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Abstract. An experimenter seeks to learn a subject’s preference relation.

The experimenter produces pairs of alternatives. For each pair, the subject

is asked to choose. We argue that, in general, large but finite data do not

give close approximations of the subject’s preference, even when countably

infinite many data points are enough to infer the preference perfectly. We

then provide sufficient conditions on the set of alternatives, preferences, and

sequences of pairs so that the observation of finitely many choices allows

the experimenter to learn the subject’s preference with arbitrary precision.

The sufficient conditions are strong, but encompass many situations of in-

terest. And while preferences are approximated, we show that it is harder

to identify utility functions. We illustrate our results with several exam-

ples, including expected utility, and preferences in the Anscombe-Aumann

model.

1. Introduction

Consider a subject who forms a preference over the objects, or alternatives,

of some collection X. The subject participates in an experiment, in which

he is presented with a sequence of pairs of alternatives. For each pair, the

subject is asked to choose one of the two alternatives offered. What can

an experimenter learn about the subject’s preference from observing these

binary comparisons? Suppose that, after every observation, the experimenter

computes an estimate of the subject’s preference consistent with the data
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observed up that point: the experimenter chooses a preference rationalizing

the choices made by the subject in the experiment. Is the estimate a good

approximation of the subject’s underlying preference, for a large but finite

experiment?

In this paper, depending on the setup, we provide positive and negative an-

swers to these questions. We investigate the asymptotic behavior of preference

estimates from finite experiments. It is a question of preference identification,

in the classical sense of the term. We ask if one can fully identify the preference

of a subject at the limit with finite data.1

To illustrate the key issues, consider the following simple example. Let

X ⊆ Rn represent a set of consumption bundles. The subject has a preference,

denoted �∗, over the elements of X. Over time, the subject is presented with

a choice from a set Bk = {xk, yk}. Together, the sets B1, B2, . . . , Bk form a

finite experiment. The experimenter observes the subject’s choice of bundle

for every pair. Assume the choice is consistent with the subject’s preference,

so that if x is chosen over y, then x �∗ y. Note that we can only, at best, infer

the preference of the subject on the set B ≡ ∪∞k=1Bk. Thus, if the subject’s

preference behaves very differently outside of the set B, there is no hope to

obtain a fine approximation of the subject’s preference over the entire set

X. Two natural conditions emerge. First, we require that �∗ be continuous,

so one can hope to approximate the preference from finitely many samples.

Second, we require that the set B is dense in X, so that the observations are

sufficiently spread out. And indeed, we show that, under these conditions, if

one can observe the preference of the subject over the whole set B, then one

can infer precisely �∗ on X.

The two conditions, continuity of �∗ and denseness of B, are, however, not

enough to provide good approximations of �∗ from finitely many observations.

Knowledge of the preference over the infinite set B allows the experimenter to

exploit the continuity assumption on the subject’s preference. With finite data,

1Standard decision-theoretic language reserves the term identified for a relation between
preference and utility. In that context, a model is identified if every preference relation is
represented by a unique (up to some class of transformations) set of parameters. Thus,
identification in this sense requires the knowledge of an entire preference relation. In this
paper, we do not assume knowledge of the entire preference relation. Instead, we ask if one
can learn the entire preference relation with a possibly large, but nonetheless finite data set.
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continuity does not have enough bite. For example, let X = [0, 1]. Suppose

that the preference of the subject over X is captured by the binary relation

≥ (greater numbers are always chosen). Consider the countable set of objects

B = Q∩ (0, 1), and B1, B2, . . . an enumeration of pairs of objects of B. Then

any continuous preference that agrees with ≥ on Q has 1 weakly preferred

to 0. However, for any n, one can find a preference �n that rationalizes the

choices of the subject over B1, . . . , Bn, and yet that ranks 0 strictly above 1.

More generally, we demonstrate in Proposition 3 that one can come up

with an even more startling example: no matter the subject’s preference, the

experimenter may end up inferring that the subject is indifferent among all

alternatives. And yet, as in the example just described, she would be able to

infer the subject’s preference perfectly, had she access to the subject’s pref-

erence over the infinite set B all at once. The example exhibits a kind of

discontinuity. With infinite data in the form of B we must conclude that

x � y, but any finite data cannot rule out that y � x.

Our examples illustrate the dangers of data-driven estimation. Non-parametric

estimation with finite data can behave very differently from estimation with

infinite (even countable) data. To derive meaningful estimates, one must con-

struct a theory that disciplines the preferences, and lays down the proper

conditions for convergence of preference estimates.

We include three sets of results.

Our first and foremost results concern non-parametric estimation. We offer

fairly general conditions so that observing sufficiently many binary choices

allows one to approximate the subject’s preference arbitrarily closely with any

preference that rationalizes the finite data.

We provide two notions of rationalization, a weak and a strong one. Under

strong rationalization, a rationalizing preference must reflect choices perfectly.

So if one alternative is chosen over another, the preference must rank the first

strictly above the second. Under weak rationalization, the first alternative

must only be ranked at least as good as the second. Weak alternatives reflect

the phenomenon of partial observability (Chambers et al. (2014)) whereby one

cannot infer anything from a choice that was not made.
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Under both notions of rationalization, we must impose some structure on the

environment and on the rationalizing preferences so as to avoid the negative

results described above. Importantly, we need a notion of objective rational-

ity expressed by the monotonicity of preferences. We postulate an exogenous

partial ordering of the set of alternatives—for example, standard vector dom-

inance when the set of alternatives represents consumption bundles, or sto-

chastic dominance when it is the set of lotteries over monetary amounts—and

we require that the subject’s preference is monotonic with respect to that

exogenous order.

With the added structure, finite-experiment rationalizable preferences con-

verge to the subjects underlying preference. Somewhat stronger conditions are

needed to obtain the result for weak rationalization (conditions that hold for

preferences over Euclidean spaces, but rule out some common applications in

decision theory), yet it is remarkable that convergence is at all attained for

weak rationalization. We are after all inferring a lot less about the subject’s

preferences when we use weak, instead of strong, rationalization. Convergence

is obtained for strong rationalizations under conditions that are consistent

with most applications in decision theory, and with probably all experimental

implementations of decision theoretic models.

The proposed results are general and relevant to a wide range of contexts.

For concreteness, we illustrate their application to the special case of pref-

erences over lotteries, dated rewards, consumption bundles, and Anscombe-

Aumann acts (Anscombe and Aumann, 1963). In all these cases there is a

natural objective partial order, and monotonicity seems to us as a very reason-

able imposition. There are other environments in which one cannot reasonably

impose any kind of monotonicity. For instance, in the literature on discrete

allocation (? for example; or the recent literature on school choice) in which

agents are assumed to choose among lotteries over finitely many heterogeneous

objects, monotonicity would require that all agents agree on a ranking of the

underlying objects. There are also some more subtle technical issues, even

when the meaning of monotonicity is clear. We can deal with preferences on

Rn, and with preferences on lotteries over R, but not with preferences over

lotteries over Rn.
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Our second set of results concern the identification of utility functions.

Given a utility representation for the agent’s preference, we show that it is pos-

sible to carefully select finite-data utility rationalizations so as to approximate

the subject’s utility arbitrarily closely. This result again rests on monotonicity

assumptions (but of a somewhat different nature, see Section 5). There is a

clear difference between estimating preferences and utilities. Any preference

estimate converges to the true underlying preference. For utilities we only

know that a certain selection converges. This observation is important be-

cause one may want to estimate utilities of a certain functional form. There is

no guarantee that such utility estimates have the correct asymptotic behavior:

only that the preferences that they represent do.

Our third and final results concern the identification of preferences with in-

finite but countable data. We show that, when the experimenter has access

to the preference of the subject over all alternatives of a countable set, then

it is possible to recover perfectly the subject’s preference over the entire set of

alternatives X under much weaker conditions than above. We further demon-

strate that, under such conditions, the experimenter can, in theory, obtain

the subject’s preference directly from the observation of a single choice of the

subject when the subject is asked to select an object among a large, infinite

set.

The remainder of the paper proceeds as follows. After reviewing the lit-

erature, we describe the model in Section 2. In Section 3, we discuss the

special case of Anscombe-Aumann preferences. We provide our main results

on non-parametric preferences with finite data in Section 4. In Section 5, we

discuss the convergence of utility estimates. We deal with preference identi-

fication with infinite but countable data in Section 7. Finally, in Section 8,

we discuss interpretations of preference relations. We relegate the proofs and

more technical results (some of which may be of independent interest) in the

Appendix.

