ambiguity-sensitive behavior. Ambiguity averse behavior is inconsistent
with probabilistically sophisticated preferences.
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this context. Vierø (2017) generalizes Karni and Vierø (2017) to more than two periods. In

particular, she axiomatically characterizes a recursive dynamic model of growing awareness

that nests discounted expected utility model and the model of Karni and Vierø (2017).

Grant et al. (2017) provide a model of learning under unawareness in which there is

incomplete information about the structure of the state space. A DM learns about the un-

known states through sequential experimentation. At the initial stage, the DM is completely

ignorant and her beliefs are represented by the set of all priors. The DM’s beliefs are suc-

cessively updated while discovering new acts and new consequences. Grant et al. (2017) and

our paper complement each other. We axiomatically characterize two consistency notions for

belief updating under growing awareness and ambiguity while Grant et al. (2017) study the

underlying stochastic process of learning and belief updating using the imprecise Dirichlet

process.

Other related studies focus on situations in which a DM has a limited understanding of

the conceivable states or feasible acts rather than being unaware of them. For example, Ahn

and Ergin (2010) propose a model of choice under uncertainty in which the DM’s beliefs

depend on descriptions of relevant contingencies. Descriptions are represented by partitions

of a fixed state space. In this context, they derive a partition-dependent expected utility

representation. Although their model accommodates situations in which the DM may receive

better descriptions through refining the original partition, there are two main differences.

First, in their model the refinement process is tacit while in our setup either the original

states are refined due to discoveries of new acts or the state space genuinely expands due to

discoveries of new consequences. Second, in their model the representation of preferences do

not change as the DM’s understanding improves. However, in our model, growing awareness

may lead the DM to change his behavior and to become ambiguity averse.

Lehrer and Teper (2014) study rules that extend restricted complete SEU preferences

(defined over a restricted set of acts) to unrestricted but incomplete preferences (defined over

the entire domain of acts). Under the so-called prudent rule, the extended preferences are in-

complete à la Bewley (2002).20 They also discuss how to complete the Bewley representation

and, under a modified prudent rule, the completion takes a restricted MEU form.

Similar to us, Lehrer and Teper allow preferences to change as the set of acts expands.

Besides that, there are several substantial differences from our approach. First, in their setup

the evolution of beliefs is not adressed while our theory characterizes consistent evolution of

beliefs and preferences. Second, in their setup the state space is intact. That is, although

the set of acts expands, it does not affect the description of the original states. Finally, the

20In the model of Bewley, an act f is preferred to another act g if and only if the expected utility of f is
greater than the expected utility of g under any probability distribution in the DM’s set of priors.
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set of priors takes a particular form (the form of complete ignorance) and the existence of

such set is not triggered by new discoveries per se. In particular, the set of priors is induced

by the initial preference relation; it is the set of probability measures that rationalize the

DM’s (original) preference over the restricted set of acts.

Alon (2015) derives a choice model in which the DM is aware of her unawareness, which is

represented by an imaginary, “unforeseen event,” extending the exogenous state space. While

evaluating an act, the imaginary event is associated with the worst consequence leading to

the worst-case expected utility representation, as a special case of the neo-additive capacity

model of Chateauneuf et al. (2007).

8 Conclusion

In this paper, we study how new discoveries cause fundamental changes in people’s behav-

ior. In particular, we study how SEU preferences evolve to MEU preferences due to growing

awareness. To discipline the effect of growing awareness, we introduce two consistency no-

tions that connect SEU and MEU beliefs and preferences, and we axiomatically characterize

them. Moreover, our framework provides a novel interpretation of ambiguity aversion, where

ambiguity arises because the DM treats old and new states differently.

We focus on the case where the DM with SEU preferences becomes ambiguity averse.

One might be interested in how MEU preferences evolve to different MEU preferences or

MEU preferences evolve to SEU preferences due to growing awareness. The former case

(i.e., MEU to MEU) is studied in the online appendix in the context of discovering links

between acts and consequences. We leave the latter case for future research.

