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Abstract

We develop a state-space model with a state-transition equation that takes the

form of a functional vector autoregression and stacks macroeconomic aggregates and a

cross-sectional density. The measurement equation captures the error in estimating log

densities from repeated cross-sectional samples. The log densities and the transition

kernels in the law of motion of the states are approximated by sieves, which leads to

a finite-dimensional representation in terms of macroeconomic aggregates and sieve

coefficents. We use this model to study the joint dynamics of technology shocks,

per capita GDP, employment rates, and the earnings distribution. We find that the

estimated spillovers between aggregate and distributional dynamics are generally small,

a positive technology shocks tends to increase the fraction of individuals earning less

than the labor share of per capita GDP, and shocks that raise the inequality of earnings

have ambiguous effects on per-capita GDP. (JEL C11, C32, C52, E32)
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1 Introduction

Models with heterogeneity on the household side or the firm side have long been used to study

distributional effects of macroeconomic policies. Heterogeneity evolves dynamically and in

some of these models interacts closely with aggregate fluctuations. This is particularly true

in models with financing constraints that try to capture the large downturn during the recent

Great Recession. While the macroeconomics literature has demonstrated that dynamics in

heterogeneous agent (HA) models can be different from their representative agent (RA)

counterparts, it is an open question whether in the data there is strong evidence that the

dynamics of macroeconomic aggregates interacts, at business cycle frequencies, with the

evolution of the cross-sectional distribution of income and wealth on the household side and

the distribution of productivity and capital on the firm side.

The goal of this paper is to develop and apply econometric tools that can provide semi-

structural evidence about the interaction of aggregate and distributional dynamics. More

specifically, we specify a state-space model with a state-transition equation that takes the

form of a functional vector autoregression (VAR) and stacks macroeconomic aggregates and

cross-sectional distributions. We motivate the specification of our functional state-space

model by a linearization of a reduced form model in which dynamics of aggregate vari-

ables and a function of the lagged cross-sectional distribution of individual-level decisions or

states, and the units (households or firms) base their decisions on lagged macroeconomic ag-

gregates and lagged cross-sectional distributions. To make the functional analysis tractable,

we approximate the log-densities of the cross-sectional distributions as well as the transition

kernels in the functional autoregressive law of motion of the states by sieves. This leads to

a finite-dimensional approximation that is expressed in terms of the aggregate variables as

well as the coefficients of the sieve approximations.

The functional analysis is implemented with spline basis functions. Log-splines are a

popular tool in the statistics literature to approximate densities non-parametrically. In a first

step, we estimate the coefficients of the log-spline density approximation for each time period

based on a finite sample of cross-sectional observations. We treat these coefficients as noisy

measures of a finite-dimensional population approximation of the cross-sectional densities.

The measurement errors capture the estimation uncertainty associated with the log-spline

coefficients. We then construct an approximate state-space model that stacks the latent

population spline coefficients and the macroeconomic variables in a vector of state variables

that evolves according to a linear vector autoregressive law of motion. The coefficients of this
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state-space model are estimated using Bayesian techniques and the subsequent substantive

analysis is based on the estimated state-space model.

This paper makes several contributions. First, we develop a Bayesian implementation

of the estimation procedure. Our procedure is able to account for estimation errors in the

cross-sectional densities. We also allow for seasonal adjustments of the cross-sectional den-

sities if they are combined with seasonally-adjusted aggregate data. Prior distributions are

used to regularize a potentially high-dimensional estimation problem. Second, we make an

empirical contribution, by documenting the effect of technology shocks on the cross-sectional

distribution of income as well as the effect of distributional shocks that raise inequality on

macroeconomic aggregates. Third, an expanded future version of this paper will provide

a large sample theory for our estimation procedure. We will provide convergence rates for

estimators under the assumption that the number of draws from period t cross-sectional

distributions, N , the number of time periods, T , and the number of terms in the sieve

approximations of the cross-sectional densities, K, tend to infinity.

Using mostly calibrated HA models, the quantitative macro literature has been examining

three types of research questions related to distributional dynamics. First, does micro-level

heterogeneity affect the propagation of aggregate shocks to aggregate variables? Second,

what is the effect of an aggregate shock on cross-sectional distributions? Third, what is the

effect of a change in the cross-sectional distribution on macroeconomic aggregates?

A seminal paper assessing the first question is Krusell and Smith (1998), henceforth

KS. The paper combines a neoclassical stochastic growth model with a heterogeneous agent

economy in which households face uninsurable idiosyncratic income risk. The equilibrium in

the KS model has exactly the features described above: households’ decisions depend on the

aggregate technology shock as well as the cross-sectional distribution of skills and wealth. In

turn, the entirety of the household-level decisions determine the cross-sectional distribution.

One of the key findings was that in the stationary stochastic equilibrium, the behavior of

the macroeconomic aggregates can be almost perfectly described using only the mean of the

wealth distribution.

In extensions of the benchmark model, this approximate aggregation result is no longer

true and these models exhibit a richer interaction between aggregate and distributional

dynamics. For instance, Chang, Kim, and Schorfheide (2013) consider a HA model with

indivisible labor supply. According to their findings, it is important to include a labor supply

shock in the RA model to approximate the dynamics of the HA economy well. This aggregate
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labor supply shock essentially captures time-varying aggregation errors. Their simulation

results imply that modeling the dynamics of cross-sections is not of first-order importance if

the analysis focuses on macroeconomic aggregates. However, there is an important caveat:

preference and technology parameter estimates of the RA model are not invariant to policy

changes and the bias in the RA model’s policy predictions is large compared to predictive

intervals that reflect parameter uncertainty.

A popular tool to study whether micro-level heterogeneity affects the propagation of

aggregate shocks at the macro level is a comparison of impulse responses from a models with

and without micro-level heterogeneity that share an otherwise identication structure. Recent

examples of this work include Ottonello and Winberry (2018) as well as Ahn, Kaplan, Moll,

Winberry, and Wolf (2018) and Kaplan and Violante (2018). The second research question,

that is, the effect of aggregate shocks on cross-sectional distributions, has been analyzed

in a number of recent papers. For instance, the abovementioned paper by Ahn, Kaplan,

Moll, Winberry, and Wolf (2018) also studies the effect of factor-specific productivity shocks

on inequality dynamics. Coibion, Gorodnichenko, Kueng, and Silvia (2017) and Kaplan

and Violante (2018) examine the distributional effects of monetary policy shocks. Mongey

and Williams (2017) analyze the effect of macro shocks on the dispersion of sales growth.

Finally, an example of research examinig the third question is the paper by Auclert and

Rognlie (2018) which studies the effect of an exogenous rise in equality on macroeconomic

dynamics.

In our functional state-space framework, after applying suitable identification schemes,

we are able to construct impulse responses of cross-sectional distributions to aggregate shocks

as well as responses of aggregate variables to shocks that primarily move the cross-sectional

distribution. Moreover, we can assess the significance of the coefficients that capture spill-

overs from lagged distributional coefficients to current macroeconomic variables and, vice

versa, from lagged macroeconomic variables to the current cross-sectional distribution. If the

VAR coefficients in the state-transition equation are block-diagonal, then there is no benefit

from modeling the the cross-sectional heterogeneity if the goal is to understand aggregate

dynamics. Thus, the methods developed in this paper allow researchers to examine the three

abovementioned question in a semi-structural framework that does not require the solution

and calibration or estimation of a heterogeneous agent model.

There is an extensive literature on the statistical analysis of functional data. General

treatments are provided in the books by Bosq (2000), Ramsey and Silverman (2005), and

Horvath and Kokoszka (2012). Much of the literature assumes that the functions are observed
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without error. Examples of such functions are the reading of a thermometer over the span of

twenty-four hours or the price of a stock from opening to closing time of a stock exchange.

Each day delivers a new observation of the curve. In our application, the functions are a

log probability densities, which are not observed, but can be estimated from cross-sectional

observations. A fundamental model in the functional time series literature is the functional

autoregressive model of order one. Bosq (2000) provides a detailed analysis of this model

as well as more general functional linear processes. Functional autoregressive models can be

estimated by functional principal component analysis, which approximates the functions by

linear combinations of the eigenfunctions of the sample covariance operator associated with

the K largest eigenvalues. Rather than using what the literature considers to be an optimal

(in a least squares sense) empirical orthonormal basis, we use a spline basis that is chosen

independently of the data.