Literature Review. Experimentalists and decision theorists have an obvi-

ous interest in preference estimation, but we are not aware of any study of the

behavior of preference estimates from finite experiments. The long tradition

of revealed preference theory from finite data (starting from Afriat (1967)) is
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focused on testing, not estimation. The closest study to ours seems to be the

paper by Mas-Colell (1978), working with finite observations from a demand

function over a finite number of goods. Mas-Colell assumes a rational demand

function that satisfies a boundary condition and is “income Lipschitzian.” He

assumes a sufficiently rich sequence of observations, taken from an increasing

sequence of budgets. Then he shows that the sequence of rationalizing prefer-

ences, each rationalizing a finite (but increasing) set of observations, converges

to the unique preference that rationalizes the demand function.

There are many differences between Mas-Colell’s exercise and ours, even if

one restricts attention to choice over bundles of finitely-many, divisible, con-

sumption goods. In particular, the difference in model primitives—demand

instead of binary comparisons—is crucial. One cannot generally use choice

from linear budgets to recreate any given binary comparison. Moreover, there

is no property analogous to the boundary and Lipschitz continuity of demand

in our framework. Indeed, as shown in Mas-Colell (1977), by means of an

example due to L. Shapley, without these properties, preferences are not iden-

tified from demand.2 In Mas-Colell’s work, weak and strong rationalizability

coincide, as he works with demand functions. We are particularly interested

in partial observability.

Also with demand primitives, the recent papers by ?, ? and ? provide

results on the limiting behavior of finite-data utility rationalizations. These

papers focus on the convergence of certain utility constructions that rationalize

finite demand data. Our work is closer to Mas-Colell’s, in that our main results

are about the convergence of (any) rationalizing preferences. Of course there

are also important differences in the primitives assumed in our paper and in

the demand-theory papers.

The topology on preferences was introduced by Hildenbrand (1970) and

Kannai (1970), building on the work of Debreu (1954). In our study of the

mapping from utility to preference, we borrow ideas from Mas-Colell (1974)

and Border and Segal (1994). In particular, the proof of the continuity of the

2Shapley’s example also appears in Rader (1972). The example poses no problem for identi-
fication in our framework of binary comparisons. It generates non-identification of demand
because two preferences have the same marginal rate of substitution at the sampled points.
With binary comparisons, the differences between two such preferences are detected.



PREFERENCE IDENTIFICATION 7

“certainty equivalent” representation is analogous to Mas-Colell’s, and we take

the notion of local strictness from Border and Segal, as well as their continuity

result (see Theorem 20).

2. Model

2.1. Notational conventions. If x, y ∈ Rn, then x ≥ y means that xi ≥ yi

for i = 1, . . . , n; and x > y that x ≥ y and x 6= y. We write x� y when xi > yi

for i = 1, . . . , n. The interval [a, b] denotes the set {z ∈ Rn : b ≥ z ≥ a}. An

open interval (a, b) denotes the set {z ∈ Rn : b� z � a}.
If A ⊆ R is a Borel set, we write ∆(A) for the set of all Borel probability

measures on A. For x, y ∈ ∆(A), we write x ≥FOSD y when x is larger than

on y in the sense of first order stochastic dominance (meaning that
∫
A
fdx ≥∫

A
fdy for all monotone increasing, continuous and bounded functions f on

A).

Let X be a set. Given a binary relation B ⊆ X ×X, we write x B y when

(x, y) ∈ B. And we say that a function u : X → R represents B if x B y iff

u(x) ≥ u(y).

2.2. The model. There is an experimenter (a female) and a subject (a male).

The subject chooses among alternatives in a set X of possible alternatives.

We assume that X is a Polish and locally compact topological space. For

example, the elements of X could consist of lotteries, consumption bundles,

state-contingent payments, or state-contingent lotteries (so-called Anscombe-

Aumann acts).

A preference, or preference relation, is any binary relation over X. A pref-

erence � is continuous if �⊆ X ×X is closed. Unless otherwise specified, we

assume that all preferences in this paper are complete, transitive, and contin-

uous. In other words, they are closed weak orders, or weak orders for which

the sets {y ∈ X : y � x} and {y ∈ X : x � y} are closed for all x ∈ X, see,

e.g., Bergstrom et al. (1976).

The subject in question has a preference �∗ over X that the experimenter

is trying to infer through a sequence of experiments. The experimenter de-

signs an increasing sequence of finite experiments, whose purpose is to learn

the subject’s preference, �∗, in the limit. In each experiment, the subject is
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presented with finitely many unordered pairs of alternatives drawn from X.

For every pair {x, y}, the subject is asked to choose one of the two alternatives

x or y. Continuity of the subject’s preferences makes it viable to derive good

approximations of the preference despite only having finite data. The problem

of inferring a non-continuous preference from finite data is hopeless.

Let Σ∞ = {Bi}i∈N be the set of all pairs to be used across these experiments.

Every Bi = {xi, yi} is a subset of X of cardinality two. Enumerating the

experiments k = 1, 2, . . . , the set of pairs of the k-th experiment is denoted

Σk, and it is assumed that Σk = {B1, . . . , Bk}; in other words, experiments

are increasing in that the k-th experiment includes the (k− 1)-th experiment.

In the sequel, experiments are described in terms of their set of pairs Σk. Let

B = ∪∞k=1Bk be the set of all alternatives that are used over all the experiments.

We make two assumptions on these experiments. First, we assume that

the experimenter can eventually learn the subject’s preference over any finite

subset of B; specifically, we assume that all subsets of B of cardinality two are

in Σ∞. Second, we assume that B is dense in X. The denseness assumption

is substantial, but unavoidable given our focus on nonparametric estimation.

The purpose of the assumption is to provide the experimenter with a sample

of alternatives spread enough over X so as to be in the capacity of inferring

aspects of the preference over alternatives not used in the experiments.

The subject’s behavior in the experiment is coded in a choice function.

Formally, a choice function of order k is a map c : Σk → 2B such that, for

all Bi ∈ Σk, ∅ 6= c(Bi) ⊆ Bi. It captures the observations of a subject who

participates in finite experiment Σk. Let Ck be the set of all choice functions

of order k.

The behavior of a subject across the entire sequence of experiments is cap-

tured by the choice sequence, defined as a function c : N →
⋃

k Ck such that

for all k, ck ∈ Ck, and for all k < l, cl(Bi) = ck(Bi) for every Bi ∈ Σk. This last

requirement conveys a consistency of behavior across experiments: a subject

responds in the same way to a binary choice, no matter the experiment. We

denote by C the set of all choice sequences. If, for two choice sequences c and

c′, it is the case that for all k and all Bi ∈ Σk, ck(Bi) ⊆ c′k(Bi), then we write

c v c′. Observe that, if c v c′, then ck(Bi) = c′k(Bi) except possibly when
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c′k(Bi) = Bi = {xi, yi}, in which case we may have ck(Bi) = xi or ck(Bi) = yi.

In words, we allow for c and c′ to be different and yet to be associated with

observations of the same subject, the key distinction being in how indifference

is treated.

Of particular interest are choices that can be rationalized by a preference.

Given a preference �, the choice function of order k generated by � is defined

by

c�(Bi) = arg max
Bi

{x ∈ Bi : x � y for all y ∈ Bi},

for Bi ∈ Σk. The choice sequence generated by � is defined analogously.

Thus, the choice sequence generated by the subject’s preference reflects

both strict comparisons as well as indifferences. In practice, however, the

experimenter may not be able to properly infer the indifference of the sub-

ject regarding two alternatives. The difficulty arises, for example, when the

experimenter offers the subject his preferred alternative. In this case, the ex-

perimenter would typically require that the subject selects only one of the two

alternatives presented to him. Such situations, in which the experimenter can-

not commit to being able to see all potentially chosen elements, are referred to

partial observability (Chambers et al., 2014), in contrast to full observability

in which the experimenter is able to elicit the subject’s indifference between

alternatives.

To handle situations of partial observability as well as situations of full

observability, we discuss two notions of rationalization. The first notion is

weak. It expresses the idea that the experimenter is not willing to commit

to interpreting observed choices as the only potential choices made by the

subject. For example, if the experimenter observes that the subject chooses x

when presented the pair {x, y}, she may not be willing to infer that x �∗ y,

as it may be that x ∼∗ y but the subject simply did not choose y. This notion

of weak rationalization is used, for example, by Afriat (1967) in the context of

consumer theory (for more details on this notion, see, for example, Chambers

and Echenique (2016)). Weak rationalization is formally defined as follows.

Definition 1. A preference � weakly rationalizes a choice function c of order

k if c(Bi) ⊆ c�(Bi) for all Bi ∈ Σk. A preference � weakly rationalizes a choice

sequence c if c v c�.
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The second notion is a stronger one. It requires that the experimenter

observes all potential choices that can be made by the subject. It is closer in

spirit to the notion used in classical choice theory, and in particular, used in

Richter (1966, 1971).