A Appendix: Proofs

A.1 A Useful Lemma for Theorems 1-2

In Theorems 1-2, we need to show that <F̂1
admits a MEU representation. Since <F̂1

satisfies

(A.1)-(A.4), it is suffices to show that <F̂1
satisfies the following two key axioms of Gilboa

and Schmeidler (1989):

(A.11) (Certainty Independence) For all f, g ∈ F̂1, c ∈ C1, f <F̂1
g if and only if αf +

(1− α)c <F̂1
αg + (1− α)c for all α ∈ (0, 1].

(A.12) (Ambiguity Aversion) For all f, g ∈ F̂1, f <F̂1
g if and only if αf + (1− α)g <F̂1

g

for all α ∈ (0, 1].
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Lemma 2 shows that WNUI implies Certainty Independence and Ambiguity Aversion.

Lemma 2. If <F̂1
satisfies (A.1)-(A.4) and WNUI, then it satisfies (A.11)-(A.12).

Proof of Lemma 2. Suppose <F̂1
satisfies (A.1)-(A.4) and WNUI. First, we prove that

Certainty Independence is satisfied. Take any f, g ∈ F̂1, c ∈ C1, and α ∈ (0, 1] with f <F̂1
g.

Moreover, take a lottery q ∈ ∆(C1) such that g ∼F̂1
q. Weak NUI implies that for any

α ∈ [0, 1],

if f <F̂1
q, then αf + (1− α)c <F̂1

αq + (1− α)c

and

if g ∼F̂1
q, then αg + (1− α)c ∼F̂1

αq + (1− α)c.

Therefore, by Transitivity, f <F̂1
g implies αf + (1 − α)c <F̂1

αg + (1 − α)c. The opposite

direction of Certainty Independence is obvious.

Second, we will prove that Ambiguity Aversion is satisfied. Take any f, g ∈ F̂1 and

α ∈ (0, 1] with f <F̂1
g. Moreover, take a lottery q ∈ ∆(C1) such that g ∼F̂1

q. Weak NUI

implies that for any α ∈ [0, 1],

if f <F̂1
q, then αf + (1− α)g <F̂1

αq + (1− α)g.

By Certainty Independence, αg+(1−α)q ∼F̂1
αq+(1−α)q = q. Therefore, by Transitivity,

if f <F̂1
q, then αf + (1− α)g <F̂1

g. The opposite direction of Ambiguity Aversion is also

immediate. This completes the proof.

Since <F̂ satisfies axioms (A.1)-(A.5) and <F̂1
satisfies (A.1)-(A.4) and WNUI in The-

orems 1-2, from now we assume that <F̂ has a SEU representation and <F̂1
has a MEU

representation. That is, there exist a non-constant and affine function U : ∆(C) → R, and

a probability measure µ on S, such that for all f, g ∈ F̂ :

f <F̂ g ⇐⇒
∑
s∈S

U
(
f(s)

)
µ(s) >

∑
s∈S

U
(
g(s)

)
µ(s).

and there exist a non-constant and affine function U1 : ∆(C1) → R, a convex and compact

set of probability measures Π1 ⊆ ∆(S1), such that for all f, g,∈ F̂1:

f <F̂1
g ⇐⇒ min

π∈Π1

∑
s1∈S1

U1

(
f(s1)

)
π(s1) > min

π∈Π1

∑
s1∈S1

U1

(
g(s1)

)
π(s1).

The uniqueness of U , U1, µ, and Π1 are straightforward. Since the necessity parts of

Theorems 1-2 are straightforward, we only prove their sufficiency parts.
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A.2 Proof of Theorem 1

Suppose <F̂ satisfies axioms (A.1)-(A.5), <F̂1
satisfies axioms (A.1)-(A.4) and NUI. By the

discussion in Section A.1, suppose <F̂ has a SEU representation with (µ, U) and <F̂1
has a

SEU representation with (Π1, U1). Without loss of generality, let U1(b) = 1 and U1(w) = 0

where b and w are the best and worst consequences in C1, respectively.