Applications of functional data analysis in macroeconometrics are rare. The state-space

model Diebold and Li (2006) could be interpreted as a functional model for yield-curve data,

but there is no infinite-dimensional aspect to the analysis in the sense that it is assumed

(and empirically justified) that the yield-curves can be represented by three time-varying

parameters. Inoue and Rossi (2018) estimate what they call a VAR with functional shocks,

which uses a similar representation of the yield curve as in Diebold and Li (2006) and focuses

on the identification of a functional monetary policy. The paper imposes restrictions of the

evolution of the yield curves and abstracts from the nonparametric aspects of functional

modeling. Hu and Park (2017) develop an estimation theory for a functional autoregressive

model with unit roots and fit it to yield curve data and Chang, Kim, and Park (2016) use a

functional time series process to capture the evolution of earnings densities with a focus on

unit-root components. Both papers use functional principal components analysis.

Both our functional VAR analysis as well as the solution of models with heterogeneous

agents requires a parsimonious representation of cross-sectional distributions. For instance,

Krusell and Smith (1998) represent the wealth distribution by its mean. Reiter (2010) uses

a discretization of the wealth distribution and a Markov transition matrix to characterize

movements in the wealth distribution. The transition probabilities are functions of the ag-

gregate states. Algan, Allais, and Den Haan (2008) and Winberry (2017) use moments to

characterize the distribution of productivity and capital. From these moments, it is then

possible to recover a density with a class of distributions that belong to the exponential fam-

ily.1 Childers (2015) considers linearization methods for models with function-valued states,

1This approach is somewhat related to the density estimator discussed in Efron and Tibshirani (1996).
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using a wavelet representation. These approximations can be interpreted as sieves with dif-

ferent types of basis functions. Our analysis uses spline basis functions to approximate log

densities, which dates back to Kooperberg and Stone (1990).

The remainder of this paper is organized as follows. In Section 2 we outline a functional

state-space model for a group of macroeconomic time series and a sequence of cross-sectional

distributions that are estimated based on cross-sectional data. We estimate the functional

state-space model using Bayesian techniques. Implementation details such as the choice of

basis functions, the choice of prior distributions, and the posterior sampler are discussed

in Section 3. The empirical application is presented in Section 4 and Section 5 concludes.

Supplemental derivations and information about the empirical analysis are relegated to the

Online Appendix.

2 A Functional State Space Model – Heuristics

VARs can be viewed as approximations to the equilibrium dynamics arising from linearized

RA models and have proved to be useful for the evaluation and development of dynamic

stochastic general equilibrium (DSGE) models. Moreover, VARs are widely used in empirical

macroeconomics independently of DSGE models, to study business cycle fluctations, the

propagation of shocks, and to generate macroeconomic foreasts. In this paper, we develop

a functional vector autoregression (fVAR) that is embedded in a state space model and can

play a similar role as traditional VARs in environments in which macroeconomic aggregates

interact with cross-sectional distributions. While we not will establish a formal link between

our functional model and the solution of HA models, it does capture the salient features and

provides a natural reference model for the evaluation of HA models. Moreover, just as VARs,

our functional model can be used as a stand-alone tool for empirical work in macroeconomics.

In this section we provide an informal presentation of the functional model. A formal

treatment is relegated to Section D. The variables in the model comprise an nz × 1 vector

of macroeconomic aggregates Zt and a cross-sectional density pt(x). In our application

Zt consists of (log) total factor productivity growth, per-capita GDP growth, and the log

employment rate. The cross-sectional variable x is earnings as a fraction of per-capita GDP.

Throughout this paper, we will work with log densities defined as `t(x) = ln pt(x). We

decompose Zt and `t into a deterministic component
(
Z∗, `∗(x)

)
and fluctuations around the
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deterministic component. Let

Zt = Z∗ + Z̃t, `t = `∗ + ˜̀
t. (1)

For notational convenience we assumed that the deterministic component is time-invariant

and could be interpreted as a steady state. This assumption could be easily relaxed by letting

(Z∗, `∗) depend on t. We assume that the deviations from the deterministic component(
Z̃t, ˜̀

t(x)
)

evolve jointly according to the following linear functional VAR law of motion:

Z̃t = BzzZ̃t−1 +

∫
Bzl(x̃)˜̀

t−1(x̃)dx̃+ uz,t (2)

˜̀
t(x) = Blz(x)Z̃t−1 +

∫
Bll(x, x̃)˜̀

t−1(x̃)dx̃+ ul,t(x).

Here uz,t is mean-zero random vector with covariance Σzz and ul,t(x) is a random element in

L2 with covariance function Σll(x, x̃). We denote the covariance function for uz,t and ul,t(x)

by Σzl(x).

To condense the notation, we define integral operators with kernels Bzl(x̃) and Bll(x, x̃)

as

Bzl[g] =

∫
Bzl(x̃)g(x̃)dx̃, Bll[g](x) =

∫
Bll(x, x̃)g(x̃)dx̃.

Using the operator notation, we can write (2) more compactly as

Z̃t = BzzZ̃t−1 + Bzl[˜̀t−1] + uz,t (3)

˜̀
t(x) = Blz(x)Z̃t−1 + Bll[˜̀t−1](x) + ul,t(x).

For now, (3) should be interpreted as a reduced-form fVAR in which uz,t and ul,t(x) are one-

step-ahead forecast errors. In principle we could add further lags, but our empirical analysis

will be based on a single lag. The system will subsequently serve as the state-transition

equation in a functional state-space model.

2.1 Sampling and Measurement Equation

We assume that in every period t = 1, . . . , T the econometrician observes a measurement of

the macroeconomic aggregates Zo
t (here the o superscript indicates “observed”) as well as

a sample of Nt draws xoit, i = 1, . . . , Nt from the cross-sectional density pt(x). In practice,

Nt is likely to vary from period to period, but for the subsequent exposition it will be

more convenient to assume that Nt = N for all t. We also assume that the draws xoit are
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independently and identically distributed (iid) over the cross-section as well as over time.

The measurement equations take the form

Zo
t = Z∗ + Z̃t (4)

xoit ∼ iid pt(x) =
exp{`∗(x) + ˜̀

t(x)}∫
exp{`∗(x) + ˜̀

t(x)}dx
, i = 1, . . . , N, t = 1, . . . , T. (5)

Here we assumed that the macroeconomic aggregates are observed without errors and have

been transformed to have time-invariant mean/steady state Z∗. The assumption of xit being

iid across i and t is consistent with data sets that comprise repeated cross sections.2 It

is also approximately consistent with panel data sets if the unit index i is randomly re-

assigned in every period t. Thus, to the extent that the cross-sectional densities pt(x) are

estimated from a panel data set, there is some potential loss of information in our functional

modeling approach. However, on the positive side, the functional modeling approach does

not require the econometrician to make assumptions about the evolution of xit at the level

of an individual, a household, or a firm.

2.2 Sieve Approximations

Equations (3), (4), and (5) define a state-space model for the observables {Zo
t , x

o
1,t, . . . , x

o
2,t}Tt=1.

The state variables are (Z̃t, l̃t). To implement the estimation of the functional model we

approximate infinite-dimensional elements by sieves. We will formalize the nature of the

approximation in Section D. Let

˜̀
t(x) ≈ ˜̀(K)

t (x) =
K∑
k=0

α̃k,tζk(x) =
[
ζ0(x), ζ1(x), . . . , ζK(x)

]
·


α̃0,t

...

α̃K,t

 = ζt(x)α̃t (6)

and

`∗(x) ≈ `(K)
∗ (x) = ζ(x)α∗.

Here ζ0(x), ζ1(x), . . . is a sequence of basis functions. We let αt = α∗+ α̃t such that `(K)(x) =

`
(K)
∗ (x) + ˜̀

t(x). Moreover, we adopt the convention that ζ0(x) = 1 such that α0,t becomes

the normalization constant for the density pt(x).

2If the data exhibit spatial correlation, then our estimation approach below essentially replaces the

likelihood function for xo1t, . . . , x
o
Nt by a composite likelihood function that ignores the spatial correlation;

see Varin, Reid, and Firth (2011).
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To approximate the measurement equation of the cross-sectional observations in (5), we

let Xo
t = [xo1t, . . . , x

o
Nt] and define the K-dimensional vector of sufficient statistics

ζ̄(Xo
t ) =

N∑
i=1

ζ(xoit).

This allows us to write a K’th order approximation to the density of Xo
t :

p(K) (Xo
t |αot ) = exp

{
ζ̄(Xo

t )αot

}
(7)

where αo0,t = − ln

∫
exp

{
K∑
k=1

αok,tζk(x)

}
dx

αok,t = αk,∗ + α̃k,t, k = 1, . . . , K.