Definition 2. A preference � strongly rationalizes a choice function c of order

k if c(Bi) = c�(Bi) for all Bi ∈ Σk. A preference � strongly rationalizes a

choice sequence c if c = c�.

A basic motivation for our analysis is the observation that, absent any dis-

cipline on the rationalizing preferences, it is impossible to achieve desirable

asymptotic properties of the finite-experiment estimates. In fact, there always

exists continuous and complete rationalizing preferences that converge to the

total indifference preference relation X ×X, the preference relation by which

every alternative is indifferent to every other alternative.

Proposition 3. Let X = [a, b] ⊆ Rn, where a� b, and let �∗ be a continuous

preference relation on X. There is a sequence {�k} of continuous preference

relations on X such that, for each k, �kstrongly rationalizes the choice function

of order k generated by �∗, and such that

�k→ X ×X.

Proof. Denote by (a′, b′) the open interval {z ∈ Rn : a′ � z � b′}. For each

k, let uk : ∪kl=1Bl → [0, 1] be a utility representation of �∗ on ∪kl=1Bl.

For each k, let {[ai, bi]}nk
i=1 be a sequence of intervals in Rn with the prop-

erties that a) [a, b] ⊆ ∪nk
i=1[ai, bi], b) (ai, bi) ∩ (aj, bj) = ∅ for i 6= j, c) each

element of ∪kl=1Bl is contained in a set (ai, bi), and no two elements of ∪kl=1Bl

are contained in the same, and d) [ai, bi] is contained in some ball of radius

(2k)−1.3

For each interval [ai, bi] there is a continuous function fi such that f(x) = 0

for all x ∈ [ai, bi] \ (ai, bi), f(x) = uk(x) if x ∈ (ai, bi) ∩ ∪kl=1Bl, sup{f(x) :

x ∈ [ai, bi]} = 2 and inf{f(x) : x ∈ [ai, bi]} = −2. Let u∗k : [a, b] → R be

3It is obvious that such a sequence exists. First, it is immediate that it exists for n = 1.
For n > 1 project each Bk onto each of its coordinate and carry out the one-dimensional
construction (choosing a sufficiently small radius for the balls covering each interval). Then
take the cartesian product of each one-dimensional interval.
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the function that coincides with fi on each [ai, bi]. Let �k be the preference

relation represented by u∗k, and note that �k strongly rationalizes the choice

function of order k generated by �∗, and is continuous.

Let x, y ∈ X. For each k, suppose that x ∈ [ai, bi] for the kth sequence of

subintervals. Let xk ∈ [ai, bi] be such that u∗k(xk) = 2. Note that ‖x − xk‖ <
1/k. Similarly, suppose that y ∈ [aj, bj] for the kth sequence of subintervals

and let yk ∈ [aj, bj] be such that u∗k(yk) = −2. Then xk �k yk. Since (xk, yk)→
(x, y) and x, y ∈ X were arbitrary this means that �k→ X ×X. �

Monotone Preferences. As discussed in the introduction, and exemplified

by Proposition 3, the continuity assumption on the subject’s preference, and

the assumption that the alternatives offered are in the limit dense, do not gen-

erally ensure convergence to the subject’s preference. Proposition 3 shows that

the failure of convergence can be rather dramatic. We must impose structure

on the subject’s preference, and on the finite-experiment rationalizations. We

focus on the monotonicity of preferences.

Monotonicity relates the subject’s preference to an objective, common taste

across all subjects being considered. Formally, we endow the space of alterna-

tives X with a partial order ≥, as a well as a strict order >, such that x > y

implies x ≥ y. For example, > may be the strict part of ≥ (but need not

be; we may want to define > on Rn to be the relation �). Writing x ≥ y

is interpreted as “x is objectively at least as good as y”, and x > y as “x

is objectively strictly better than y.” The partial order ≥ is an exogenous

order. It depends on the application and the set of alternatives. For example,

it may take the form of vector dominance in commodity space, or first order

stochastic dominance over a set of lotteries.

The notion of monotonicity states that a preference should agree with the

exogenous order. We distinguish between the weak and strict form of mono-

tonicity.

Definition 4. A preference � is weakly monotone if x ≥ y implies that x � y.

A preference � is strictly monotone if x > y implies that x � y.

Observe that the preferences �k constructed in Proposition 3 cannot be

monotone. Suppose that �∗ is a continuous preference relation, and suppose
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that x �∗ y. In the construction in Proposition 3 we obtain a sequence of

rationalizations �k such that in the limit y is at least as good as x. This cannot

happen if each rationalizing preference is weakly monotone: x �∗ y implies

that x′ �∗ y′ for (x′, y′) close enough to (x, y). Thanks to the interaction of

the order and the topology on Rn we can find a k large enough such that there

are {x′′, y′′} ∈ Σk (meaning alternatives offered in the kth finite experiment)

with x′ ≥ x′′ and y′′ ≥ y′, and where (x′′, y′′) is also close to (x, y). If �k is

monotone then we have x′ �k x
′′ and y′′ � y′. But if �k strongly rationalizes

the choices made at the kth experiment, then x′′ �k y
′′. So we have to have

x′ �k y
′ for any (x′, y′) close enough to (x, y).

Convergence of Preferences. To speak about the approximation of the

subject’s preference, one must introduce a notion of convergence on the space

of preferences. We use closed convergence, and endow the space of preference

relations with the associated topology. The use of closed convergence for pref-

erence relations was initiated by the work of Kannai (1970) and Hildenbrand

(1970), and has become standard since then.

One primary reason to adopt closed convergence is to capture the property

that agents with similar preferences should have similar choice behavior—a

property that is necessary to be able to learn the preference from finite data.

Specifically, under the assumptions we use for most of our results, the topology

of closed convergence is the smallest topology for which the sets

{(x, y,�) : x � y}

are open (see Kannai (1970) Theorem 3.1). The desired continuity of choice

behavior is expressed by the fact that sets of the form {(x, y,�) : x � y} are

open. The topology of closed convergence being the smallest topology with

this property is a natural reason for adopting it.

The following characterization of closed convergence for the context of pref-

erence relations is useful:

Lemma 5. Let �n be a sequence of preference relation, and let � be a prefer-

ence relation. Then �n→� in the topology of closed convergence if and only

if, for all x, y ∈ X,
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(1) x � y implies that for any neighborhood V of (x, y) in X ×X there is

N such that for all n ≥ N , �n ∩V 6= ∅;

(2) if, for any neighborhood V of (x, y) in X × X, and any N there is

n ≥ N with �n ∩V 6= ∅, then x � y.

The following lemma plays an important role in the approximation results.

Lemma 6. The set of all continuous binary relations on X, endowed with the

topology of closed convergence, is a compact metrizable space.

Proof. See Theorem 2 (Chapter B) of Hildenbrand (2015), or Corollary 3.95

of Aliprantis and Border (2006). �

In particular, we shall denote the metric which generates the closed conver-

gence topology by δC . Recall that X is metrizable, say with metric d. When

X is compact, one can choose δC to be the Hausdorff metric on subsets of

X×X induced by d. On the other hand, if X is only locally compact, then δC

may be chosen to coincide with the Hausdorff metric on subsets of X∞×X∞,

where X∞ is the one-point compactification of X together with some metric

generating X∞. See Aliprantis and Border (2006) for details.

3. Application: Anscombe-Aumann Preferences over monetary

lotteries.

Let Ω be a finite nonempty set of states of the world. Let ∆([a, b]) be the set

of all Borel probability measures over the closed interval [a, b] ⊆ R. We inter-

pret [a, b] as a set of monetary payoffs, and the elements of ∆([a, b]) as lotteries

of monetary payoffs. An Anscombe-Aumann act is a state-contingent mone-

tary lottery, it maps elements from Ω to ∆([a, b]). Let the set of alternatives

X be the set ∆([a, b])Ω of all Anscombe-Aumann acts.

Endow X with the product weak* topology, and consider the partial order

on X obtained as the product of the first-order stochastic dominance order on

∆([a, b]). Formally, we write x ≥ y if, for any ω ∈ Ω, x(ω) ≥FOSD y(ω).

Then, the following result obtains.

Theorem 7. Suppose �∗ is a strictly monotone preference relation. For every

k = 1, 2, . . . , let �k be a strictly monotone preference relation which strongly

rationalizes the choice function of order k generated by �∗. Then
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• �k→�∗ (in the topology of closed convergence);

• for any utility representation u∗ of �∗, there exist utility representations

uk of �k such that uk → u∗ (in the topology of compact convergence).

Theorem 7 is interesting for what it says, but also for what it does not say.

