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Abstract

This paper analyzes the distribution and growth of firm-level employment along two margins:

the extensive margin (the number of establishments in a firm) and the intensive margin (the

number of workers per establishment in a firm). We utilize administrative datasets to document

the behavior of these two margins in relation to changes in the U.S. firm size distribution. In

the cross section, we find that the firm size distribution, as well as both extensive and intensive

margins, exhibits a fat tail. The increase in average firm size between 1990 and 2014 are pri-

marily driven by an expansion along the extensive margin, particularly in very large firms. We

develop a tractable general equilibrium growth model with two types of innovations: external

and internal. External innovation leads to the extensive margin of firm growth and internal

innovation leads to the intensive margin growth. The model generates fat-tailed distributions

in firm size, establishment size, and the number of establishments per firm. We estimate the

model to uncover the fundamental forces that have caused the distributional changes from 1995

to 2014. We find that the change in the external innovation cost and the decline in establishment

exit rates are the largest contributors to the increase in the number of establishment per firm.
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1 Introduction

Understanding the process of firm growth is essential in the analysis of macroeconomic performance.

Firms that innovate and expand are the driving force of output and productivity growth. Recent

analysis of macroeconomic productivity emphasizes the role of innovation and reallocation at the

firm level, both from theoretical and empirical standpoints.

In this paper, we focus on a particular aspect of firm growth: growth through adding new

establishments. A firm can increase its size along two margins; it can add more workers to its

existing establishments or it can build new establishments. We call the former the intensive margin

of firm growth and the latter the extensive margin of firm growth. This distinction is important

because these margins typically imply different reasons for expansion. A new manufacturing plant

is often built to produce a new product. In the service sector, building a new store or a new

restaurant imply venturing into a new market. Creating a new establishment is also different in

that it typically requires a significant amount of investment in equipments and structures. In the

following, we also utilize the terminology of extensive and intensive margins in describing the firm

size distribution.

Given the importance of this distinction, it is somewhat surprising that very little is known

about how firms grow through new establishments. Our first goal is to establish stylized facts about

firm growth in these two margins. We describe the firm size distribution along these margins, and

document how these two margins have changed over the recent years. We then interpret the facts

through the lens of a macroeconomic model of endogenous innovation and firm dynamics.

In the existing literature on firm dynamics, firms and establishments are frequently treated as

interchangeable. One justification for this indifference is the fact that the majority of firms are

single-establishment firms. While this assumption is justifiable in some situations, it is misleading

in many macroeconomic contexts. In the U.S. economy, while 95% of firms are single-establishment

firms, their share in total employment is less than half (45%).1 Furthermore, the firm size distri-

bution exhibits a Pareto tail, which implies that a large firm with many establishments has a

disproportionately large impact on macroeconomic performance (Gabaix, 2011). Therefore, under-

standing how these large firms are created is an important research question.

As in the literature, we find that firm size distribution has a Pareto tail in our dataset. Our novel

finding is that the two margins of firm size distribution, the extensive margin (the number of estab-

lishments per firm) and the intensive margin (the average number of workers per establishment),

also exhibit Pareto tails.

Along the time series, we find that the average firm size has grown in recent years. It is largely

driven by the firms in the right tail of the size distribution. This observation is consistent with

the findings of recent studies.2 These studies suggest that this increase in size has had important

1The numbers are taken from 2005 Q1 Business Employment Dynamics (which is drawn from the Quarterly
Census of Employment and Wages, explained in Section 2.1): https://www.bls.gov/bdm/sizeclassqanda.htm. In
the manufacturing sector, single-plant firms own 72% of plants, they produce only 22% of the value added (Kehrig
and Vincent, 2019).

2For example, Autor et al. (2017) document the emergence of superstar firms. De Loecker and Eeckhout (2017)
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implications on other changes in macroeconomic variables, such as the decline in labor share. Our

new finding compared to the literature is that we show this expansion is driven by the extensive

margin growth.