We introduced the auxiliary coefficients αok,t to capture the re-normalization, which is deter-

mined outside of the state-transition equation (see below) that will govern the evolution of

αt.

For the state-transition equation (3) we approximate the kernels Bzl(x̃) and Bll(x, x̃), the

function Blz(x), and the functional innovation ul,t(x) as follows:

Bzl(x̃) ≈ B
(K)
zl (x) =

J∑
j=0

Bzl,.jξj(x̃) = Bzlξ
′(x̃) (8)

Bll(x, x̃) ≈ B
(K)
ll (x, x̃) =

K∑
k=0

J∑
j=0

Bll,kjζk(x)ξj(x̃) = ζ(x)Bllξ
′(x̃)

Blz(x) ≈ B
(K)
lz (x) =

K∑
k=0

Blz,kζk(x) = ζ(x)Blz

ul,t(x) ≈ u
(K)
l,t (x) =

K∑
k=0

uαk,tζk(x)p∗(x) = ζ ′(x)ua,t.

Here ξ0(x), ξ1(x), . . . is a second sequence of basis functions and, for a given x, ξ′(x) =

[ξ0(x), ξ1(x), . . . , ξJ(x)] is a 1× (J + 1) vector. The matrix Bzl is of dimension nz × (J + 1),

Bll is of dimension (K + 1) × (J + 1) and Blz is of dimension (K + 1) × nz. Let B
(K)
zl [·]

and B
(K)
ll [·](x) be the operators associated with the kernels B

(K)
zl (x) and B

(K)
ll (x, x̃). An

approximation of (3) is given by

Z̃t = BzzZ̃t−1 + B
(K)
zl [˜̀

(K)
t−1] + uz,t (9)

˜̀(K)
t (x) = B

(K)
lz (x)Z̃t−1 + B

(K)
ll [˜̀

(K)
t−1](x) + u

(K)
l,t (x).
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Combining (6), (8), and (9) yields the following vector autoregressive system for the macroe-

conomic aggregates and the sieve coefficients:[
Z̃t

α̃t

]
=

[
Bzz BzlCα

Blz BllCα

][
Z̃t−1

α̃t−1

]
+

[
uz,t

uα,t

]
, (10)

where

Cα =

∫
ξ′(x̃)ζ(x̃)dx̃.

Overall, we obtain a state-space representation that comprises the measurement equa-

tions (4) and (7) and the state-transition equation (10). Due to the measurement equation

for the xits, the state-space representation is nonlinear and the computation of the exact

likelihood requires a nonlinear filter. To avoid the use of a nonlinear filter in the empirical

application, we consider the following simplification. Using (7), define the log likelihood

function and the maximum-likelihood estimator α̂ot as

L(αt|Xo
t ) = ln p(K)(Xo

t |αot ), α̂ot = argmaxαot L(αt|Xo
t ). (11)

Provided that the number of cross-sectional observations N is large relative to the dimension

K, the maximum likelihood estimator has an asymptotically normal sampling distribution,

that is,

α̂ot |αot
approx∼ N

(
αot , Vαot

)
,

where Vαot is the inverse of the negative Hessian. To simplify the measurement equation (7),

we pursue a limited-information approach and condition inference about αot on α̂ot :

α̂ot = α∗ + α̃t +N−1/2ηt, ηt ∼ N(0, Vα̂ot ). (12)

Here, the Hessian is evaluated at Vα̂ot . By replacing (7) by (12) we obtain a linear Gaussian

state-space model and the likelihood function can be evaluated with the Kalman filter.

2.3 Relationship to Structural HA Models

In HA models, individual choices depend on the cross-sectional distribution of unit-specific

variables, e.g., wealth and skill, and on some macroeconomic state variables, e.g., total factor

productivity. As a consequence, macroeconomic variables that aggregate choices at the micro
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level will also depend on cross-sectional distributions in addition to the macroeconomic state

variables. We capture these relationships in the following, very stylized model:

Z̃t = BzzZ̃t−1 +

∫
Bzpxpt−1(x)dx+ σηt, ηt ∼ N(0, 1) (13)

xit = Bxxxit−1 +

∫
Bxpxpt−1(x)dx+BxzZ̃t−1 + εit, εit ∼ N(0, 1). (14)

Here Z̃t is scalar, pt(x) is the cross-sectional distribution of the xits, and both Z̃t and xit

only depend on the mean of the xit−1 distribution. Because this stylized model is backward-

looking, it is straightforward to characterize the law of motion for the cross-sectional density

pt(x) by integrating (14) over i:

pt(x) =

∫
φN

(
x−Bxxx̃−

∫
Bxpxpt−1(x)dx−BxzZ̃t−1

)
pt−1(x̃)dx̃, (15)

where φN(·) is the probability density function of a N(0, 1).

To cast the model into the form (2) the law of motion for pt(x) has to be linearized. The

steady state density p∗(x) is obtained by shutting down aggregate uncertainty and setting

σ = 0, which leads to the functional equation:

p∗(x) =

∫
φN (x−Bxxx̃) p∗(x̃)dx̃. (16)

The solution is given by the density of a N
(
0, 1/(1 − Bxx)

)
random variable. Let `t(x) =

ln pt(x). Linearization of (15) with respect to ˜̀
t and Z̃t around `∗(x) = ln p∗(x) and 0 yields

˜̀
t(x) = − 1

p∗(x)
Bxz

[∫
φ

(1)
N (x−Bxxx̃) p∗(x̃)dx̃

]
Z̃t−1 (17)

− 1

p∗(x)

[∫
φ

(1)
N (x−Bxxx̃) p∗(x̃)dx̃

] ∫
Bxpx̃p∗(x̃)˜̀

t−1(x̃)dx̃

+
1

p∗(x)

∫
φN (x−Bxxx̃) p∗(x̃)˜̀

t−1(x̃)dx̃

= BlzZ̃t−1 + Bll[˜̀t−1].

Thus, in this stylized example the fVAR state-transition equation in (3) is obtained as a

linear approximation.

3 Implementation Details

We now provide some of the implementation details. The choice of basis functions is de-

scribed in Section 3.1 and some preliminary transformations of the estimated basis function
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coefficients is discussed in Section 3.2. Section 3.3 provides details on the specification of the

measurement equation for the basis function coefficients and the state-transition equation of

the empirical state-space model. Piors and the computation of posteriors for the parameters

of the state-space model are discussed in Section 3.4 and Section 3.5 explains how forecasts

and impulse response functions for the basis function coefficients can be converted back into

cross-sectional densities.

3.1 Basis Functions

A convenient basis for the log density is a spline of degree m = 3. This connects the analysis

to log-spline density estimation; see Kooperberg and Stone (1990). A spline is a piecewise

polynomial functions with knots xs, s = 1, . . . , S:

Spl(m,S) =
m∑
k=0

ak
(
xkI{x ≤ xS}+ xkSI{x > xS}

)
+

S−1∑
s=1

bs
([

max{x− xs, 0}
]mI{x ≤ xS}+ (xS − xs)mI{x > xS}

)
+

m∑
k=1

ck
[

max{x− xS, 0}
]m
.

Kooperberg and Stone (1990) suggest to make the function linear and upward sloping on

the interval (−∞, x1) and linear and downward sloping on the interval [xS,∞]. Thus, for

m = 3 this would lead to a2 = a1 = 0 and c2 = c3 = 0. This leads to tails of a Laplace

density, which are a bit thicker than Gaussian tails. Translating this specification into our

ζj(x), j = 0, . . . , K = S + 1 notation, we obtain:

ζ0(x) = 1 (18)

ζ1(x) = (xI{x ≤ xS}+ xSI{x > xS})

ζ2(x) =
([

max{x− x1, 0}
]3I{x ≤ xS}+ (xS − x1)3I{x > xS}

)
...

ζS(x) =
([

max{x− xS−1, 0}
]3I{x ≤ xS}+ (xS − xS−1)3I{x > xS}

)
ζS+1(x) = max{x− xS, 0}.
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3.2 Sieve Coefficients

The first step in the estimation of the functional model is the construction of the sequence of

estimated log-spline coefficients. For each period t, we estimate a log-spline density based on

the cross-sectional data xo1t, . . . , x
o
Nt; see (11). We denote the resulting maximum likelihood

estimates by α̂ok,t, k = 0, . . . , K. We drop the sequence of coefficients, α0,t, that simply

normalize the densities.