The theorem says that, if we assume that the data are generated by a

(well behaved) preference �∗, then any “finite sample rationalization” �k is

guaranteed to converge to the generating preference. So estimates have the

correct “large sample” properties. In particular, one may be interested in a

specific theory of choice, such as max-min or Choquet expected utility. So if the

subject’s �∗ is max-min, or Choquet, one can choose rationalizing preferences

to conform to the theory, and the limit will uniquely identify the subject’s

max-min, or Choquet, preference. But if one incorrectly uses rationalizing

preferences outside of the theory, the asymptotic behavior will still correct the

problem and uniquely identify �∗ in the limit. The theorem also says that

there are certain utility representations uk that will be correct asymptotically.

Note, however, what the theorem does not say. First, the estimates �k are

guaranteed to converge to the generating preferences �∗, when the generating

preference is known to exist. If one simply estimates the preferences �k, these

may fail to converge to a well-behaved preference. We present two examples to

this effect in Section 8. That said, under certain conditions (that unfortunately

are not satisfied in the Anscombe-Aumann setting), the “size” of the set of

rationalizing preferences shrinks as k growth; see Theorem 10.

Second, Theorem 7 does not say that one can choose uk arbitrarily. Any

estimated rationalizing preference will converge to the preferences rationalizing

the utility, but basing the estimation on utilities is more complicated because

it is not clear that any utility representation of �∗ will have the right limit, or

even converge at all.

This brings us to the role of identification theorems in decision theory. It

is common to show that a model is identified, and argue that this enables the

empirical recovery of utility parameters from observed behavior. The ideas

behind Theorem 7 imply that more is required. Specifically, suppose that U is

the set of all continuous and strictly monotone functions u : X → R. Denoting

by Rmon the set of all continuous and strictly monotone preference relations,
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let Φ : U → Rmon be the function that sends each u ∈ U into the preference

it represents. When we show that Φ is an open map (Theorem 19), we show

that �k→�∗ and u∗ ∈ Φ−1(�∗) imply that one can choose uk ∈ Φ−1(�k) with

uk → u∗.4 In fact, we show that if ' is the equivalence relation on U whereby

two utility functions are equivalent if they are ordinally equivalent (i.e., u ' u′

iff Φ(u) = Φ(u′)), then Φ : U/ '→ Rmon is a homeomorphism (Theorem 21).

Many results on identification in decision theory can be phrased in the fol-

lowing terms. There are subsets U ′ ⊆ U and R′ ⊆ Rmon, and an equivalence

relation '′ on U ′ such that Φ is a bijection from U ′/ '′ onto R′. Our results

suggest that this is not enough to conclude that empirical estimates will have

the correct “large-sample behavior.”

4. Main Results

In this section, we present our results on the asymptotic behavior of prefer-

ence estimates based on finite data.

For our first result, we must define two notions. We say that a preference

relation � is locally strict if for every x, y ∈ X with x � y, and every neigh-

borhood V of (x, y) in X ×X there is (x′, y′) ∈ V with x′ � y′. We say that

the order > on X has open intervals if {(x, y) : x > y} is an open subset of

X × X. Our first main result gives conditions of convergence of preferences

that weakly rationalize the experimental observations.

Theorem 8. Suppose that

(1) the subject’s preference �∗ is continuous and strictly monotone,

(2) the strict order < has open intervals,

(3) every continuous and strictly monotone preference relation is locally

strict.

Let c v c�∗ be a choice sequence, and let �k be a continuous and strictly

monotone preference that weakly rationalizes ck. Then, �k→�∗ in the closed

convergence topology.

4The property of being an open map is close to being necessary for the result: see Theorem
4.2 of Siwiec (1971).
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Remark 9. The assumption that �∗ and �k are transitive is not needed. In-

stead, each of these only needs to be continuous, strictly monotone, and com-

plete.

Theorem 8 requires the existence of �∗. However, even if existence of this

object is not supposed, we can still “bound” the set of rationalizations to an

arbitrary degree of precision. This is the content of the next result.

For a choice sequence c, let Pk(c) be the set of continuous and strictly

monotone preferences that weakly rationalize ck. For a set of binary relations

S, define diam(S) = sup(�,�′)∈S2 δC(�,�′) to be the diameter of S according

to the metric δC which generates the topology on preferences.

Theorem 10. Suppose that < has open intervals. Let c be a choice sequence,

and suppose that each strictly monotone continuous preference is also locally

strict. Then one of the following holds:

(1) There is k such that Pk(c) = ∅.

(2) limk→∞ diam(Pk(c))→ 0.

That is, either a choice sequence is eventually not weakly rationalizable by a

strictly monotone preference, or, the set of rationalizations becomes arbitrarily

small.

Remark 11. As for Theorem 8, Theorem 10 can dispense with the notion of

transitivity. In this case, we would define Pk(c) to be the set of (potentially

nontransitive) complete, continuous, and strongly monotone relations weakly

rationalizing ck.

Our second result applies to preferences that strongly rationalize the exper-

imental observations. To state the result, we define two other notions. We say

that the set X, together with the collection of finite experiments Σ∞, has the

countable order property if for each x ∈ X and each neighborhood V of x in

X there is x′, x′′ ∈ B ∩ V with x′ ≤ x ≤ x′′. We say that X has the squeezing

property if for any convergent sequence {xn}n in X, if xn → x∗ then there is

an increasing sequence {x′n}n, and an a decreasing sequence {x′′n}n, such that

x′n ≤ xn ≤ x′′n, and limn→∞ x
′
n = x∗ = limn→∞ x

′′
n.

Theorem 12. Suppose that
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(1) the subject’s preference �∗ is weakly monotone,

(2) (X,Σ∞) has the countable order property, and X the squeezing prop-

erty.

Let �k be a continuous and weakly monotone preference that strongly ratio-

nalizes the choice function of order k generated by �∗. Then, �k→�∗ in the

closed convergence topology.

The countable order and squeezing properties are technical but not vacuous.

Importantly, as stated below in Proposition 13, they are satisfied for two com-

mon cases of interest, which allows us to obtain the first part of Theorem 7 as

a direct consequence of Theorem 12.

Proposition 13. If either

(1) the set of alternatives X is Rn endowed with the order of weak vector

dominance, or

(2) the set of alternatives X is ∆([a, b]) endowed with the order of weak

first-order stochastic dominance,

then X has the squeezing property, and there is Σ∞ such that (X,Σ∞) has the

countable order property.

One key element behind the above two results is a natural order on the sets

of possible alternatives. Via monotonicity, the order adds structure to the

families of preferences under consideration. Crucially, the order also relates to

the topology on the set X.

Section 3 applies Theorem 12 to preferences over Anscombe-Aumann acts.

We can obtain a similar result for other environments, in particular, for en-

vironments in which the alternatives can be represented as vectors in some

Euclidean space. We emphasize three domains of applications: lotteries over

a finite prize space, dated rewards, and consumption bundles.

Example 14. First consider lotteries over a finite set of prizes. Let Π be a

finite prize space. The objects of choice are the elements of X = ∆(Π). Fix

a strict ranking of the elements of Π, and enumerate the elements of Π so

that π1 is ranked above π2, which is ranked above π3, and so on. Then the

elements of X can be ordered with respect to first-order stochastic dominance:
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x is larger than y in this order if the probability of each set {π1, . . . , πk} is at

least as large under x than under y, for all k = 1, . . . , |Π|. A preference over

X is monotone if it always prefer larger lotteries over smaller ones.5

Imagine choices generated by an expected utility preference �∗. The fact

that �∗ is of the expected utility family implies that there are rationaliz-

ing expected utility preference �k, for each finite experiment k. Then our

theorems ensure that these converge to �∗. Of course the same would be

true of any (monotone and continuous) rationalizing preference: any mode

mis-specification would be corrected in the limit. Any arbitrary sequence of

rationalization has �∗ as its limit.

Example 15. In second place, we can apply our theory to intertemporal

choice. Specifically to the choice of dated rewards (Fishburn and Rubinstein

(1982)). The set of elements of choice is R2
+. A point (x, t) ∈ R2

+ is interpreted

as a monetary payment of x delivered on date t. Endow R2
+ with the order

≤i whereby (x, t) ≤i (x′, t′) if x ≤ x′ and t′ ≤ t. Monotonicity of preferences

means that more money earlier is preferred to less money later.

Now one can postulate a preference �∗ such that (x′, t′) �∗ (x, t) iff δtv(x) ≤
δt
′
v(x′), for some δ ∈ (0, 1) and a strictly increasing function v : R+ → R.

This means that �∗ follows the exponential discounting model. Again, any

finite experiment would be rationalizable by exponential preference, and these

would converge to the limiting �∗.