Finally, we shall prove that <F̂1
is an unambiguity consistent extension of <F̂ to F̂1. Let

us fix s ∈ S. NUI implies that for all f, g ∈ F̂1 with g = pEsw for some p ∈ ∆(C1) and for

all q ∈ ∆(C1) and α ∈ [0, 1],

if f ∼F̂1
q, then αf + (1− α)g ∼F̂1

αq + (1− α)g.

In terms of the MEU representation (5) for <F̂1
, if

(23) min
π∈Π1

∑
s1∈S1

U1

(
f(s1)

)
π(s1) = U1(q), then

(24)

min
π∈Π1

∑
s1∈S1

(
αU1

(
f(s1)

)
+ (1− α)U1

(
g(s1)

))
π(s1) = αU1(q)+(1−α) min

π∈Π1

∑
s1∈S1

U1

(
g(s1)

)
π(s1).

Since g = pEsw, Equation (24) is equivalent to

min
π∈Π1

{
α
∑
s1∈S1

U1

(
f(s1)

)
π(s1) + (1− α) π(Es)U1(p)

}
= αU1(q) + (1− α) min

π∈Π1

{
π(Es)U1(p)

}
.

Therefore, by combining (23) and (24), we have that for any f ∈ F̂1, p, r ∈ ∆(C), and

α ∈ [0, 1],

(25) min
π∈Π1

{
α
∑
s1∈S1

U1

(
f(s1)

)
π(s1) + (1− α)π(Es)U1(p)

}

= α min
π∈Π1

{ ∑
s1∈S1

U1

(
f(s1)

)
π(s1)

}
+ (1− α) min

π∈Π1

{
π(Es)

}
U1(p).

Let us now assume that α = 1
2

and f = q1Esp for some q1 ∈ ∆(C1). Then (25) is

equivalent to

min
π∈Π1

{
π(Es)

}
U1(q1) + U1(p) = min

π∈Π1

{
π(Es)U1(q1) + (1− π(Es)U1(p))

}
+ min

π∈Π1

{
π(Es)

}
U1(p).
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Suppose that U1(p) > U1(q1). Then the above equality is equivalent to

(26)

(
max
π∈Π1

{
π(Es)

}
− min

π∈Π1

{
π(Es)

})
U1(q1) =

(
max
π∈Π1

{
π(Es)

}
− min

π∈Π1

{
π(Es)

})
U1(p).

Since (26) is satisfied for any q1, p ∈ ∆(C) with U1(p) > U1(q1), we have minπ∈Π1

{
π(Es)

}
=

maxπ∈Π1

{
π(Es)

}
, i.e., Es is an unambiguous event.

A.3 Proof of Theorem 2

Suppose <F̂ satisfies axioms (A.1)-(A.5), <F̂1
satisfies axioms (A.1)-(A.4), and WNUI, and

they jointly satisfy BAC. By the discussion in Section A.1, suppose <F̂ has a SEU rep-

resentation with (µ, U) and <F̂1
has a SEU representation with (Π1, U1). Without loss of

generality, let U(b) = U1(b) = 1 and U(w) = U1(w) = 0 where b and w are the best and

worst consequences in C, respectively. We prove Theorem 2 in the following two steps.

Step 1: U = U1 on ∆(C).

For any p, p′ ∈ ∆(C), by BAC, we have

(p−s p) <F̂ (p′−s p
′) if and only if

(
w−E(S)(p−Es p)

)
<F̂1

(
w−E(S)(p

′
−Es p

′)
)
;

equivalently,

U
(
p
)
≥ U

(
p′
)

iff min
π∈Π1

{π(E(S))}U1(p) ≥ min
π∈Π1

{π(E(S))}U1(p′) iff U1

(
p
)
≥ U1

(
q
)
.