Seasonal Adjustment. In our application xoit is based on quarterly earnings data from the

Current Population Survey (CPS). Unlike the macroeconomic variables stacked in Zo
t , the

quarterly earnings data are not seasonally adjusted. To seasonally adjust the cross-sectional

densities, we estimate two regressions for k = 1, . . . , K by OLS:

Constant Mean : α̂ok,t = ᾱk + residual (19)

Quarterly Dummies : α̂ok,t =
4∑
q=1

sq(t)ᾱq,k + residual, (20)

where sq(t) = 1 if period t is associated with quarter q and sq(t) = 0 otherwise. For each

k we use the Schwarz information criterion (BIC) to choose between the two specifications

and then define α̂rk,t as the residual from the selected regression.

Compression. In our experience, the α̂rk,t series exhibit collinearity. We remove perfect

collinearities by expressing the coefficient series as linear combinations of a K̃ × 1 vector α̂ct

using principal component analysis. Here K̃ ≤ K. Let

α̂rt = Λ′α̂ct + residual, (21)

where Λ′ is a K×K̃ matrix of loadings. Now consider the following eigenvalue decomposition

of the sample covariance matrix of the α̂rt ’s:

V̂[α̂rt ] =
1

T

T∑
t=1

α̂rt α̂
r′

t = V ′ΞV, (22)

where V is a matrix of eigenvectors and Ξ is a diagonal matrix of eigenvalues. We define the

T ×K̃ matrix α̂c with rows α̂c
′
t where α̂c

′
t = α̂r

′
t V.1 and V.1 collects the eigenvectors associated

with non-zero (in practice less than 10−10) eigenvalues. The loadings can be computed as

Λ̂ = (α̂c
′
α̂c)−1α̂c

′
α̂r, (23)

where α̂r is the T × K matrix with rows α̂r
′
t . With a cut-off value for the eigenvalues of

10−10 the estimated loadings generate essentially a perfect fit in our application. Thus, we

can use Λ̂ to convert the α̂ct ’s back into α̂rt ’s.
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3.3 State-Space Representation

Because of the seasonal adjustment procedure, the α̂ck,t time series have mean zero. Thus,

we can simplify (12) to obtain the following measurement equation:

α̂ct = α̃ct +N−1/2ηct , ηct ∼ N(0, Vα̂ct ). (24)

Note that compared to (12) the dimension of the α̂t vector has changed because of the

compression step. The covariance matrix V c
α̂t

of the “measurement” errors is defined as

Vα̂ct = −
(
Λ̂Λ̂′

)−1
Λ̂
[
H(α̂ot )

]−1
Λ̂′
(
Λ̂Λ̂′

)−1
, (25)

where Λ̂ is the estimated loading matrix in (23) and H(α̂ot ) is the Hessian associated with

the original log likelihood function L(αt|Xo
t ) defined in (11). The Hessian depends on the

observations Xo
t only through α̂ot .

The state transition is essentially given by (10) but we need to adjust it for the compres-

sion of the αt vector. Moreover, we now absorb the matrix Cα into the matrices of regression

coefficients: [
Z̃t

α̃ct

]
=

[
Bzz Bc

zα

Bc
αz Bc

αα

][
Z̃t−1

α̃ct−1

]
+

[
uz,t

uαc,t

]
. (26)

We assume that the innovations are normally distributed and write the state transition more

compactly as

wt = Φ1wt−1 + ut, ut ∼ N(0,Σ), (27)

where wt = [Z̃t, α̃
c
t ].

3.4 Priors and Posteriors

Prior to the estimation of the state-space model, we remove the deterministic components

from Zo
t and α̂ot . Thus, the unknown coefficients are concentrated in the state-transition

equation (27), which takes the form of a multivariate linear Gaussian regression model. The

state transition can be expressed in matrix form as

W = ΦX + U,

where W , X, and U have rows w′t, x
′
t, and u′t, respectively and Φ = Φ′1. Defining φ = vec(Φ)

we use a prior distribution of the form

Σ ∼ IW (ν, S), φ|λ ∼ N
(
µ
φ
, P−1

φ (λ)
)
, (28)
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where IW (·) is the Inverse-Wishart distribution with ν degrees of freedom and scale matrix

S.

The prior precision matrix P φ(λ) is a function of a vector of hyperparameters λ =

[λ1, λ2, λ3]′ and takes the form

P φ(λ) = λ1


(Σ−1)zz ⊗

[
Inz 0

0 λ2Inα

]
(Σ−1)zα ⊗

[ √
λ3Inz 0

0
√
λ2Inα

]

(Σ−1)αz ⊗

[ √
λ3Inz 0

0
√
λ2Inα

]
(Σ−1)αα ⊗

[
λ3Inz 0

0 Inα

]
 . (29)

Here the partitions of Σ−1 conform with the partition wt = [Z̃t, α̃
c
t ]. The hyperparameter

λ1 controls the overall precision of the prior distribution; λ2 scales the relative precision of

the prior distribution for the coefficients that control the effect of α̃ct−1 on Z̃t; likewise, λ3

scales the relative precision of the prior distribution for the coefficients that control the effect

of Z̃t−1 on α̃ct . Unlike the more commonly used matrix-Normal Inverse-Wishart prior that

mimicks the Kronecker structure of the likelihood function, the prior in (28) allows us to

control the degree of spillovers from distributional dynamics to the aggregate dynamics and

vice versa. If the prior mean µ
φ

is zero, then as λ2, λ3 −→∞, the posterior distributions of

Bαz and Bzα concentrate around zero, which shuts down spillover effects.

However, The problem with the aforementioned prior is that this prior does not account

for the different scales of the yt elements when determining the hyperparameter. Consider

the first equation of a simplified model:

Z1t = φz1z1Z1t−1 + φz1z2Z2t−1 + u1t.

Suppose that the regressors have mean zero and that

φi ∼ N(0, 1).

Then the contribution of the first term conditional on Zt−1 is a N(0, Z2
1t−1) whereas the

contribution to the second term is a N(0, Z2
2t−1). Thus, a priori, depending on the scale of

the two regressors, the relative contribution of the two regressors can be quite different. To

avoid this problem, one can use a prior of the form

φz1z1 ∼ N
(
0, 1/σ2

z1

)
, φz1z1 ∼ N

(
0, 1/σ2

z2

)
In order to implement this idea in the more general specification, we should replace:

Inz by

[
σ2
z1 0

0 σ2
z2

]
, Inα by

[
σ2
α1 0

0 σ2
α2

]
.
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So the analogous modification is applied to the prior stated in (29).

Conditional on λ, it is straightforward to sample from the posterior distribution of (φ,Σ)

using a Gibbs sampler following the approach in Carter and Kohn (1994) that iterates over

the blocks:

φ|(Σ,W1:T ), Σ|(φ,W1:T ) W1:T |(φ,Σ, Z̃1:T , α̂
c
1:T ).

Here it is important to note that conditional on W1:T the observations (Z̃1:T , α̂
c
1:T ) do not

contain any information about (φ,Σ).

3.5 Recovering Cross-Sectional Densities

Based on the estimated state-transition equation (26) we can generate forecasts and impulse

response functions for the compressed coefficients α̃ct . However, the dynamics of these co-

efficients in itself is not particularly interesting. Thus, we have to convert them back into

densities using the following steps (which can be executed for each draw of α̃ct from the

relevant posterior distribution). First, use (24) to turn α̃ct into α̂ct . If the goal is to generate

forecasts of observed cross-sectional densities then the conversion should account for the

measurement error ηct . If the goal is to generate impulse response functions for the densities,

then we recommend setting ηct equal to zero. Second, use (21) and (23) to transform α̂ct into

α̂rt . Third, use (19) to recover α̂ok,t. If the goal is to compute impulse responses, use as in-

tercept the average of the seasonal dummies 1
4

∑4
q=1 ᾱq,k. Forth, compute the normalization

constant αo0,t as well as the density p(K)(Xo
t |αot ) according to the definition in (7).