Example 16. Finally, the elements of choice can be consumption bundles in

Rn. A preference over such consumption bundles is monotone if it prefers

larger bundles over smaller ones. Imagine a preference �∗ represented by, say,

a Cobb-Douglas utility. Finite sample estimates would then converge to the

preference �∗.

5. Identification of Utility Functions

In this section, we investigate the relation between preferences and util-

ity. Preferences remain topologized with the closed convergence topology. We

study continuous utility representations, and ask when the identification of a

5The objective order on Π is not really needed in this case; see Example 23. The point of
the example is to illustrate Theorem 8.
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preference allows the identification of a utility (or conversely). We show that if

we endow the set of continuous utility functions with the topology of uniform

convergence on compacta, then convergence in one sense is equivalent to con-

vergence in the other. Formally, we establish that there is a homeomorphism

between the two spaces (when we identify two utility functions representing

the same preference relation).

Throughout this section, the space of possible alternatives X is connected

(and remains a locally compact Polish space, as described in our model). Con-

nectedness is imposed so that every continuous preference admits a continuous

representation, as in Debreu (1954).

We denote by U the set of strictly increasing and continuous utility func-

tions on X. Similarly, Rmon denotes the set of preferences which are strictly

monotone and continuous.

Suppose the existence of a set M ⊆ X, satisfying the following conditions:

• M has at least two distinct elements; M is connected and totally or-

dered by <. In other words x, y ∈ M and x 6= y implies x < y or

y < x.

• For any m ∈M and any neighborhood U of m in X there is m,m ∈M ,

with

m ∈ [m,m] ⊆ U.

Moreover if m is not the largest element of M we can choose m such

that m < m, and if m is not the smallest element we can choose m

such that m < m.

• Any bounded sequence in X is bounded by elements of M . That is,

for any bounded sequence {xn} there are m and m and k large so that

m ≤ xn ≤ m.

Let Φ : U → Rmon such that Φ(u) is the preference represented by u ∈ U .6

We provide two examples below, that demonstrate the property just men-

tioned for the case of alternatives of the form X = ∆([a, b]) and X = ∆([a, b])n.

Example 17. Let X = ∆([a, b]) be the set of Borel probability distributions

on a real compact interval S = [a, b] ⊆ R. Endow X with the weak* topology

6That is, x Φ(u) y if and only if u(x) ≥ u(y).
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and let ≤ be first-order stochastic dominance. Observe that X is compact,

metrizable, and separable (Theorems 15.11 and 15.12 of Aliprantis and Border

(2006)). Observe also that X has the countable order property (see Lemma 32

in Appendix B).

Let < be the strict part of ≤. Identify S with degenerate probability distri-

butions, so that s ∈ S denotes the element of X that assigns probability 1 to

{s}, say δs. Let M = S. The relative topology on S coincides with the usual

topology, so S is connected. Note that a ≤ x ≤ b for any x ∈ X.

Let m ∈ M and U be a neighborhood of m in X. For each x ∈ X, let F x

be the cdf associated to x. Choose ε such that the ball Bε(m) (in the Levy

metric) with center m and radius ε is contained in U . Let ε′ < ε. Then if

y ∈ [m− ε′,m+ ε′] we have that

F y(s− ε)− ε ≤ Fm−ε′(s− ε)− ε < 1 = Fm(s) if s− ε ≥ m− ε′

F y(s− ε)− ε ≤ Fm−ε′(s− ε)− ε = −ε < Fm(s) if s− ε < m− ε′

Similarly,

Fm(s) = 0 < Fm+ε(s+ ε) + ε ≤ F y(s+ ε) + ε if s+ ε ≤ m+ ε′

Fm(s) < 1 + ε = Fm+ε′(s+ ε) + ε ≤ F y(s+ ε) + ε if s+ ε > m+ ε′.

These inequalities mean that y ∈ Bε(m). Thus [m− ε′,m+ ε′] ⊆ U , as y was

arbitrary.

Example 18. Let Ω be a nonempty set such that |Ω| < +∞. Suppose Ω

represents a set of states of the world. Then ∆([a, b])Ω, endowed with the

product weak* topology, and ordered by the product order, of Ω copies of

first order stochastic dominance, represents the set of Anscombe-Aumann acts,

Anscombe and Aumann (1963). Let S = {(δs, . . . , δs) : s ∈ [a, b]}; the constant

acts whose outcomes are degenerate lotteries. Let M = S, as in the previous

example; and all topological properties satisfied there are also satisfied here.

The following generalizes results derived originally by Mas-Colell (1974),

who worked with Rn
+.

Theorem 19. Φ is an open map.
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Theorem 20. (Border and Segal (1994) Thm 8) Let (X, d) be a locally com-

pact and separable metric space and R be the space of continuous preference

relations on X, endowed with the topology of closed convergence. If �u= Φ(u)

is locally strict, then Φ is continuous at u. If M has no isolated points, and Φ

is continuous at u, then �u is locally strict.

Define an equivalence relation ' on U by u ' v if there exists ϕ : R → R

strictly increasing for which u = ϕ ◦ v. Then let U/ ' denote the set of

equivalence classes of U under ' endowed with the quotient topology; the

equivalence class of u ∈ U is written [u]. The map Φ̂ : U/ '→ Rmon is

defined in the natural way, via Φ̂([u]) = Φ(u).7

Theorem 21. Φ̂ is a homeomorphism.

6. Non-monotone preferences and local strictness

In response to Section 8.1, we show how we can leverage compactness re-

sults from the theory of functions to establish the existence of a rationalizing

preference in the limit. Let V be a compact set of continuous functions in the

topology of compact convergence, and let Φ(V) denote the image of V under

Φ, so that Φ(u) is the preference represented by u.

Theorem 22. Suppose V is compact, and that all �∈ Φ(V) are locally strict.

Let c be a choice sequence, and let �k∈ V weakly rationalize ck. Then, there

exists �∗∈ V such that �k→�∗ in the closed convergence topology. Further-

more, if �′k also weakly rationalizes ck, then �′k→�∗.

Theorem 22 implies that one can some times obtain asymptotically obtain

utility rationalizations drawn from V . In particular, when V is compact, Φ(V)

consists of locally strict preferences, and Φ is a homeomorphism then Φ−1(�k

) ∈ V converges to a utility for �∗ in V . One application of this kind is in

Example 23.

Example 23. Let X be a finite set, and let ∆(X) be the lotteries on X

(topologized as elements of Euclidean space). Consider the set of nonconstant

7Observe that this function is well-defined. If v ∈ [u], then there is strictly increasing ϕ for
which v = ϕ ◦ u, hence v and u represent the same preference.
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expected utility preferences. Then the hypotheses of Theorem 22 hold here.

To see this, observe that the set of nonconstant von Neumann-Morgenstern

utility indices is homeomorphic to the set

S = {u ∈ RX :
∑
x

ux = 0, ‖u‖ = 1}.

It is straightforward to see that the map φ : S → C(∆(X)) given by φ(u)(p) =∑
x uxp(x) is continuous. So, let V = φ(S) which is compact; then the set

Φ(V) is the set of nontrivial expected utility preferences. Finally, observe

that each nonconstant expected utility preference is locally strict. For, if � is

nonconstant, then there are p, q ∈ ∆(X) for which p � q. Then for any r � s,

for any α > 0, αp + (1 − α)r � αq + (1 − α)s. Choose α small to be within

any neighborhood of (r, s).

Next, Example 24 allows for an infinite set of prices, but restricts von

Neumann-Morgenstern utilities to have lower and upper Lipschitz bounds.

Example 24. We can consider Rn
+, and a class of utility functions U b

a, where

a, b ∈ R with 0 < a < b.

U b
a = {u ∈ C(Rn

+) : ∀i∧∀(xi < yi), a(yi−xi) ≤ u(yi, x−i)−u(xi, x−i) ≤ b(yi−xi)}.

Observe that U b
a ⊆ U , and consists of those members satisfying a certain

Lipschitz property (namely, Lipschitz boundedness above and below). By the

Arzela-Ascoli Theorem (see Dugundji (1966), Theorem 6.4), U b
a is compact.

Furthermore, each �∈ Φ(U b
a) is locally strict, as it is strictly monotonic.

7. Infinite and Countable Data

In this section, we propose two sufficient conditions that enable the recovery

of the subject’s preference from its restriction to a countable set of data points.

In the first result, we show that, if we can observe a subrelation of a locally

strict and continuous binary relation on a dense set, then we can infer the

entire binary relation.

Theorem 25. Suppose that � and �′ are two complete and continuous binary

relations. Suppose that �′ is locally strict, and let B ⊆ X be dense. If �
|B×B ⊆�′ |B×B, then �=�′.
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The second result makes no restriction on the preferences other than conti-

nuity, but requires the underlying space of alternatives to be connected.

Theorem 26. Suppose that � and �′ are two continuous preference relations.