Therefore, U = U1 on ∆(C), i.e, risk attitudes of <F̂ and <F̂1
are the same.

Step 2: <F̂1
is a likelihood consistent extension of <F̂ .

For any s ∈ S, p, q, p′ ∈ ∆(C), by BAC, we have

(p−s q) <F̂ (p′−s p
′) = p′ if and only if

(
p′−E(S)(p−Es q)

)
<F̂1

(
p′−E(S)(p

′
−Es p

′)
)

= p′;

equivalently,

(1− µ(s))U(p) + µ(s)U(q) = U
(
p′
)

iff

min
π∈Π1

{
π(E(S)\Es)U(p) + π

(
Es
)
U(q) + (1− E(S))U

(
p′
)}

= U(p′)

Therefore, we have for any s ∈ S and p, q ∈ ∆(C), (1−µ(s))U(p) +µ(s)U(q) is equal to

min
π∈Π1

{
π(E(S)\Es)U(p)+π(Es)U(q)+

(
1− π(E(S))

)(
(1− µ(s))U(p) + µ(s)U(q)

)}
.
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Therefore, for any s ∈ S and p, q ∈ ∆(C),

min
π∈Π1

{(
π(Es)− π(E(S))µ(s)

)(
U(q)− U(p)

)}
= 0.

The above equation implies minπ∈Π1 {π(Es)− π(E(S))µ(s)} = 0 when U(p) < U(q) and

maxπ∈Π1 {π(Es)− π(E(S))µ(s)} = 0 when U(p) > U(q). Therefore, π(Es) = π(E(S))µ(s)

for any s ∈ S and π ∈ Π1.

A.4 Proofs of Corollaries 2-3

Proof of Corollary 2. As shown in Theorem 2, π(Es) = π(E(S))µ(s) for any s ∈ S and

π ∈ Π1. Since π(E(S)) = π(S1) = 1 in the context of discovering acts, π(Es) = µ(s) for any

s ∈ S and π ∈ Π1. Therefore, Unambiguity Consistency is satisfied.

Proof of Corollary 3. As shown in Theorem 2, π(Es) = π(E(S))µ(s) for any s ∈ S and

π ∈ Π1. Let δ̄ = maxπ∈Π1{π(E(S))} and δ = minπ∈Π1{π(E(S))}. Since Es = s1 for some

s1 ∈ S1, we obtain π(s1) = δµ(s) where δ ∈ [δ, δ̄].

A.5 Proof of Theorem 3

Suppose that F̂1 = F ∪ {f̄} and F̂2 = F ∪ {f ∗}. Let <F̂1
is an umambiguous and likelihood

consistent extension of <F̂ to F̂1 with (Π1, U), and that <F̂2
be an umambiguous and like-

lihood consistent extension of <F̂ to F̂2 with (Π2, U). Given S1 = CF1 and S2 = CF2 , let

ϕ : S1 → S2 be a bijection such that ϕ(s1) = s2 ∈ S2 if and only if there are s ∈ S and c ∈ C
such that s1 = s2 = (s, c). Given ϕ, for each act f ∈ F̂1, fϕ ∈ F̂2 is an act that returns the

lottery f(ϕ(s1)) = q in state ϕ(s1) ∈ S2 when f returns q in s1 ∈ S1 (i.e., f(s1) = q). Then,

for each lottery p ∈ ∆(C) and act f ∈ F̂1, we have

(27) p ∼F̂2
f implies p <F̂2

fϕ,

which is equivalent to

U(p)= min
π∈Π2

∑
s1∈S1

U
(
f(ϕ(s1))

)
π(ϕ(s1)) ≥ min

π∈Π1

∑
s1∈S1

U
(
f(s1)

)
π(s1) = min

π∈Πϕ1

∑
s1∈S1

U
(
f(ϕ(s1))

)
π(ϕ(s1)).