4 Empirical Analysis

The empirical analysis focuses on the joint dynamics on total factor productivity, real per-

capita GDP, and employment at the aggregate level and the cross-sectional distribution of

earnings. Using our functional state-space model, we examine the following three ques-

tions: (i) Do distributional dynamics affect aggregate dynamics? (ii) What is the effect of a

technology shock on the cross-sectional distribution of earnings? (iii) What are the dynamic

responses to different types of distributional shocks? We begin with a description of the data

set and the basic parameter estimates in Section 4.1 and then examine the aforementioned

questions in Sections 4.2 to 4.4.
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4.1 Data and Model Estimation

Data. We use three macroeconomic aggregates in our empirical analysis: total factor pro-

ductivity (TFP), real per-capita GDP, and the employment rate. In addition, we use cross-

sectional data on earnings. Real per-capita GDP (A939RX0Q048SBEA) is provided by the

Federal Reserve Bank of St. Louis’ FRED database and the TFP series (dtfp) is obtained

from Fernald (2012). Weekly earnings (PRERNWA) are obtained from the monthly Current

Population Survey (CPS) through the website of the National Bureau of Economic Research

(NBER). Based on the CPS variable PREXPLF “Experienced Labor Force Employment”

we construct an employment indicator which is one if the individual is employed and zero

otherwise. This indicator is used to compute the aggregate employment rate.

We pre-process the cross-sectional data as follows. We drop individuals if (i) the em-

ployment indicator is not available; and (ii) if they are coded as “employed” but the weekly

earnings are missing. In addition, we re-code individuals with non-zero earnings as employed

and set earnings to zero for individuals that are coded as not employed. Weekly earnings

are scaled to annual earnings by multiplying with 52. A CPS-based unemployment rate is

computed as the fraction of individuals that are coded as not employed. By construction

this is one minus the fraction of individuals with non-zero weekly earnings, which is used

to normalize the cross-sectional density of earnings. It turns out that the CPS-based unem-

ployment rate tracks the aggregate unemployment rate (UNRATE from FRED) very closely.

The Online Appendix contains a figure that overlays the two series.

In the left panel of Figure 1 we plot average log nominal earnings computed from the

cross-sectional data and log nominal per-capita GDP. We scale per-capita GDP by a factor

of 2/3 to account for the labor share.3 After this re-scaling the mean of log earnings and log

per-capita GDP have approximately the same level. However, the mean log earnings grow

more slowly than per-capita GDP. In the right panel of the Figure we plot the average log

earnings-to-GDP ratio (here per-capita GDP is again scaled by 2/3) and the demeaned log

labor share of the nonfarm business sector (obtained from the Bureau of Labor Statistics).

The drop in the log earnings-to-GDP ratio is of the same order of magnitude as the fall in

the labor share over the sample period.

3Nominal per-capita GDP is obtained by multiplying real per-capita GDP by the GDP deflator

(GDPDEF from FRED). The factor 2/3 is a rule-of-thumb number that happens to align the levels in

the left panel. The average labor share of the nonfarm business sector over the sample period is 0.6.
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Figure 1: Earnings and GDP

Log Earnings and GDP Log Earnings/GDP

Notes: Left panel: average log earnings (blue, solid) and log per capita GDP (red, dashed). Right panel:
average log earnings-to-GDP ratio (blue, solid) and demeaned log labor share (red, dashed) of the nonfarm
business sector. In both panels per-capita GDP is scaled by 2/3 to account for the labor share.

In the remainder of this paper we simply standardize individual-level earnings by (2/3)

of nominal per-capita GDP. Rather than taking a logarithmic transformation of the earnings

data, we apply the inverse hyperbolic sine transformation, which is given by

g(x|θ) =
ln(θx+ (θ2x2 + 1)1/2)

θ
=

sinh−1(θx)

θ
, x =

Earnings

(2/3) · per-capita GDP
. (30)

The function is plotted in the Online Appendix. We set θ = 1. For small values of x the

function is approximately equal to x and for large values of x it is equal to log(x) + log(2).

This transformation avoids the thorny issue of applying a log transformation to earnings

that are close to zero.

Log-Spline Density Estimation. We take the time period t to be a quarter. For each

quarter from 1989:Q2 to 2017:Q3 we estimate a cross-sectional density for the transformed

earnings-to-GDP ratio; see (30). Seven knots for the log-spline density estimation are placed

at the 0.01, 0.1, 0.25, 0.5, 0.75, 0.9, and 0.98 quantiles of the distribution of the pooled

(across-time periods) transformed earnings data. It is important to note that the knot

locations are identical for each period t, to ensure that the basis functions associated with

the polynomial spline are time invariant. All the time variation in the densities is captured by
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Figure 2: Estimated Log Earnings Distributions

Transformed Earnings/GDP Earnings/GDP

Notes: Each hairline corresponds to the estimated density of earnings for a particular quarter t, where t
ranges from 1989:Q1 to 2017:Q3. Transformation is inverse hyperbolic sine transformation in (30).

the time coefficients which are estimated separately for each quarter. As mentioned above,

in each period, we are normalizing the cross-sectional density by the fraction of individuals

who reported to be employed. In Figure 2 we overlay the log-spline estimates of the cross-

sectional densities. The left panel shows the density of the transformed earnings whereas

the right panel shows the densities of the original earnings-to-GDP ratio which is obtained

by a change-of-variables.

Functional State-Space Model Estimation. The log-spline density estimation generates

the coefficients α̂ok,t, k = 0, . . . , K = 8 and for t ranging from 1989:Q2 to 2017:Q3. After
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dropping the coefficients α̂0,t that normalize the densities, we proceed with the seasonal

adjustment and the compression described in Section 3.2. This leads to the coefficient vector

α̂ct in (24) which turns out to be of dimension 6×1 after the compression step. The vector Zo
t

in (5) is composed of TFP growth, real per-capita GDP growth, and the unemployment rate

computed from the CPS data. We set Z∗ equal to the mean of these three series. Subsequent

results about the dynamics of the cross-sectional densities are obtained by converting α̃ct

vectors back into α̂ot vectors as described in Section 3.5. We re-normalize the densities so

that they integrate to the period t employment rate, and then apply the change-of-variable

formula to obtain a density for the earnings-to-GDP ratio.

The estimation of the functional state-space model is based on the prior distribution

in (28) and (29). We set ν = nw + 5, where nw is the dimension of the vector wt in the

state-transition equation (27), and let Σ = νΣ̂, where Σ̂ is the OLS estimator of Σ in (27)

that obtains when the latent α̃ct in the definition of wt is replaced by the observable α̂ct . The

prior for φ is centered at µ
φ

= 0. We defer the discussion of the choice of the hyperparameter

λ to Section 4.2 below. Our estimation sample, after computing growth rates for TFP and

GDP growth, ranges from 1989:Q2 to 2017:Q3.

Figure 3 overlays the observed α̂ck,t versus the smoothed α̃ck,t generated as output of the

Gibbs sampler. The discrepancy is the measurement error ηck,t, which is generally small. The

observed and the smoothed series exhibit a strong comovement. For k ≥ 2 the smoothed

series are less volatile than the original series. Recall that the observed α̂ck,t series are de-

meaned. All of the series show low frequency movements around zero in combination with

some high frequency fluctuations. The k = 4, 5 exhibit a upward trend whereas the other

series do not. The coefficient series as well as the estimated parameters of the functional

state-transition equation are difficult to interpret, which is why we will examine their implica-

tions for the dynamics of the aggregate variables and the cross-sectional earnings distribution

in the remainder of this section.

4.2 Do Distributional Dynamics Affect Aggregate Dynamics?

Shrinking Toward Block-Diagonality. The spillovers between distributional and ag-

gregate dynamics are affected by the coefficient matrices Bc
zα and Bc

αz in (26). In fact, if

these matrices are equal to zero then the aggregate variables do not Granger-cause the cross-

sectional income distribution and vice versa. The prior covariance matrix P φ(λ) allows us

to vary the degree of shrinkage for the off-diagonal elements which leads to a continuum
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Figure 3: Observed α̂ck,t versus Smoothed α̃ck,t

k = 1 k = 2 k = 3

k = 4 k = 5 k = 6

Notes: The red solid lines correspond to the smoothed α̃ck,t series, whereas the blue dashed lines represent
the observed series α̂ck,t.

of model specifications of varying degree of spillovers. The fit of these model specifications

can be characterized by their respective marginal data densities (MDDs) which include a

penalty for model complexity. We plot the log marginal data density as a function of λ2 and

λ3 in Figure 4 at the chosen hyperparameter λ̂1 = 1.54. To simplify the computation of the

MDD surface, we set the measurement error covariance matrix Vα̂ct to zero. While this would

affect the ranking between the functional state-space model and other model classes, given

the small magnitude of the estimated measurement errors in (3), we expect the distortion of

inference about λ to be small. We define

λ̂ = argminλ∈Λ ln MDD(λ),

where Λ is the grid that was used to generate Figure 4.