Suppose X is connected, and let B ⊆ X be dense. If � |B×B =�′ |B×B, then

�=�′.

A classical tool, attributed to Allais (see Allais (1953)) allows one to elicit

multiple choices with one suitably randomized choice. Roughly, one uses a

randomization device whose outcome is a choice set, and asks a subject to

announce what she would choose ex-ante from each of the sets in the support in

the distribution. A decision maker who respects basic monotonicity postulates

(see Azrieli et al. (2014)) correctly announces each of their choices.

If we can uncover an entire preference from each of these choices, then

we are able to elicit an entire preference using one suitably chosen random

device. Here, we do not investigate this theory in its full generality. But if

there is a countable dense subset of alternatives, and a continuous preference

can be inferred from its behavior on a countable dense subset, then we can

utilize the Allais mechanism to uncover an entire preference with a single

randomized choice. For example, we would enumerate the pairs of elements

from the countable dense subset, say B1, B2, . . ., and randomize so that each

one realizes with probability 2−k.

8. On the meaning of �∗

Some economists are comfortable saying that an agent “has” a preference

�∗, and some are not. The first assume that the preference is something

intrinsic to the agent, and that when presented with a choice situation the

agent can access his preference and choose accordingly. The exercise in our

paper gives conditions under which a finite experiment can approximate, to

an arbitrary degree of precision, the underlying preference that the agent uses

to make choices.

Other economists think that preferences are just choices. For people in this

position, it is meaningless to speak of a preference over pairs of alternatives

from which the agent never chooses. We are highly sympathetic to this view,
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and our paper also contributes to this interpretation. Under the right condi-

tions (conditions that we provide in our paper) continuity “defines” preferences

over X given choices over a countable subset. This is important because esti-

mated preference provide a guide for making normative recommendations and

out of sample predictions. An economist may want to estimate �∗ so as to

make policy recommendations that are in the agent’s interest (in fact this is

a very common use of estimated preferences in applied work). Similarly, the

economist may want to use �∗ as an input in a structural economic model,

and thereby make predictions for different configurations of the model. The

existence and meaning of �∗ is then provided for by the continuity assumption.

Moreover, viewed from this angle, Theorem 10 allows us to say that the set

of rationalizations can be made arbitrarily small as more and more data are

observed.8 In this manner, one can bound errors in welfare statements or out

of sample predictions to an arbitrary degree of precision.

We conclude this section with two examples that illustrate the importance

of postulating existence of an agent’s preference: without the postulate, the

inferred preference may otherwise fail to converge.

8.1. The set of weakly monotone preference relations is not closed.

Suppose we are interested in rationality in the form of a strictly monotonic

continuous preference relation. Observe that Theorems 8 and 12 hypothesize

the existence of �∗. If �∗∈ Rmon, for example, then we know that, in the

limit, rationalizing relations will be transitive if every �k is. Unfortunately, we

show in this section, if we do not know that �∗ is transitive, we cannot ensure

that it is, even if each �k is. That is, we demonstrate a sequence �k of strictly

monotone preferences, where �k→�∗ in the closed convergence topology, but

�∗ is not transitive.

The data are rationalizable, but the rationalization requires intransitive in-

difference. So the properties of the rationalizations of order k cannot be pre-

served.

8This is true in spite of Section 8.1. It is true that the set of rationalizations may “shrink” to
something which is not transitive, but this set is shrinking nonetheless and always contains
preference relations (except in the limit).
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Figure 1. A non-transitive preference

Figure 1 exhibits a non-transitive relation. The example is taken from Gro-

dal (1974). The lines depict indifference curves, but all the green indifference

curves intersect at one point: (1/2, 1/2). This makes the preference non-

transitive; specifically the indifference part of the preference would be intran-

sitive here.

Now imagine a collection of binary comparisons that do not include (1/2, 1/2).

Suppose that this collection is the limit of a finite number of binary compar-

isons, making it at most countable. There must exist a ball around (1/2, 1/2)

that does not include any of the comparisons. Consider the diagram in Fig-

ure 2. The preferences have been modified close to (1/2, 1/2) so that transi-

tivity holds.

This example is not particularly troubling, however. First, with finite exper-

imentation, the violation of transitivity will never be “reached.” Second, the

violation here is not particularly egregious. Only transitivity of indifference is

violated. This holds quite generally. It can be shown that any limit point of

a sequence of preference relations must be quasitransitive, so that whenever

x � y and y � z, it follows that x � z.9 Quasitransitive relations enjoy many

9The argument is in Grodal (1974), but to see this suppose that �n→�, where each �n

is a preference relation. It can be shown that � is complete, so suppose by means of
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Figure 2. A transitive preference

of the useful properties of preferences. For example, continuous quasitransitive

relations possess maxima on compact sets, see e.g. Bergstrom (1975).

8.2. The set of locally strict relations is not closed. Finally we present

an example to show that the set of locally strict preference relations is not

closed. Let X = [−3,−1] ∪ [1, 3]. For each n, let un(x) = −(x + 2)2 + 1
n

on

[−3,−1] and un(x) = (x − 2)2 − 1
n

on [1, 3]. See Figure 3. The function un

represents a locally strict relation �n.

Let u∗(x) be the pointwise limit of un; i.e. u∗(x) = −(x + 2)2 on [−3,−1]

and u∗(x) = (x − 2)2 on [1, 3]. The function u∗ represents �∗ which is not

locally strict. Observe that −2 �∗ 2, but for small neighborhoods there is no

strict preference.

However, it is also straightforward by checking cases to show that �n→�∗.
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Appendix A. About Closed Convergence

We recall below the formal definition of closed convergence, used throughout

the results of this paper. Let F = {F n}n be a sequence of closed sets in X×X.

We define Li(F) and Ls(F) to be closed subsets of X ×X as follows:

• (x, y) ∈ Li(F) if and only if, for all neighborhood V of (x, y), there

exists N ∈ N such that F n ∩ V 6= ∅ for all n ≥ N .

• (x, y) ∈ Ls(F) if and only if, for all neighborhood V of (x, y), and all

N ∈ N, there is n ≥ N such that F n ∩ V 6= ∅.

Observe that Li(F) ⊆ Ls(F). The definition of closed convergence is as follows.

Definition 27. F n converges to F in the topology of closed convergence if

Li(F) = F = Ls(F).

Appendix B. Proof of Proposition 13

The proof is implied by the following lemmas.

Lemma 28. Let X ⊆ Rn. If {x′n} is an increasing sequence in X, and {x′′n}
is a decreasing sequence, such that sup{x′n : n ≥ 1} = x∗ = inf{x′′n : n ≥ 1}.
Then

lim
n→∞

x′n = x∗ = lim
n→∞

x′′n.

Proof. This is obvously true for n = 1. For n > 1, convergence and sups and

infs are obtained component-by-component, so the result follows. �

Lemma 29. Let X ⊆ Rn. Let {xn} be a convergent sequence in X, with

xn → x∗. Then there is an increasing sequence {x′n} and an a decreasing

sequence {x′′n} such that x′n ≤ xn ≤ x′′n, and limn→∞ x
′
n = x∗ = limn→∞ x

′′
n.

Proof. Suppose that xn → x∗. Define x′n and x′′n by

x′n = inf{xm : n ≤ m} and x′′n = sup{xm : n ≤ m}
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Then it is clear that x′n ≤ xn ≤ x′′n, that x′n is increasing, and that x′′n is

decreasing. Moreover,

lim
n→∞

x′n = sup{inf{xm : n ≤ m} : n ≥ 1}

= x∗

= inf{sup{xm : n ≤ m} : n ≥ 1} = lim
n→∞

x′′n

by Lemma 28. �

Lemma 30. Let X = ∆([a, b]). Let {xn} be a convergent sequence in X,

with xn → x∗. Then there is an increasing sequence {x′n} and an a decreasing

sequence {x′′n} such that x′n ≤ xn ≤ x′′n, and limn→∞ x
′
n = x∗ = limn→∞ x

′′
n.

Proof. The set X ordered by first order stochastic dominance is a complete

lattice (see, for example, Lemma 3.1 in Kertz and Rösler (2000)). Suppose

that xn → x∗. Define x′n and x′′n by x′n = inf{xm : n ≤ m} and x′′n = sup{xm :

n ≤ m}. Clearly, {x′n} is an increasing sequence, {x′′n} is decreasing, and

x′n ≤ xn ≤ x′′n.

Let Fx denote the cdf associated with x. Note that Fx′′n(r) = inf{Fxm(r) :

n ≤ m} while Fx′n(r) is the right-continuous modification of sup{Fxm(r) : n ≤
m}. For any point of continuity r of F , Fxm(r)→ Fx∗(r), so

Fx(r) = sup{inf{Fxm(r) : n ≤ m} : n ≥ 1}

by Lemma 28.