To investigate what changes in the economic environment have contributed to this phenomenon,

we build a macroeconomic model of endogenous firm growth. Our model extends previous work by

Klette and Kortum (2004) and Luttmer (2011). In Klette and Kortum (2004) and Luttmer (2011),

each individual firm grows by adding production units (external innovations in our terminology),

“product lines” in Klette and Kortum’s (2004) terminology and “blueprints” in Luttmer’s (2011)

terminology. A natural interpretation of such a production unit, as is explicit in Luttmer (2011),

is an establishment. Thus, this type of framework provides an ideal vehicle for analyzing firm

growth through new establishments. The major departure of our model, compared to Klette and

Kortum (2004) and Luttmer (2011), is the recognition that each establishment can grow in size.3 We

introduce this technological improvement at the establishment level (we call it internal innovation),

and explicitly compare our model outcomes to the data on establishments.

We estimate model parameters to match the change in U.S. firm size distributions in 1995 and

2014. Through the lens of our model, we uncover fundamental forces that have caused the changes

in the firm-size distribution and its components over this time period. The estimation result shows

that (i) the external innovation cost became lower for the firms that are active in such innovations,

(ii) the internal innovation cost became higher, (iii) entry became more costly, (iv) the average

quality at entry became higher, and (v) upon entry, growth through external innovation became

more common but shorter-lived. We also find that the largest contributors of the increase in the

number of establishments per firm are the change in the external innovation cost and the decline in

the establishment exit rate. The estimated model allows us to conduct counterfactual experiments.

These experiments reveal the quantitative importance of each parametric change in generating the

observed patterns in the data.

The model constructed by Akcigit and Kerr (2018) has similar features to this paper’s. They

also consider innovations that are internal to the establishments (“products” in their terminology)

that the firm already produces and external innovations that increases the number of establishments

that the firm operates, whereas many of their model assumptions are different from ours.4 Our main

purpose is to map the model to the data on firm and establishment sizes, measured by employment,

while Akcigit and Kerr (2018) primarily use patent data and therefore consider products rather

than establishments. Our model is tractable and it allows for analytical characterizations of Pareto

tails in the distributions of firm size, the establishment size, and the number of establishments per

analyze the increase in concentration measured by the markup. Gutiérrez and Philippon (2017) also point out the
recent increase in concentration in the U.S. corporate sector.

3Acemoglu and Cao (2015) have also pointed out such growth is lacking in the Klette and Kortum (2004) frame-
work.

4For example, in Akcigit and Kerr (2018) an external innovation improves a product that is already produced by
another firm, whereas in our model it creates a new establishment whose quality is the same as the other establishments
in the firm. Arguably, our assumption suits better for the service sector innovations. When a retail firm opens a new
store after researching the placement of a new location, the quality of the new store would more likely be associated
with the firm that opens the store than the existing stores in that location.
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firm. In contrast, Akcigit and Kerr’s (2018) model does not allow for Pareto tails. Our model

is customized to our question—we investigate the forces behind the increase in firm size over the

recent years. In particular, we highlight the role of changes in innovation costs in allowing firms to

expand on the extensive margin.

Lentz and Mortensen (2008) extends Klette and Kortum’s (2004) model and estimates it using

Danish data. While their main focus is on productivity and reallocation, this paper mainly targets

labor market facts. We directly exploit establishment-level information in analyzing firm dynamics.

Furthermore, the empirical phenomenon we highlight mainly concerns large firms, and our model

is tailored to fit the right tail of the firm size distribution. Lentz and Mortensen (2008) matches

many salient features of firm size distribution while missing the heaviness of the right tail in the

data; the present paper fills this gap.5

Consistently with our estimated result, Aghion et al. (2018) argue that the cost of firm expansion

(a flow overhead cost in their model) has declined in recent years. Their focus is on the trend of

productivity growth and the labor share. In contrast, our focus is on the change in the pattern

of firm growth over time and analyzing the tail properties of the firm size distribution. Hsieh and

Rossi-Hansberg (2019) show that the industry-level increase in concentration is associated with the

extensive-margin growth of top firms. They argue that the cause of the extensive-margin growth

of top firms in the service industry is driven by a new technology with large fixed cost, such as

Information and Communications Technology.