Therefore, <F̂1
is more ambiguity averse than <F̂2

if and only if Π2 ⊆ Πϕ
1 .
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A.6 Proof of Theorem 4

We only prove the sufficiency part. Since Extreme NUI is stronger than NUI, by Theorem

2, there are (µ, U) and (Π1, U) such that <F̂ admits a SEU representation with (µ, U) and

<F̂1
admits a MEU representation with (Π1, U). Moreover, <F̂1

is an unambiguity consistent

and likelihood consistent extension of <F̂ . That is, π(Es) = µ(s) for any s ∈ S and π ∈ Π1.

Without loss of generality, let U(w) = 0 where w is the worst consequence in C. We prove

the theorem in three steps.

Step 1: For any f, h ∈ F̂1 and s ∈ S,

min
π∈Π1

{∑
s∈Es

U(f(s)π(s)+
∑

s∈S1\Es

U(h(s))π(s)
}

= min
π∈Π1

∑
s∈Es

U(f(s)π(s)+min
π∈Π1

∑
s∈S1\Es

U(h(s))π(s).

Let us fix f, h ∈ F̂1 and s ∈ S. Take any p ∈ ∆(C) such that fEsw ∼F̂1
pEsw. Notice

that fEsw and pEsh as well as pEsw and pEsh agree on the worst state of each event in

{Es′}s′∈S. Therefore, by Extreme NUI, for any α ∈ [0, 1],

(28) (αf + (1− α)p)Es(αw + (1− α)h) ∼F̂1
pEs(αw + (1− α)h);

equivalently

(29) V MEU
(
αf + (1− α)p)Es(αw + (1− α)h︸ ︷︷ ︸

g

)
)

= V MEU
(
pEs(αw + (1− α)h)︸ ︷︷ ︸

g̃

)
.

Since Es is unambiguous and U(w) = 0,

V MEU(g) = min
π∈Π1

{
α
∑
s∈Es

U(f(s))π(s) + (1− α)π(Es)U(p) + (1− α)
∑

s∈S1\Es

U(h(s))π(s)
}

=(1− α)U(p)π(Es) + min
π∈Π1

{
α
∑
s∈Es

U(f(s))π(s) + (1− α)
∑

s∈S1\Es

U(h(s))π(s)
}

and

V MEU(g̃)= min
π∈Π1

{
U(p)π(Es)+(1−α)

∑
s∈S1\Es

U(h(s))π(s)
}

=U(p)π(Es)+(1−α) min
π∈Π1

{ ∑
s∈S1\Es

U(h(s))π(s)
}

Thus, when α = 1
2
, we get V (g) = V (g̃) is and only if

min
π∈Π1

{∑
s∈Es

U(f(s)π(s) +
∑
s∈Es

U(h(s))π(s)
}

= U(p)π(Es) + min
π∈Π1

∑
s∈Es

U(h(s))π(s).
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Moreover, since fEsw ∼F̂1
pEsw and U(w) = 0, we have

min
π∈Π1

∑
s∈Es

U(f(s)π(s) = U(p)π(Es).

Combining the last equalities we obtain

min
π∈Π1

{∑
s∈Es

U(f(s)π(s)+
∑

s∈S1\Es

U(h(s))π(s)
}

= min
π∈Π1

∑
s∈Es

U(f(s)π(s)+min
π∈Π1

∑
s∈S1\Es

U(h(s))π(s).

Step 1 essentially proves the extended MEU preference <F̂1
is additively separable across

the events {Es}s∈S. That is,

min
π∈Π1

∑
s∈S

µ(s)
∑
s1l ∈Es

U(h(s1
l ))

π(s1
l )

π(Es)


is minimized at each event Es, separately. Therefore, we obtain the following representation:

(30) V MEU(f) =
∑
s∈S

µ(s) min
πs∈Π

F1
s

∑
s1k∈Es

πs(s
1
k)U
(
f(s1

k)
) ,

where ΠF1
s ⊆ ∆(Es).