Recall that the hyperparameters scale the precision of the prior. The small value of

λ̂1 = 1.54 indicates that the overall prior variance for the φ parameters is large. However,
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Figure 4: Log Marginal Data Density as Function of λ2 and λ3

Notes: The log MDD surface is computed after setting the measurement error covariance matrix Vα̂c
t

in (24)

to zero. The log MDD is maximized at λ̂1 = 1.54, λ̂2 = 1657.88, and λ̂3 = 159.4 with ln MDD(λ̂) = −547.03.

the large value of λ̂2 = 1657.88 implies that the fit (accounting for model complexity)

improves by shrinking the parameters in the off-diagonal blocks Bc
zα to zero. Thus, overall

the estimated spillovers are small. The empirical results in the remainder of this section

condition on the hyperparameter estimate λ̂.

Impulse Response Comparison. To illustrate the economic significance of the estimated

off-diagonal blocks, we compare impulse response functions (IRFs) of the aggregate vari-

ables to the aggregate shocks under two parameterizations: (i) the posterior mean estimates

of the matrices (Bzz, B
c
zα, B

c
αz, B

c
αα,Σ); (ii) the posterior mean estimates of the matrices

(Bzz, B
c
αα,Σ) and zero off-diagonal blocks Bc

zα = 0 and Bc
αz = 0. In the vector Z̃t we order

TFP growth first, GDP growth second, and the employment rate third. We use a Cholesky

factorization Σ = ΣtrΣ
′
tr to orthogonalize the vector of reduced-form innovations ut:

ut = Σtrεt. (31)

We interpret the first element ε1t as technology innovation and the elements ε2t and ε3t,

broadly, as shocks to GDP growth and the employment rate. Results are depicted in Figure 5,

which depicts responses of the employment rate and the log levels of TFP and GDP to a

one-standard deviation shocks. Overall, the IRFs of the estimated system and the block-

diagonal system are small. Despite these small difference, overall, the estimated dynamics
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Figure 5: Impulse Responses of Aggregate Variables to Aggregate Shocks

TFP Shock GDP Shock Empl. Shock
T

F
P

G
D

P
E

m
p
l.

Notes: IRFs for one-standard deviation aggregate shocks (orthogonalized via Cholesky factorization; see
(31)). Panels depict responses of the log level of TFP and GDP, scaled by 100, and responses of the
employment rate in percent. Solid blue responses are based on posterior mean estimates of Bczα and Bcαz;
dashed red responses are based on setting Bczα = 0 and Bcαz = 0.

are very similar to that of a block-diagonal system, indicating that there is not strong channel

that leads from aggregate shocks to distributional responses and feeds back into aggregate

dynamics.

Historical Decompositions. We now examine the contribution of aggregate shocks to the

fluctuations of TFP growth, GDP growth, and the employment rate. We do so by computing

conditional on the posterior mean estimates (denoted by “hats” below) of (φ,Σ) and the

partially unobserved states {wt}Tt=1, the historical sequence of orthogonalized innovations:

ε̂t = Σ̂−1
tr (ŵt − Φ̂1ŵt−1). (32)
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Figure 6: Historical Decomposition of Aggregate Series

TFP Growth GDP Growth Unempl. Rate

Notes: Actual paths (blue, solid) and counterfactual paths generated by innovations to macroeconomic
aggregates only (red, dashed). Q-o-Q TFP and GDP growth rates are in annualized percentages. The
unemployment rate is in percent.

Then, starting from w0 = ŵ0, we iterate the VAR difference equation forward based on a

subset of the historical innovations:

w∗t = Φ̂1w
∗
t−1 + Σ̂trMεε̂t, (33)

where Mε is a diagonal selection matrix with zeros and ones on the diagonal that selects a

subset of the elements of the ε̂t vector. The counterfactual path also reflects the effect of the

initial condition. Recall that wt = [Z̃t, α̃t]. For the aggregate series, we simply overlay Z̃t

and the counterfactual Z̃∗t .

Results for the historical decompositions are depicted in Figure 6. The actual and coun-

terfactual paths of TFP growth, GDP growth, and the unemployment rate are very similar,

meaning that the contribution of the distributional shocks is negligible. This comes from

the structure that’s close to block-diagonal with the selected hyperparameters.

4.3 Effects of Aggregate Shocks

Impulse Responses to a TFP Shock. Recall that in the vector wt TFP growth is

ordered first, GDP growth is second, the CPS-based unemployment is third, and the income

distribution is last. Under the assumption that shocks to GDP growth and the income

distribution do not affect measured TFP contemporaneously, the TFP growth innovation

is identified as ε1t based on the Cholesky factorization in (31). Figure 7 shows impulse
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Figure 7: Impulse Responses to a TFP Shock

TFP, GDP, Empl. Rate [%] Earnings/GDP Distr. Distr. Response

Horizons h = 0, . . . , 19 Horizon h = 4 Horizon h = 4

Notes: Responses to a 3-standard-deviations shock to TFP. The system is in steady state at h = −1 and
the shock occurs at h = 0. Each hairline corresponds to a draw from the posterior distribution. Left panel:
TFP (magenta, dotted), GDP (blue, solid) and Employment Rate (red, dashed). Center panel: steady
state earnings/GDP density (red dashed), shocked density (blue solid), and difference (black). Right panel:
zoomed-in difference between shocked and steady state density. Red dashed line is the posterior mean
response.

responses to a three-standard deviation TFP innovation. We take a subsample of 20 draws

from the posterior distribution of the VAR parameters and compute IRFs for each of these

parameter draws. According to the left panel, in response to this shock the level of TFP

rises in between 180 and 300 basis points (the figure depicts the response of log TFP, scaled

by 100) in the log-run, whereas log per-capita GDP rises in between 150 and 300 basis

points. Some of the TFP responses exhibit a slight hump-shaped pattern whereas most of

the GDP responses are monotonic (recall, the responses are based on a functional VAR(1)

state-transition equation). We also show responses of the employment rate. Here a number

of one means that the employment rate increases by 100 basis points (or equivalently, the

unemployment falls by one percentage point).

The center panel shows the estimated steady state density of the income distribution

(obtained from the mean coefficients ᾱ) as well as the response of this density to the TFP

shock after h = 4 quarters. Visually, the two densities are difficult to distinguish. We also

overlay the difference between the steady state and the shocked density and then plot this

difference separately in the right panel of Figure 7. For the center and right panels, a one

on the x-axis refers to an individual whose earnings are equal to GDP per capita (adjusted

for a labor share of 2/3). Maybe surprisingly, there seems to be a shift of probability mass
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Figure 8: Impulse Responses to a TFP Shock – Continued

Fraction of Individuals Gini Coefficient

Earning Less than per-capita GDP [%]

Notes: Responses to a 3-standard-deviations shock to TFP. The system is in steady state at h = −1 and the
shock occurs at h = 0. Red dashed line is the posterior mean response. Blue lines stand for the 90th-quantile
and the 10th-quantile of the responses.

in the distribution of the log earnings-to-GDP ratio to the left. Now consider a hypothetical

individual who shifts from 1.25 to 0.75 in this distribution in response to a TFP shock. Prior

to the shock, this individual’s earnings were 25% above the per-capita GDP (adjusted for

a labor share of 2/3) benchmark, whereas after the shock it dropped to being 25% below

the benchmark. Meanwhile the level of per-capita GDP rises by about 2.4%, making the

individual significantly worse off. However, dynamics of the distribution of log earnings are

mean reverting and the effect dies out fairly quickly.

To assess the overall effect of a technology shock on the earnings distribution we plot the

response of the probability mass assigned to individuals with an earnings-to-per-capita-GDP

ratio less than one in the left panel of Figure 8. This figure includes the band consisting of

the 10th and the 90th quantile of the responses. The response is positive but fairly small

– less than 2% for most hairlines and around 0.5% on average. The positive response is

consistent with a model in which individuals are heterogeneous with respect to their skills

and during expansions more low-skilled individuals enter the labor force. The right panel

of the figure depicts the response of the Gini coefficient. The uncertainty band indicates a
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slight decline of the Gini coefficient (decrease in inequality) after the shock, but the effect is

quantitatively small.

Another way to look at the overall effect of a technology shock on the distribution is to

look at how its quantiles respond. Figure 9 show the responses of various quantiles (10, 20,

50, 80, and 90th). With a positive technology shock, there is an increase in 10th-quantile of

the distribution as more low-skilled individuals start to earn. The median of the distribution

does not respond much to this technology shock. For higher quantiles, there is more uncer-

tainty involved, but the posterior mean response indicates that there is decrease in 80th and

90th-quantiles. Overall, Figure 9 show that the distribution is slightly more compressed,

which is consistent with the decrease in Gini coefficient.