Finally, our paper is related to the theoretical literature studying firm size distribution and its fat

right tail.6 Luttmer (2011) and Acemoglu and Cao (2015) build endogenous growth models with fat

(Pareto) tail distributions arising from only extensive margin growth (firm adding establishments in

the former) or intensive margin growth (establishments expanding their size in the latter). We build

a model with both margins to match their characteristics in the data. We are able to characterize

the Pareto tail parameters analytically, employing recent advances in the literature on regular

variations and their applications.7

The paper is organized as follows. Section 2 describes the empirical patterns of firm growth

we find using our dataset. Section 3 sets up the model and Section 4 provides a theoretical char-

acterization. Section 5 provides an additional characterization of the model’s stationary firm size

distributions Section 6 estimates model parameters and uses the model to perform a quantitative

decomposition of 1990-2015 U.S. firm growth. Section 7 concludes.

5Lentz and Mortensen (2008) note that “[...] While generally performing well in terms of matching firm size
distributions the problem fitting the heavy far right tail in empirical size distribution is a well-known issue associated
with the Klette and Kortum (2004) model. Improvement of the model along this dimension is a topic well worthy of
future research” (pp. 1346-1347).

6See, for example, Axtell (2001), Gabaix (2009), Axtell and Guerrero (2019), and Kondo et al. (2019) for empirical
studies.

7See, for example, Bingham et al. (1987), Mimica (2016), Gabaix et al. (2016), and Beare and Toda (2017).
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2 Empirical facts

We first describe the data sources. After clarifying the conceptual framework, we then present cross-

sectional and time series facts related to firm size, establishment size at each firm, and number of

establishments per firm.

2.1 Data

We use establishment-level microdata for the U.S. that report payroll information on the number of

workers by establishment and month. Each establishment in the data has an employer identification

number (EIN) and a 6-digit NAICS code associated with its primary industry.

This paper utilizes two restricted access datasets that use common source data that contains a

near census of establishments in the United States. The source data are collected for the Quarterly

Census of Employment and Wages (QCEW) by U.S. states in partnership with the Bureau of

Labor Statistics (BLS) for the official administration of state unemployment insurance programs.

States also provide establishment-level QCEW microdata to the U.S. Census Bureau’s Longitudinal

Employer-Household Dynamics program as part of the Local Employment Dynamics federal-state

partnership.8 For each figure and table, we explicitly indicate the data source that is used.

We use the employer identification numbers (EINs) as the definition of the firm. This is the

level at which companies file their tax returns, and often considered as the boundary of the firm

in recent studies. In some cases, EINs can be different from the ultimate ownership, especially for

large firms. Song et al. (2015) discuss this issue at length in their study of inequality. They state

that for 4,233 New York Stock Exchange publicly listed firms in the Dunn & Bradstreet database,

13,377 EINs are reported. They provide some examples: Walmart operates with separate EINs

for “Walmart Stores,” the Supercenter, Neighborhood Market, Sam’s Club, and On-line divisions;

Stanford University has separate EINs for the university, the bookstore, the main hospital, and

children’s hospitals. We view the EIN as a reasonable definition of a firm for our analysis, given

that it is an economically meaningful unit (especially from the accounting perspective), and that

typically the EINs for these large firms with multiple EINs are still substantially more aggregated

than establishments.9

2.2 Conceptual framework for the firm size decomposition

We define firm size as the total number of workers employed by a firm. In what follows, we

decompose average firm size into an extensive and intensive margin. The extensive margin is the

8Data from the BLS contains information on 38 states and data from the U.S. Census Bureau contains information
on 28 states. Data from the U.S. Census Bureau is contained in the Employer Characteristics File maintained by the
Census Bureau’s LEHD program. See Abowd et al. (2009) and Vilhuber (2018), and Appendix A for further details
of these datasets. In using data from both BLS and Census sources, we have confirmed using basic statistics that
there are no inconsistencies across the two data frames.

9For example, as of October 31 2017, Walmart has 402 Discount Stores, 3552 Supercenters, 702 Neighborhood
Markets, 660 Sam’s Clubs, and 97 Small Formats including E-Commerce Acquisition/C-stores (numbers are taken
from https://corporate.walmart.com/our-story/locations/united-states).
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total number of establishments owned by a firm, and the intensive margin is the average size of

establishments owned by a firm (e.g., the number of workers per establishment in a firm).