In next steps, we prove that beliefs on Es take the form ΠF1
s = βs {ηs}+ (1− βs) ∆(Es)

for some βs ∈ [0, 1] and ηs ∈ ∆(Es).

Fix an event Es. Take any s1
t ∈ Es. Let us take acts f, g, h ∈ F̂1 such that for any s1

j ∈ Es,
f(s1

j) <F̂1
f(s1

t ), g(s1
j) <F̂1

g(s1
t ), and h(s1

j) <F̂1
h(s1

t ), and f(E−s) = g(E−s) = h(E−s) = w.

Then, by Extreme NUI, for any α ∈ (0, 1],

f <F̂1
g iff αf + (1− α)h <F̂1

αg + (1− α)h;

equivalently,

(31) min
πs∈Π

F1
s

∑
s1k∈Es

πs(s
1
k)U
(
f(s1

k)
) = min

πs∈Π
F1
s

∑
s1k∈Es

πs(s
1
k)U
(
g(s1

k)
) iff

min
πs∈Π

F1
s

∑
s1k∈Es

πs(sk)U
(
αf(s1

k) + (1− α)h(s1
k)
)= min

πs∈Π
F1
s

∑
s1k∈Es

πs(s
1
k)U
(
αg(s1

k) + (1− α)h(s1
k)
) .
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Step 2: Suppose s1
j ∈ Es \ s1

t , f(s1
j) <F̂1

f(s1
t ), g(s1

j) <F̂1
g(s1

t ), and h(s1
j) <F̂1

h(s1
t ) with

f(s1
t ) = g(s1

t ) = h(s1
t ) = w.

Then (31) is equivalent to

min
πs∈Π

F1
s

 ∑
s1k∈Es\s

1
t

πs(s
1
k)U
(
f(s1

k)
) = min

πs∈Π
F1
s

 ∑
s1k∈Es\s

1
t

πs(s
1
k)U
(
g(s1

k)
) iff

min
πs∈Π

F1
s

 ∑
s1k∈Es\s

1
t

πs(sk)U
(
αf(s1

k) + (1− α)h(s1
k)
)= min

πs∈Π
F1
s

 ∑
s1k∈Es\s

1
t

πs(s
1
k)U
(
αg(s1

k) + (1− α)h(s1
k)
) .

The above equivalence is in fact the Independence Axioms on Es \ s1
t . Therefore, there

is πts ∈ ∆(Es \ s1
t ) such that

min
πs∈Π

F1
s

 ∑
s1k∈Es\s

1
t

πs(s
1
k)U
(
f(s1

k)
) =

∑
s1k∈Es\s

1
t

πts(s
1
k)U
(
f(s1

k)
)
.

Let f(s1
k) = w for any s1

k 6= s1
j . The above equation implies that min

πs∈Π
F1
s

{
πs(s

1
j)
}

=

πts(s
1
j). Since min

πs∈Π
F1
s

{
πs(s

1
j)
}

is independent of st, we shall write πs(s
1
j) instead of πts(s

1
j).

Let π∗s(s
1
t ) ≡ max

πs∈Π
F1
s
{πs(s1

t )}.

Step 3: Suppose s1
j ∈ Es \ s1

t , f(s1
j) �F̂1

f(s1
t ), g(s1

j) �F̂1
g(s1

t ), and h(s1
j) �F̂1

h(s1
t ), and

f(s1
t ) = g(s1

t ) = h(s1
t ). Moreover, suppose f(s1

j) = f(s1
k) for any s1

j , s
1
k 6= s1

t .