Figure 9: Responses to a TFP Shock – Continued

TFP, GDP, Empl. Rate [%] 10th-quantile 20th-quantile

50th-quantile 80th-quantile 90th-quantile

Notes: Responses to a 3-standard-deviations shock to TFP. The system is in steady state at h = −1 and
the shock occurs at h = 0. Red dashed line is the response at the posterior mean. Blue lines stand for the
90th-quantile and the 10th-quantile of the responses.
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Figure 10: Responses to a TFP Shock

TFP, GDP, Empl. Rate [%] 10th-quantile 20th-quantile

50th-quantile 80th-quantile 90th-quantile

Notes: Responses to a 3-standard-deviations shock to TFP. The system is in steady state at h = −1 and
the shock occurs at h = 0. Red dashed line is the response at the posterior mean. Blue lines stand for the
90th-quantile and the 10th-quantile of the responses.

Comparison to VAR with Quantiles. One may wonder whether the quantiles are suf-

ficient to span the information as in α̃’s. In order to answer this question, we conduct

a canonical correlation analysis to find linear combinations of quantiles and α̃’s that have

maximum correlations and are orthogonal to each other. The following is the output of the

canonical correlation analysis using 10, 20, 50, 80, and 90th quantiles:

0.999, 0.997, 0.961, 0.868, 0.415

Although some correlations are high (as in first three numbers), the quantiles do not

seem to span all the information as in α̃’s.

We also run VAR with the aggregate variables and the 10-20-50-80-90 quantiles instead

of adding α̃’s to represent the distsribution. Hyperparameter selection gives λ1 = 0.22, λ2 =
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1315.76, and λ3 = 9.83 for the VAR with the quantiles. Then we obtain the analogous figure

including IRFs of the quantiles to compare with Figure 9. Figure 10 shows the IRFs from

the VAR with the aggregates and the quantiles. Based on the posterior mean response, the

10th-quantile increases whereas the median, 80th, and 90th-quantile decrease. Qualitatively,

Figure 9 and Figure 10 show the compression of the earnings distribution after a positive

technology shock. However, the VAR with the quantiles renders the bigger and significant

drop in higher quantiles.

Historical Decomposition. We now examine what fraction of the fluctuation of the

earnings densities is due to aggregate shocks. Starting point are the sequences ˆ̃αct and α̃c∗t ,

where the latter is generated by (33), shutting down the distributional shocks. Using the

steps described in Section 3.5 we convert the compressed coefficients into densities p̂t(x) and

p∗t (x). In addition, we generate a sequence w0
t by setting Mε = 0 in (33).

Figure 11: Historical Decomposition of Variation in Earnings Densities

Notes: Importance measure for aggregate innovations (red, dashed) and distributional innovations (blue,
solid); see (34).

Let p0
t (x) be the sequence of densities that corresponds to α̃c0t . This sequence only

captures the effect of the initial ŵ0, but is not perturbed by εt innovations. Let ∆L1(pt, qt)

be the L1 distance between the densities pt(x) and qt(x). Finally, we define our measure of

the importance of a particular group of innovations εi,t. Suppose that p∗t (x) is generated by

shutting down the innovations εi,t. Then

IMP ∗t (εi) = 1− ∆L1(p
∗
t , p

0
t )

∆L1(p̂t, p
0
t )

(34)
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can be viewed as a measure of the importance of the omitted innovation. If omitting the

innovation has essentially no effect on α̃∗t , then p̂∗t (x) ≈ p̂t(x) and IMP ∗t (εi) ≈ 0. If the

shock explains most of the fluctuations in α̃t, then ∆L1(p̂
∗
t , p̂

0
t ) is close to zero and IMP ∗t (εi)

is approximately one. Because the mapping from the α̃ct coefficients into the L1 distances

between the three densities is nonlinear, the specific magnitudes (other than the extremes

of zero and one) are unfortunately difficult to interpret.

Results are depicted in Figure 11. We show the importance measure for the aggregate

and distributional shocks because due to the nonlinearity of the transformation the two

measures do not add up to one. The figure shows that while there are some spillovers from

the aggregate shocks to the distributional dynamics, most of the fluctuations in the earnings

distributions are driven by distributional shocks.

4.4 Effects of Distributional Shocks

The identification of a distributional shock requires additional assumptions. Recall that

ut has the partitions uz,t and uαc,t. We denote the conforming partitions of Σtr by Σtr,zz,

Σtr,zα = 0, Σtr,αz, and Σtr,α,α. Now let q = [0, qα] be a unit-length vector with partitions that

conform with the partitions of Σtr.

We then define the impact vector of the distributional shock by[
Σtr,zz 0

Σtr,αz Σtr,αα

][
0

qα

]
.

We determine the vector qa, which maximizes the effect on the Gini coefficient. We

consider a shock that generates a maximal increase in the Gini coefficient upon impact.

The results are depicted in Figure 12. The average response of the Gini coefficient spikes

and fades away by construction of the distributional shock. The response in the fraction

of earnings that are less than the labor share of per-capita GDP increases and this change

stays for a while. The effect of distributional shock on the aggregate variables is ambiguous

in the short run and in the long run. Hence, it is hard to say that aggregate variables show

significant responses given a shock that maximizes the Gini coefficient based on the earnings

distribution.
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Figure 12: Responses to a Distributional Innovation ε∗t (Maximize Gini-Coefficient)

Earnings/GDP Distr. Distr. Response Distr. Response

Horizon h = 0 Horizon h = 0 Horizon h = 4

Fraction Earning Gini Coefficient TFP, GDP, Empl. Rate [%]

< per-capita GDP [%] Horizons h = 0, . . . , 19 Horizons h = 0, . . . , 19

Notes: Responses to a 3-standard-deviation distributional innovation ε∗t . The system is in steady state at
h = −1 and the shock occurs at h = 0. Each hairline corresponds to a draw from the posterior distribution.
Dashed lines in panels (1,2), (1,3), (2,1) and (2,2) are posterior mean responses. Panel (1,1): steady state log
earnings density (red dashed), shocked density (blue solid), and difference (black). Panels (1,2) and (1,3):
difference between shocked and steady state density. Panel (2,3): TFP (magenta, dotted), GDP (blue, solid)
and Employment Rate (red, dashed).
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5 Conclusion

We developed a vector autoregressive model that stacks macroeconomic aggregates and and

cross-sectional distributions to provide semi-structural evidence about the interaction of

aggregate and distributional dynamics. We applied the model to examine the effect of a

technology shock on the earnings distribution and the effect of a shock that moves the

earnings distribution on macroeconomic aggregates. The technique developed in this paper

should be useful more broadly for the evaluation of heterogeneous agent macro models.
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Online Appendix: Heterogeneity and Aggregate Fluctuations

Minsu Chang, Xiaohong Chen, and Frank Schorfheide

A State-Space Model

A.1 Measurement Error Covariance Matrix

We construct the measurement error covariance matrix from the Hessian of the log-likelihood

function for the cross-sectional observations. Let ζk(x) be the basis functions for the log spline

approximation of the cross-sectional density pt(x) and let Xo
t = {xo1t, . . . , xoNt}. The density

of the observations Xo
t in period t can be expressed as

L(αt|Xo
t ) = p(K)(Xo

t |αt) = exp
{
ζ̄(Xo

t )αt
}
, (A.1)

subject to the restriction that the density normalizes to one:

α0,t =

∫
exp

{
K∑
k=1

αk,tζk(x)

}
dx. (A.2)

Imposing this restriction, the log likelihood function becomes

L(αt|Xo
t ) =

K∑
k=1

αk,tζ̄k(X
o
t )−N ln

∫
exp

{
K∑
k=1

αk,tζk(x)

}
dx. (A.3)

The first-order derivatives with respect to αk for k = 1, . . . , K are given by

L(1)
k (αt|Xo

t ) = ζ̄k(X
o
t )−N

∫
ζk(x) exp

{∑K
k=1 αk,tζk(x)

}
dx∫

exp
{∑K

k=1 αk,tζk(x)
}
dx

(A.4)

The second-order derivatives are given by

L(2)
kl (αt|Xo

t ) = −N A

B
, (A.5)

where

A =

[∫
ζk(x)ζl(x) exp

{
K∑
k=1

αk,tζk(x)

}
dx

][∫
exp

{
K∑
k=1

αk,tζk(x)

}
dx

]

−

[∫
ζk(x) exp

{
K∑
k=1

αk,tζk(x)

}
dx

][∫
ζl(x) exp

{
K∑
k=1

αk,tζk(x)

}
dx

]

B =

[∫
exp

{
K∑
k=1

αk,tζk(x)

}
dx

]2

.
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Using the constraint on α0,t in (A.2), we can simplify the expressions to

A =

[∫
ζk(x)ζl(x) exp

{
K∑
k=1

αk,tζk(x)

}
dx

]
exp{−a0}

−

[∫
ζk(x) exp

{
K∑
k=1

αk,tζk(x)

}
dx

][∫
ζl(x) exp

{
K∑
k=1

αk,tζk(x)

}
dx

]
B = exp{−2a0,t}.