For the sake of exposition, suppose there are Ft firms at time t indexed by i. Let Nit be the

total number of workers employed by firm i and Eit be the total number of establishments owned

and operated by firm i at time t. We define average establishment size within firm i as Nit/Eit so

that we decompose size at the firm-level as,

Nit =

(
Nit

Eit

)
× Eit.

Accordingly, our measures of average firm size, the average intensive margin and the average ex-

tensive margin are, (
1

Ft

Ft∑
i=1

Nit ,
1

Ft

Ft∑
i=1

Nit

Eit
,

1

Ft

Ft∑
i=1

Eit

)
respectively.

Publicly-available datasets such as Business Dynamics Statistics of the U.S. Census Bureau

contain size distribution of establishments and firms separately. Compared to the studies that

utilize these publicly-available datasets, our study has several advantages. First, the use of micro-

data enables us to characterize the entire size distribution of firms, particularly at the right tail.

Second, we cannot decompose firm growth into intensive and extensive margins without the infor-

mation contained in the microdata we utilize. While the average size and average extensive margin

can be computed from the publicly-available information (the former is the total employment di-

vided by the total number of firms and the latter is the total number of establishment divided by

the total number of firms), the intensive margin cannot be computed from the publicly-available

information.10

2.3 Cross-sectional properties

We first describe the cross-sectional distributions of the firm size, the intensive margin, and the

extensive margin. For this analysis, we use LEHD microdata and focus on 2005.Figure 1 plots the

complementary cumulative distribution function in log-log scale, a type of figure commonly used

in the literature to demonstrate whether the data is consistent with the Gibrat’s Law.11 All three

series have the right tail that can be approximated by a straight line. This implies that all three

distributions have Pareto tails. This, to our knowledge, is the first time that it is documented

that both extensive margin and the intensive margin have Pareto tails. This fact is important for

our model study, because this fact indicates that a similar mechanism is at work in the intensive

10Previous research has used publicly available to compute an approximation to the intensive margin as the ratio
of the total number of workers to the total number of establishments. However, this approximation fails for larger
firms because it incorporates a correlation between size and establishment number that should not be contained in
the decomposition. See Appendix C.1 for a formal treatment.

11Figure 1 presents rounded predicted values constructed from polynomial approximations of the size-rank rela-
tionship present in LEHD microdata. For the set of polynomial estimates, see Appendix Table B.1.
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Figure 1: Size-rank relationships, ranked separately by size measure
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Notes:Author’s calculations of LEHD microdata. Each series shows predicted the predicted value of employment
from a regression of the log size measure on a fifth order polynomial of the log percentile rank of the size measure
in March of 2005, rounded to the nearest integer. See text for additional details.

margin growth and the extensive margin growth. In particular, the existence of Pareto tails indicate

Gibrat’s Law at a large size, and this imposes some structures on the driving forces behind the

growth in both margins.12

It is important to note that the intensive margin distribution is conceptually different from the

economy-wide distribution of establishment sizes, although they are closely related. The intensive

margin is a firm-level concept. When there is a firm with 100 establishments, for example, these

establishments would count as 100 observations in the establishment size distribution, while it is

one sample point in our description of the intensive margin. Our empirical description here focuses

on the intensive margin given that our interest in this paper is in firm size and firm growth. Some

existing studies have already found that the U.S. establishment size distribution exhibits a Pareto

tail, this is the first study that describes the right-tail properties of the intensive margin.

The existence of Pareto tails indicates that firms at the top of a size distribution employ a greater

share of all workers and a greater share of establishments relative to the rest of the distribution.13

Accordingly, the data points in Figure 1 imply that 55.1% of employment is concentrated in the

12Figure 1 is also useful for understanding the entire distributions of the firm size, the extensive margin, and the
intensive margin. Note that the vertical axis shows the log of the percentile rank, which ranges from 0 to 100. The
value of log(100) is 4.6, and this is the upper bound of the vertical axis. Because log(1) = 0, the values below zero
indicate the sizes above the 99 percentile. In particular, because exp(−3) = 0.05, the points with the vertical axis
being −3 correspond to 99.95 percentile.