Moreover, Fx∗(r) = inf{sup{Fxm(r) : n ≤ m} : n ≥ 1}. Let ε > 0. Then

Fx∗(r−ε)← sup{Fxm(r−ε) : n ≤ m} ≤ Fx′n(r) ≤ sup{Fxm(r+ε) : n ≤ m} → Fx∗(r+ε)

Then Fx′n(r)→ Fx∗(r), as r is a point of continuity of Fx∗ . �

The following lemma is immediate.

Lemma 31. Let X = Rn
+ with the standard vector order ≤, and let B = Qn

+.

Then the countable order property is satisfied.

Our last lemma is a direct implication of Theorem 15.11 of Aliprantis and

Border (2006).
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Lemma 32. Let a, b ∈ R, where a < b. Let X = ∆([a, b]), the set of Borel

probability distributions on [a, b] endowed with the weak* topology. Let B be

the set of probability distributions p with finite support on Q∩ [a, b], where for

all q ∈ Q ∩ [a, b], p(q) ∈ Q. Then the countable order property is satisfied.

Appendix C. Proof of Theorems 8, 25, 26 and 10

In this section, we let Rmon
denote the set of complete, continuous, and

strictly monotonic binary relations. Members of Rmon
need not be transitive.

Likewise, Rls
is the set of complete, continuous, and locally strict binary

relations.

We record the following facts:

Lemma 33. Let � be a continuous binary relation. If x � y then there are

neighborhoods Vx of x and Vy of y such that x′ � y′ for all x′ ∈ Vx and y′ ∈ Vy.

Theorem 34. Suppose that � and �′ are two complete and continuous binary

relations. Suppose that �′ is locally strict, and let B ⊆ X be dense. If �
|B×B ⊆�′ |B×B, then �⊆�′.

Proof. Suppose by means of contradiction that there are x, y such that x �′ y
but x � y is false. Then y � x, as � is complete, and x ∼′ y as y � x implies

y �′ x. Let U be a neighborhood of (y, x) so that for all (y′, x′) ∈ U , we have

y′ � x′. By local strictness, let (y∗, x∗) ∈ U for which x∗ �′ y∗. Then y∗ � x∗

as well. Now let V be a neighborhood of (x∗, y∗) for which for all (x′, y′) ∈ V ,

y′ � x′ and x′ � y′. Choose (x̂, ŷ) ∈ V ∩ (B × B) and observe that we have a

contradiction. �

Theorem 35. Suppose that � and �∗ are complete and continuous binary

relations. Suppose that �∗ is locally strict. If �⊆�∗, then �=�∗.

Proof. Suppose by means of contradiction that there is (x, y) such that x �∗ y
but x � y is false. Conclude that y � x, so that y �∗ x (and hence x ∼∗ y)

and y � x. Let U be a neighborhood about (x, y) for which for all (x′, y′) ∈ U ,

y′ � x′ (Lemma 33). By local strictness, there is (x∗, y∗) ∈ U such that

x∗ �∗ y∗. Hence we have x∗ �∗ y∗ and y∗ � x∗, contradicting �⊆�∗. �

We now prove Theorems 25 and 26.
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Proof of Theorem 25. The proof follows directly from Theorems 34 and 35. �

Proof of Theorem 26. First, it is straightforward to show that x � y implies

x �′ y. Because otherwise there are x, y for which x � y and y �′ x. Take an

open neighborhood U about (x, y) and a pair (z, w) ∈ U ∩ (B ×B) for which

z � w and w �′ z, a contradiction. Symmetrically, we also have x �′ y implies

x � y.

Now, without loss, suppose that there is a pair x, y for which x � y and x ∼′

y. By connectedness and continuity, V = {z : x � z � y} is nonempty and by

continuity it is open.10 We claim that there is a pair (w, z) ∈ (V ×V )∩(B×B)

for which w � z. For otherwise, for all (w, z) ∈ V × V ∩ (B × B), w ∼ z.

Conclude then by continuity that for all (w, z) ∈ V × V , w ∼ z. Observe that

this implies that, for any w ∈ V , the set {z : w � z � y} = ∅, as if w � z � y,

we also have that x � w � z, from which we conclude x � z, so that z ∈ V
and hence z ∼ w, a contradiction. Observe that {z : w � z � y} = ∅
contradicts the continuity of � and the connectedness of X (same argument

as nonemptyness of V ; see the footnote).

We have shown that there is (w, z) ∈ (V × V ) ∩ (B × B) for which w � z,

so that x � w � z � y. Further, we have hypothesized that x ∼′ y. By the

first paragraph, we know that x �′ w �′ z �′ y. If, by means of contradiction,

we have w �′ z, then x �′ y, a contradiction. So w ∼′ z and w � z, a

contradiction to �B×B=�′B×B. �

Lemma 36. Let A ⊆ X × X. Then {�: A ⊆�} is closed in the closed

convergence topology.

Proof. Let �n be a convergent sequence in the set in question, where �n→�.

Then for all (x, y) ∈ A, we have x �n y, hence x � y. So (x, y) ∈�. �

Lemma 37. Suppose X is locally compact Polish, and that < has open inter-

vals. Then Rmon
is closed in the topology of closed convergence.

10The argument for nonemptiness is as follows. If, by means of contradiction, V = ∅, then
{z : x � z} and {z : z � y} are nonempty open sets. Further, for any z ∈ X, either x � z
or z � y (because if ¬(x � z) then by completeness z � x, which implies that z � y).
Conclude that {z : x � z} ∪ {z : z � y} = X and each of the sets are nonempty and open
(by continuity); these sets are disjoint, violating connectedness of X.
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Proof. By Lemma 6, since X is locally compact Polish, the topology of closed

convergence is compact metrizable.

Suppose �n→� where each �n is continuous, strictly monotonic, and com-

plete. We know that � is continuous by compactness. Suppose by means of

contradiction that � is not strictly monotonic, so that there are x, y ∈ X for

which x > y and y � x. Then there are (xn, yn)→ (x, y) for which yn �n xn.

For n large, xn > yn, a contradiction to the fact that �n is strictly monotonic.

Finally, completeness follows as for each x, y, either x �n y or y �n x, so there

is a subsequence nk for which either x �nk
y or for which y �nk

x. �

Lemma 38. Suppose that B is dense, �′ is complete, and each of � and �∗

are continuous and locally strict complete relations. Then if

�′ |B×B ⊆�∗ |B×B∩ � |B×B,

it follows that �∗=�.

Proof. Suppose, by means of contradiction and without loss of generality, that

there are x, y ∈ X for which x �∗ y and y � x. By continuity of � and local

strictness of �∗, we can without loss of generality assume that x �∗ y and

y � x. By continuity of each of � and �∗, there exists a, b ∈ B such that

a �∗ b and b � a. But by completeness of �′, either a �′ b, contradicting

�′ |B×B ⊆� |B×B, or b �′ a, contradicting �′ |B×B ⊆�∗ |B×B. �

We now turn to the main proof of the theorem.

Proof of Theorem 8. By Lemma 37, Rmon
is compact. Let �′ be any strictly

monotonic and complete binary relation such that for all k and all {x, y} ∈ Σk,

x ∈ ck({x, y}) if and only if x �′ y (�′ exists by the projection requirement

on choice sequences, and by the fact that c v c�∗).

For each k, let �′k= {(x, y) : {x, y} ∈ {B1, . . . , Bk} and x �′ y}.
For each k, let

Pk = {�∈ Rmon
:�′k⊆�},

the set of relations which weakly rationalize c. Observe by definition that by

Lemma 36, Pk is closed, and hence compact. By assumption, each �∈ Pk

satisfies �∈ Rls
, and obviously, for all k, �∗∈ Pk. Further, observe that
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k Pk = {�∗}, since if �∈

⋂
k Pk, by definition �′B×B⊆�∗ |B×B∩ � |B×B and

Lemma 38.

The result now follows as each Pi is compact and
⋂

k Pk = {�∗}. That is, let

�k∈ Pk, which is a decreasing, nested collection of compact sets. Suppose by

means of contradiction and without loss that �k→�′ 6=�∗, and observe then

that it follows that �′∈ Pk for all k, contradicting
⋂

i Pi = {�∗}. �

Proof of Theorem 10. Observe that for any k, the set

Pk = {�∈ Rmon
:� weakly rationalizes ck}

is closed, and hence compact by Lemma 36. Observe that Pk(c) ⊆ Pk. More-

over, it is obvious that Pk+1 ⊆ Pk. Suppose that there is no k for which

Pk(c) = ∅. Then, since each Pk 6= ∅ and each Pk is compact,
⋂

k Pk 6= ∅. Let

�∗∈
⋂

k Pk.