Suppose U(f(s1
t )) = U(g(s1

t )) = U(h(s1
t )) is small enough relative to U(f(s1

k)), U(g(s1
k)),

and U(g(s1
k)). Then (31) is equivalent to

π∗s(s
1
t )U(f(s1

t ))+(1−π∗s(s1
t ))U(f(s1

k)) =
(
1−

∑
s1k∈Es\s

1
t

πs(s
1
k)
)
U(g(s1

t ))+
∑

s1k∈Es\s
1
t

πs(s
1
k)U
(
g(s1

k)
)

if and only if

(1−
∑

s1k∈Es\s
1
t

πs(s
1
k))U

(
αf(s1

t ) + (1− α)h(s1
t )
)

+
∑

s1k∈Es\s
1
t

πs(s
1
k)U
(
αf(s1

k) + (1− α)h(s1
k)
)

=

(1−
∑

s1k∈Es\s
1
t

πs(s
1
k))U

(
αg(s1

t ) + (1− α)h(s1
t )
)

+
∑

s1k∈Es\s
1
t

πs(s
1
k)U
(
αg(s1

k) + (1− α)h(s1
k)
)
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The above equivalence implies π∗s(s
1
t ) = 1−

∑
s1k∈Es\s

1
t
πs(s

1
k). Similarly, we have π∗s(s

1
t′) =

1−
∑

s1k∈Es\s
1
t′
πs(s

1
k). These two equalities imply that π∗s(s

1
t )− πs(s1

t ) = π∗s(s
1
t′)− πs(s1

t′).

Since π∗s(s
1
t ) ≥ πs(s

1
t ), let 1−αs ≡ π∗s(s

1
t )−πs(s1

t ). Finally, since π∗s(s
1
t )+

∑
s1k 6=s

1
t
πs(s

1
k) =

1, we have
∑

s1k∈Es
πs(s

1
k) = αs. Let

ηs(s
1
t ) ≡

πs(s
1
t )∑

s1k∈Es
πs(s1

k)
=
πs(s

1
t )

αs
.

Then we have ΠF1
s = {πs}+ (1− αs) ∆(Es) = αs {ηs}+ (1− αs) ∆(Es) where ηs ∈ ∆(Es).

A.7 Proof of Theorem 5

Let <F̂ be a SEU preference relation with (µ, U). Suppose that <F̂1
admits the parametric

MEU representation (20) with ({(η1
s , α

1
s)}s∈S, U) and <F̂2

also admits the parametric MEU

representation (20) with ({(η2
s , α

2
s)}s∈S, U). In other words, <F̂1

be a MEU extension on F̂1

with (Π1, U) where

Π1 = ×s∈SΠ
(η1
s , α

1
s)

Es
= ×s∈S{α1

s{η1
s}+ (1− α1

s)∆(Es)},

and <F̂2
be a MEU extension on F̂2 with (Π2, U) where

Π2 = ×s∈SΠ
(η2
s , α

2
s)

Es
= ×s∈S{α2

s{η2
s}+ (1− α2

s)∆(Es)}.

By Theorem 3, <F̂1
is more ambiguity averse than <F̂2

if and only if

Π2 = ×s∈SΠ
(η2
s , α

2
s)

Es
⊆ Πϕ

1 =
(
×s∈SΠ

(η1
s , α

1
s)

Es

)ϕ
.

Equivalently, <F̂1
is more ambiguity averse than <F̂2

if and only if

Π
(η2
s , α

2
s)

Es
= α2

s{η2
s}+ (1− α2

s)∆(Es) ⊆ (Π
(η1
s , α

1
s)

Es
)ϕ = (α1

s{η1
s}+ (1− α1

s)∆(Es))
ϕ for all s ∈ S;

equivalently,

[
α2
s η

2
s(ϕ(s1)), α2

s η
2
s(ϕ(s1)) + (1− α2

s)
]
⊆
[
α1
s η

1
s(s

1), α1
s η

1
s(s

1) + (1− α1
s)
]

for all s ∈ S and s1 ∈ Es;

Therefore, by a direct calculation, we obtain

α2
s

α1
s

≥ max

{
η1
s(s

1)

η2
s(ϕ(s1))

;
1− η1

s(s
1)

1− η2
s(ϕ(s1))

}
for all s ∈ S and s1 ∈ Es.
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