13Given each distribution exhibits a Pareto tail, note that the top p-th percentile’s share can be expressed as
(p/100)1−1/ζ where ζ is the Pareto tail parameter. This expression shows when the Pareto distribution has a fatter
tail (lower ζ) firms at the top of a distribution employ a greater share of all resources relative to the rest of that
distribution.

7

 Electronic copy available at: https://ssrn.com/abstract=3361451 



largest 1% firms ranked by employment, and 18.2% of all establishments are concentrated in the

largest 1% of firms ranked by the number of establishments. All three distributions also exhibit

substantial bunching at the bottom of the distribution at the discrete value of one. 28% of firms

have exactly one employee, 29% of firms have an average establishment size of one employee, and

96% of firms have exactly one establishment. Other discrete low values such as 2 and 3 exhibit

bunching in the distribution, but less dramatically so.

Appendix C presents additional cross-sectional facts that we find in our dataset. There, we

observe that the difference between small and large firms are due to both extensive and intensive

margins, but among small firms, the difference is mostly explained by the intensive margin. The

extensive margin exhibits a large contribution in the size differences and the growth of very large

firms.

2.4 Time-series properties

Now we turn to the time-series changes in these distributions. It turns out there have been notable

changes in these distributions over our sample period. As depicted in Figure 2, average firm size

has increased from about 23 employees to over 25 employees. This fact is consistent with the rise

in concentration in the U.S. economy documented by Autor et al. (2017).14

Figures 3 and 4 present the novel facts that we focus on in this paper. Figure 3 plots the average

of the intensive margin and shows that the intensive margin remains stationary (or somewhat de-

clining) despite the increase in the firm size over our sample period.15 Therefore, our decomposition

of firm size then implies that the average extensive margin must exhibit a strong upward trend, as

is confirmed in Figure 4. The extensive margin grows from 1.2 in 1990 and increases to over 1.5 in

2014. Accordingly, average firm size over 1990-2014 can be accounted for by the extensive margin

growth in the number establishments.

This contrasting behavior between the intensive and extensive margins implies that different

forces are at work for these different components of firm growth. To investigate what drives the

increase in firm size, in particular along the extensive margin, we consider disaggregations by sector

and size bins.

First, we examine the firm size decomposition in the manufacturing, service and agricultural

sectors and find that a significant increase in the number of service sector establishments per firm is

the driving force for the economy-wide increase in average firm size. Figure 5(a) plots the evolution

of average firm size in each sector, compared to the average firm size in 1990. We observe that

all sectors experienced an increase in average firm size over the sample period (1991-2013), but

the service sector experienced the largest size increase. This observation is notable as the service

14Choi and Spletzer (2012) and Hathaway and Litan (2014) also document trends in firm size and establishment
size, but do not analyze the intensive and extensive margins.

15Recent papers by Rinz (2018), Hershbein et al. (2019), and Rossi-Hansberg et al. (2019) document the diverging
trends in national concentration and local concentration, which is analogous to the diverging trends in the average
firm size and the intensive margin. Here, once again, note that the average intensive margin is conceptually different
from the average establishment size in the economy. One can compute the average establishment size from publicly-
available data, but one needs to access the micro-level data to compute the average intensive margin.
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Figure 2: Average firm size (number of workers)
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Figure 3: Average intensive margin
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Figure 4: Average extensive margin
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Source: Author’s calculations of Quarterly Census of Employment and Wages microdata.
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Table 1: Slope of the Size-Rank Relation-
ship

Firm size Extensive Intensive

95th percentile and above
1995 −1.10 −1.20 −1.35
2014 −0.99 −1.17 −1.32

99th percentile and above
1995 −1.17 −1.25 −1.39
2014 −0.99 −1.21 −1.24

Notes: Authors’ calculations of of LEHD mi-
crodata. Linear regression of log outcome on
log rank for fitted values at or above the 95th
percentile from a polynomial approximation of
microdata. Slopes correspond to March of the
respective year.

sector employs the majority of the U.S. workers over this period. To account for sectoral firm size

growth, we turn to the intensive and extensive margins plotted in plotted in Figures 5(c) and 5(e),

respectively. Each sector’s intensive margin exhibits a flat or slight downward trend similar to that

in the overall economy. In strong contrast, the extensive margin for different sectors delivers the

same message as the extensive margin in the overall economy, that the growth in the number for

establishments per firm account for the overall increase in average firm size across sectors and, by

extension, the overall economy.