We claim that
⋂

k Pk = {�∗}. Suppose by means of contradiction that there

is �6=�∗ where �∈
⋂

k Pk. Let �′ be any complete relation such that for all

(a, b) ∈ B×B, a �′ b if and only if a ∈ ck({a, b}), for k such that {a, b} ∈ Σk.

Then, by definition of weak rationalization, we have �′B×B⊆�B×B ∩ �∗B×B.

Appeal to Lemma 38 to conclude that �=�∗, a contradiction.

Finally, since
⋂

k Pk = {�∗}, and each Pk is compact, it follows that limk→∞ diam(Pk)→
0.11 Hence, since 0 ≤ diam(Pk(c)) ≤ diam(Pk), the result follows.

�

Appendix D. Proof of Theorem 12

The set of weakly monotone and continuous binary relations is compact in

the topology of closed convergence. Suppose wlog that �k→�. Then � is a

continuous binary relation. We shall prove that �=�∗.
First we show that x �∗ y implies that x � y. So let x �∗ y. Let U and

V be neighborhoods of x and y, respectively, such that x′ �∗ y′ for all x′ ∈ U
and y′ ∈ V . Such neighborhoods exist by the continuity of �∗. We prove first

that if (x′, y′) ∈ U × V , then there exists N such that x′ �n y
′ for all n ≥ N .

By hypothesis, there exist x′′ ∈ U ∩ B and y′′ ∈ U ∩ B such that x′′ ≤ x′ and

11Otherwise, we could choose ε > 0 and two subsequences �kl
,�′

kl
such that δC(�kl

,�′
kl

) ≥ ε and �kl
→�∈

⋂
k Pk and �′

kl
→�′∈

⋂
k Pk where δC(�,�′) ≥ ε, a contradiction.
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y′ ≤ y′′. Each �n is a strong rationalization of the finite experiment of order

n, so if {x̃, ỹ} ∈ Σn then x̃ �n ỹ implies that x̃ �m ỹ for all m ≥ n. Since

x′′, y′′ ∈ B, there is N is such that {x′′, y′′} ∈ ΣN . Thus x′′ �∗ y′′ implies that

x′′ �n y′′ for all n ≥ N . So, for n ≥ N , x′ �n y′, as �n is weakly weakly

monotone.

Now we establish that x � y. Let {(xn, yn)} be an arbitrary sequence with

(xn, yn) → (x, y). By hypothesis, there is an increasing sequence {x′n}, and

a decreasing sequence {y′n}, such that x′n ≤ xn and yn ≤ y′n while (x, y) =

limn→∞(x′n, y
′
n).

Let N be large enough that x′N ∈ U and y′N ∈ V . Let N ′ ≥ N be such

that x′N �n y
′
N for all n ≥ N ′ (we established the existence of such N ′ above).

Then, for any n ≥ N ′ we have that

xn ≥ x′n ≥ x′N �n y
′
N ≥ y′n ≥ yn.

By the weak monotonicity of �n, then, xn �n yn. The sequence {(xn, yn)}
was arbitrary, so (y, x) /∈�= limn→∞ �n. Thus ¬(y � x). Completeness of �
implies that x � y.

In second place we show that if x �∗ y then x � y, thus completing the

proof. So let x �∗ y. For any k ≥ 1, choose x′ ∈ Nx(1/k) ∩ B with x′ ≥ x,

and y′ ∈ Ny(1/k)∩B with y′ ≤ y; so that x′ �∗ x �∗ y �∗ y′, as �∗ is weakly

weakly monotone. Recall that �n↑. So x′ �∗ y′ and x′, y′ ∈ B imply that

x′ �n y
′ for all n large enough. Let nk ≥ nk−1 such that x′ �nk

y′; and let

x′ = xnk
and y′ = ynk

.

Then we have (xnk , ynk)→ (x, y) and xnk
�nk

ynk
. Thus x � y.

Appendix E. Proof of Theorem 19

We begin with two useful lemmas.

Lemma 39. Φ is an open map if for any u∗ ∈ U and any sequence �n in R
with �n→ Φ(u∗), there is a sequence {un} in U such that un ∈ Φ−1(�n) and

un → u∗ in the topology of compact convergence.

Proof. Suppose that there is V ⊆ U open, but Φ(V ) is not open. Then there

is u∗ ∈ V and �n /∈ Φ(V ) such that �n→ Φ(u∗) (since closed convergence

topology is metrizable). Since u∗ ∈ V , any sequence un ∈ Φ−1(�n) for which
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un → u∗ eventually has un ∈ V . But if un is chosen to represent �n, this

implies that Φ(un) ∈ Φ(V ) for n large, a contradiction. �

Lemma 40. For any � and x ∈ X, there is a unique m∗(x) ∈ M with

x ∼ m∗(x). Moreover, if we fix u ∈ U then the function u� : X → R defined

by u�(x) = u(m∗(x)) is a continuous utility representation of �.

Proof. Consider the sets A = {m ∈ M : m � x} and B = {m ∈ M : x �
m}. These sets are closed because � is continuous, their union is M as � is

complete, and they are nonempty as � is monotone and there exist m,m ∈M
with m ≤ x ≤ m by our hypothesis on M . M is connected, so A and B

cannot be disjoint; hence there is m ∈M with x ∼ m. This m must be unique

because M is totally ordered, and � is strictly monotone.

We now show that u� is a continuous utility representation of �. Let x � y.

Then transitivity and monotonicity of � imply that m∗(x) ≥ m∗(y). Thus

u�(x) = u∗(m∗(x)) ≥ u∗(m∗(y)) = u�(y). The converse implications hold as

well; thus u� represents �.

To prove continuity, let xn → x∗. We shall prove that mn = m∗(xn) →
m∗(x∗) = m̂. Suppose first that m̂ is not the largest or the least element of

M . For each neighborhood U of m̂ there exists, by our hypothesis on M ,

m,m ∈M with m < m̂ < m and [m,m] ⊆ U . Then

V = {z ∈ X : m � z} ∩ {z ∈ X : z � m}

is a neighborhood of x∗, as x∗ ∼ m̂ and � is continuous and monotone. For

large enough n then xn ∈ V , so mn ∈ [m,m] ⊆ U . Suppose now that m̂ is

the largest element of M . Then, reasoning as above, xn ∈ {z ∈ X : z � m}
for all large enough n, so that m ≤ mn. We have mn ≤ m as m is the largest

element of M . Thus mn ∈ [m,m] ⊆ U . The argument when m is the least

element of M is analogous. �

We now turn to the main proof of the theorem.

Proof of Theorem 19. Let u∗ ∈ U and {�n} be a sequence in R with �n→
Φ(u∗). By Lemma 39 it is enough to exhibit a sequence un ∈ Φ−1(�n) and

un → u∗ in the topology of compact convergence.
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Let un = u�n as defined in Lemma 40 from u∗. Lemma 40 implies that

un ∈ Φ−1(�n). By XII Theorem 7.5 p. 268 of Dugundji (1966), to establish

compact convergence it is enough to show that for any convergent sequence

{xn}, with xn → x∗, un(xn)→ u∗(x∗).

To this end, let xn → x∗. Let m̂ = m∗(x∗) and mn ∼n xn, using the notation

in Lemma 40, and U be a neighborhood of m̂. Let m,m ∈ M be such that

m < m̂ < m and [m,m] ⊆ U . Then it must be true that mn ∈ [m,m] for

all n large enough. To see this, note that if, for example, mn ≥ m infinitely

often then there would exist a subsequence for which xn �n mn � m (by

monotonicity of �), which would imply that x∗ � m > m̂, as �n→�. But

m̂ ∼ x∗ � m is a violation of monotonicity.

Now mn ∈ [m,m] ⊆ U for all n large enough means that mn → m̂. Thus

u�n(xn) = u∗(xn)→ u∗(x∗) = u�(x∗),

as u∗ is continuous. �

Appendix F. Proof of Theorem 22

By Theorem 8 of Border and Segal (1994), Φ(V) is compact, and therefore

�k possesses a limit point �∗∈ Φ(V). By Lemma 36, the set of �k weakly

rationalizing ck is closed, and hence compact. Suppose by means of contra-

diction that there is some �′k also weakly rationalizing ck which converges to

�6=�∗. Observe that each of �∗ and � weakly rationalize each ck.

Finally, let �′ be any complete relation such that for all (a, b) ∈ B × B,

a �′ b if and only if a ∈ ck({a, b}), for k such that {a, b} ∈ Σk. Then, by

definition of weak rationalization, we have �′B×B⊆�B×B ∩ �∗B×B. Appeal

then to Lemma 38 to conclude that �=�∗, a contradiction.