We can therefore write the K ×K Hessian as

H(αt) =
[
L(2)
kl (αt|Xo

t )
]

(A.6)

with elements

L(2)
kl (αt|Xo

t )

= −N
(∫

ζk(x)ζl(x)p(K)(x|αt)dx−
∫
ζk(x)p(K)(x|αt)dx

∫
ζl(x)p(K)(x|αt)dx

)
= −N

∫ (
ζk(x)−

∫
ζk(x)p(K)(x|αt)dx

)(
ζl(x)−

∫
ζl(x)p(K)(x|αt)dx

)
p(K)(x|αt)dx.

and

p(K)(x|αt) = exp
{
ζ(x)αt

}
.

The Hessian can be evaluated at αt = α̂rt .

We subsequently make two adjustments to the coefficients. First, we remove a (sea-

sonal) mean ᾱt =
∑4

q=1 sq(t)ᾱq,k. Second, we compress the coefficients to eliminate perfect

collinearities:

(α̂rt − ᾱt) = Λα̂ot ,

which implies that

α̂ot = (Λ′Λ)−1Λ′(α̂rt − ᾱt).

Thus, we define

Vα̂ot = −
(
Λ̂Λ̂′

)−1
Λ̂
[
H(α̂rt )

]−1
Λ̂′
(
Λ̂Λ̂′

)−1
. (A.7)
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B Shock Identification

Here we provide additional details on how to identify a shock that maximizes the contribution

to the variance of variable i at horizons h = 1, . . . , h̄. Define the matrix M =
[
0nz×nαc , Inz

]
and the vector ei that has a one in position i and zeros elsewhere such that we can write

wi,t+h − E[wi,t+h] = . . .+ e′i

h−1∑
j=0

Φj
1ΣtrMqα + . . . .

We can now define q∗α as the impact effect of the shock that maximizes the forecast error

variance over horizons h = 1, . . . , h̄:

q∗α = argmax e′i

[
h̄∑
h=1

h−1∑
j=0

Φj
1ΣtrMqαq

′
αM

′Σ′tr(Φ
j
1)′

]
ei. (A.8)

Using the facts that x′A′x = tr[xx′A] and tr[AB] = tr[BA], we can rewrite the objective

function as

e′i

[
h̄∑
h=1

h−1∑
j=0

Φj
1ΣtrMqαq

′
αM

′Σ′trΦ
j′

1

]
ei (A.9)

=
h̄∑
h=1

h−1∑
j=0

tr

[
(eie

′
i)(Φ

j
1ΣtrM)(qαq

′
α)(M ′Σ′trΦ

j′

1 )

]

=
h̄∑
h=1

h−1∑
j=0

tr

[
(qαq

′
α)(M ′Σ′trΦ

j′

1 )(eie
′
i)(Φ

j
1ΣtrM)

]

= q′α

[
h̄∑
h=1

h−1∑
j=0

(M ′Σ′trΦ
j′

1 )(eie
′
i)(Φ

j
1ΣtrM)

]
qα

= q′αSqα.

The optimization problem can therefore be expressed as Lagrangian

L = q′αSqα − λ(q′αqα − 1), (A.10)

which leads to the first-order condition

Sqα = λqα. (A.11)

At the first-order condition, we obtain that L = λ. Thus, the solution is obtained by finding

the eigenvector associated with the largest eigenvalue of the matrix S.
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C Supplemental Information About the Empirical

Analysis

C.1 Data Construction

The observations on real per capita GDP, GDP deflator, and the unemployment rate are

downloaded from the Federal Reserve Bank of St. Louis’ FRED database:

https://fred.stlouisfed.org/.

The TFP series is available from the Federal Reserve Bank of San Francisco:

https://www.frbsf.org/economic-research/indicators-data/total-factor-productivity-tfp/.

The labor share series is available from the Bureau of Labor Statistics, labor productivity

and cost measures: https://www.bls.gov/lpc/.

The CPS raw data are downloaded from

http://www.nber.org/data/cps basic.html.

The raw data files are converted into STATA using the do-files available at:

http://www.nber.org/data/cps basic progs.html.

We use the series PREXPLF (“Experienced Labor Force Employment”), which is the same

as in the raw data, and the series PRERNWA (“Weekly Earnings”), which is constructed

as PEHRUSL1 (“Hours Per Week at One’s Main Job”) times PRHERNAL (“Hourly Earn-

ings”) for hourly workers, and given by PRWERNAL for weekly workers. STATA dictionary

files are available at:

http://www.nber.org/data/progs/cps-basic/

C.2 Data Transformations

The left panel of Figure 13 compares the aggregate unemployment rate to the unemployment

rate computed from the CPS data. The levels of the two series are very similar, but the CPS

unemployment rate exhibits additional high-frequency flucutations, possibly due to seasonals

that have been removed from the aggregate unemployment rate.
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Figure 13: CPS Unemployment and Earnings Transformation

Unemployment Rates Income Transformation

Notes: Left panel: CPS unemployment rate (blue, solid) and aggregate unemployment rate (red, dased).
Right panel: inverse hyperbolic sine transformation (blue, solid) for θ = 1 given in Eq. (A.12), logarithmic
transformation (red, dashed), and 45-degree line (orange, dotted).

We transform the earnings-GDP ratio using the inverse hyperbolic sine transformation,

which is given by

g(x|θ) =
ln(θx+ (θ2x2 + 1)1/2)

θ
=

sinh−1(θx)

θ
. (A.12)

The transformation is plotted in the right panel of Figure 13 for θ = 1. Note that g(0|θ) = 0

and g(1)(0|θ) = 1, that is, for small values of x the transformation is approximately linear.

For large values of x the transformation is logarithmic:

g(x|θ) ≈ 1

θ
ln(2θx) = ln 2 +

1

θ
ln(x).
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D Outline of Theory

The data generating process is given by (3), (4), (5), we we reproduce for convenience

lnZo
t = lnZ∗ + Z̃t

xoit ∼ iid pt(x) =
exp{`∗(x) + ˜̀

t(x)}∫
exp{`∗(x) + ˜̀

t(x)}dx
, i = 1, . . . , N, t = 1, . . . , T

Z̃t = BzzZ̃t−1 + Bzl[˜̀t−1] + uz,t

˜̀
t(x) = Blz(x)Z̃t−1 + Bll[˜̀t−1](x) + ul,t(x)

The first part of our theory focuses on the analysis of a least squares estimator that is

generated as follows:

1. Compute period-by-period ML estimates α̂ot ; see (11).

2. Let α̂∗ = 1
T

∑T
t=1 α̂

o
t and α̃t = α̂ot − α̂∗.

3. Let l̂nZ∗ = 1
T

∑T
t=1 lnZo

t and Z̃t = lnZo
t − l̂nZ∗.

4. Use OLS to estimate Z̃t

α̃t

 =

 Bzz Bzl

Blz Bll

 Z̃t−1

Cαα̃t−1

+

 uz,t

uα,t

 , Cα =

∫
ξ′(x̃)ζ(x̃)dx̃.

Step 1: Control “biases” from finite-dimensional approximations. Given K:

• Assuming that N −→∞, derive pseudo-true ¯̀(K)
t .

• Given ¯̀(K)
t and assuming T −→ ∞, derive pseudo-true B̄

(K)
ll (x, x̃), etc., based on the

definition of the OLS estimator.

Step 2: Control “variances” that result from replacing:

• pseudo-true ¯̀(K)
t by an estimate ˆ̀(K)

t (sample size N);

• B̄
(K)
ll (x, x̃), etc., by estimates B̂

(K)
ll (x, x̃), etc., based on ˆ̀(K)

t (sample size T );

Step 3: Under suitable regularity conditions for DGP, derive bounds on “bias” and “vari-

ance” to obtain rates for the consistency of coefficients, forecasts, IRFs as (K,N, T ) −→∞.