Next, we examine the firm size decomposition conditional on firm size and find that the

establishment-driven growth in average firm size is concentrated in the economy’s largest firms.

Figure 5(b) calculates the average size within size bins. There is a pattern of spreading out: very

small firms with 1 to 4 employees have tended to become smaller, while the average size of larger

firms with 100 employees has increased over time. If we examine the very right tail of firms with

5000 workers or more, firm size has been increasing over time since 1997, with a similar increase

in firms that have 100 employees or more. The intensive margin does not exhibit an obvious rela-

tionship with firm size, as seen in Figure 5(d). None of the series have an increasing trend, and in

fact, the overall time-series pattern looks similar between very small firms (1 to 4 employees) and

very large firms (5000 or more employees) except for a spike for very large firms in early 2000s. In

contrast, growth in the average number of establishments per firm exhibits very different trends

between small and large firms, as shown in Figure 5(f). Very small firms are predominantly single-

establishment firms over the entire sample period. Medium-size firms with 5 to 99 employees have

had a modest increase in the number of establishments. Larger firms have had a startling increase

in the number of establishments. On average, the firms in 5000 or more employees category have

about 4 times more establishments in 2014 compared to 1990. Thus, we conclude that a key mech-

anism that generated the increase in firm size in recent years is expansion through the number of

establishments in very large firms.
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Figure 5: Average Firm Size, Intensive and Extensive Margins by Sector and Size Bins
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(b) Average firm size by size bin (number of workers)
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(c) Average intensive margin by sector
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(d) Average intensive margin by size bin
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(e) Average extensive margin by sector
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(f) Average extensive margin by size bin
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To see the behavior of the distribution at the right tail, we measure the slope of the upper

percentiles of the firm size distribution in Table 1.16 Here, we include predicted values that are at

or above the 95th percentile. The firm size distribution has a slope that is close to (negative) one,

which indicates that it has a very fat tail. Both the extensive margin and the intensive margin have

steeper slopes than the employment distribution, which implies thinner tails. For the overall firm

size, the right tail became thicker—looking at the 99 percentile and above, the tail index changed

from −1.17 to −0.99. Table 1 indicates that both extensive and intensive margins contributed to

this thickening of the slope over time.

Appendix D describes additional time-series facts. There, we find that the increase in the

average extensive margin is more pronounced for older firms. This indicates that the time trend is

largely due to the change in the patterns of firm growth.

Overall, the preceding empirical documentation of firm growth shows that the growth in average

firm size between 1990 and 2014 is the result of high growth in creating new establishments,

particularly by very large firms in the service sector. At the right tail, we observe increasing

concentration in the firm size distribution, the intensive margin distribution, and the extensive

margin distribution between 1995 and 2014.17

3 Model

Motivated by the facts in the previous section, we construct a model of firm dynamics. Particularly,

in Figure 1, the existence of Pareto tails in the intensive and extensive margins indicate Gibrat’s

Law holds for large firms. This imposes a theoretical structure on the driving forces behind the

growth in both margins. We present a model in which intermediate-good firms make endogenous

productivity improvements that lead to growth in both establishment size and the number of

establishments. In Section 6, we will use this model to quantitatively analyze the fundamental

causes of the growth in firm size along the extensive margin and the increasing concentration of

the firm size distribution.

3.1 Model setting

Time is continuous. The representative consumer provides labor and consumes a final good. The

final good is produced by combining differentiated intermediate goods.

16For details on how we summarize our polynomial approximations with bivariate regressions, see Appendix Section
B.3.

17The comparison in Table 1, as well as the model estimation in Section 6, the comparison is between 1995 and
2014, instead of between 1990 and 2014. This is due to the availability of the LEHD data.
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3.2 Representative consumer

The consumer side is intentionally kept simple, as we focus mainly on firm growth. The utility

function of the representative households is

U =

∫ ∞
0

e−ρ̃tL(t)u(C(t)/L(t))dt,

where u(C(t)/L(t)) = (C(t)/L(t))1−σ/(1−σ) for σ > 0 and σ 6= 1 or u(C(t)/L(t)) = log(C(t)/L(t)),

corresponding to σ = 1. The consumer consumes, owns firms, and supplies labor. The labor supply

is given exogenously and grows at the rate γ ≥ 0. Letting the real interest rate r, the Euler equation

for the consumer is
Ċ(t)

C(t)
=
r − ρ
σ

, (1)

where ρ ≡ ρ̃ − γ. Final output is used for consumption, firm investments in innovative activities,

and firm fixed costs:

Y (t) = C(t) +R(t) + E(t),

where Y (t) is the final goods output, R(t) is total R&D of the incumbents, and E(t) is the total

entry cost.

3.3 Final good producers

There is a perfectly competitive final good sector. The final good is produced from differentiated

intermediate goods. Intermediate goods have different qualities, and a high-quality intermediate

good contributes more to the final good production. The production function for the final good is

Y (t) =

(∫
N (t)

qj(t)
βxj(t)

1−βdj

) 1
1−β

, (2)

where xj(t) is the quantity of intermediate good j, and qj(t) is its quality. N (t) is the set of

actively-produced intermediate goods and N(t) = |N (t)| denote the number of actively-produced

intermediate goods. We assume that β ∈ (0, 1) so that the elasticity of substitution between

differentiated goods (1/β) is greater than one.

With the maximization problem

max
xj(t)

(∫
N (t)

qj(t)
βxj(t)

1−βdj

) 1
1−β

−
∫
N (t)

pj(t)xj(t)dj,

the inverse demand function for the intermediate good j is

pj(t) = Y (t)β
(
qj(t)

xj(t)

)β
. (3)
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3.4 Intermediate good producers

The intermediate good sector is monopolistically competitive. Each intermediate good is produced

by one firm. A firm can potentially produce many intermediate goods. A firm can add a new

intermediate good to its portfolio by investing in R&D that generates an external innovation.

It can also increase the quality of the intermediate goods that it already produces by investing in

R&D that generates an internal innovation. A new firm can enter the market by innovating its first

product. In our calibration, we will map one intermediate good in the model to one establishment

in the data.

We assume that the intermediate goods are produced only by labor. This is the only process in

the entire economy that uses labor as an input. This allows us to map the employment dynamics

of the intermediate good sector to our data analysis in Section 2.18 The production function for

intermediate good j is

xj(t) = A(t)`j(t), (4)

where A(t) is exogenous labor productivity that grows at rate θ.

Given final good producer’s demand for its output (3), the intermediate goods producer’s profit

maximization results in standard optimal pricing with a markup over marginal cost:

pj(t) =
1

1− β
w(t)

A(t)
.

The optimal price together with (3) and (4) implies that the labor demand is proportional to qj(t)

given the aggregate variables:

`j(t) = (1− β)
1
β w̄(t)

− 1
β

qj(t)

A(t)Y (t)
β

1−β
(5)

where w̄(t) ≡ w(t)/(A(t)Y (t)
β

1−β ) is the normalized wage.

Because firms (and establishments) differ only in their level of quality qj(t), employment per

establishment varies proportionally to qj(t) in the cross section. Similarly, profit is also proportional

to qj(t):

πj(t) = π̄(t)qj(t),

where

π̄(t) ≡ β(1− β)
1−β
β w̄(t)

β−1
β . (6)

Innovation: Innovations are carried out through R&D activity. The input for R&D is in fi-

nal goods. For an existing intermediate-good firm, there are two kinds of innovations: internal

innovation and external innovation.

18A similar idea of mapping the employment process to the productivity process is employed by Hopenhayn and
Rogerson (1993), Garcia-Macia et al. (2016), and Mukoyama and Osotimehin (2018).
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Internal innovation raises the quality of the goods that a firm already produces. The total

intensity of internal innovation is denoted by ZI,j(t). The innovation intensity per good is zI,j(t) ≡
ZI,j(t)/nj(t), where nj(t) is the (discrete) number of goods firm j produces. Then the quality

improves according to the law of motion

dqj(t)

dt
= zI,j(t)qj(t).

Here we index q only by j because, as we will explain momentarily, the quality of all goods produced

by firm j is always the same within the firm.

We assume that different firms can have different costs for innovation. In particular, we partition

firms into different (finite) types, and assume that different types have different costs for innovation.

We will detail later how types evolve over time. We denote the number of types by T and index

the types by τ . The R&D cost for internal innovation is assumed to be Rτ
I (ZI,j(t), nj(t), qj(t)).

As in Klette and Kortum (2004), we assume that the R&D cost function Rτ
I (ZI,j(t), nj(t), qj(t))

exhibits constant returns to scale with respect to ZI,j(t) and nj(t). Then the R&D cost per good

can be denoted as

RτI (zI,j(t), qj(t)) ≡ Rτ
I (zI,j(t), 1, qj(t)) =

Rτ
I (ZI,j(t), nj(t), qj(t))

nj(t)
.

We further assume that

RτI (zI,j(t), qj(t)) = hI(zI,j(t))qj(t)

for a strictly convex function hτI (·).
External innovation adds brand-new intermediate goods to the production portfolio of the firm.

We assume that the new good has the same quality as the average quality of the goods produced

by that firm. Thus, all products that firm j produces always have the same quality. The total

intensity of external innovation is denoted by ZX,j(t). The innovation intensity per good is zX,j(t) ≡
ZX,j(t)/nj(t). The R&D cost for external innovation is assumed to be Rτ

X(ZX,j(t), nj(t), qj(t)),

which is assumed to be constant returns to scale with respect to ZX,j(t) and nj(t). Once again, we

can denote the cost per good as

RτX(zX,j(t), qj(t)) ≡ Rτ
X(zX,j(t), 1, qj(t)) =

Rτ
X(ZX,j(t), nj(t), qj(t))

nj(t)
,

and we assume that

RτX(zX,j(t), qj(t)) = hτX(zX,j(t))qj(t)

for a strictly convex function hτX(·).19

Dynamic programming problem: We assume that firms transition between different types

19A major departure from Luttmer (2011) is that we allow for internal innovation. Internal innovation allows us
to capture the characteristics of intensive margin growth; we have shown in Section 2 that establishment size grows
over time as firms age.
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from τ to τ ′ with Poisson transition rates λττ ′ . Each establishment depreciates (is forced to exit)

with the Poisson rate δτ . We also impose an exogenous exit shock at the firm level. Let dτ be

the Poisson rate of the firm exit shock for a type-τ firm. We omit time notation here, because all

variables and functions here are constant over time along the balanced-growth path (BGP) that

we will construct.

Each firm is a collection of n establishments that are each characterized by a quality level,

{qj}nj=1. Let Vτ denote the value function of the firm, such that the Hamilton-Jacobi-Bellman

(HJB) equation for the firm is,

rVτ ({qj}) = max
zI,j ,zX,j

n∑
j=1

Π({qj}, zI,j , zX,j) +
∑
τ ′

λττ ′(Vτ ′({qj})−Vτ ({qj})) + V̇τ ({qj}),

where the return function is,

Π({qj}, zI,j , zX,j) ≡ π̄qj −RτI (zI,j , qj)−RτX(zX,j , qj)

+ zI,j
∂Vτ ({qj})

∂qj
qj + zX,j(Vτ ({q−j} ∪ {qj , qj})−Vτ ({qj}))

− δτVτ ({q−j})− dτVτ ({qj})

In this expression,
∑n

j=1 π̄qj is the total profit obtained from the establishments, and RτI (·), RτX(·)
are the previously discussed functions governing investment in internal and external innovations,

that yield the intensive and extensive expansion rates, (zI , zX), respectively.20

Because of separability, the value function for the firm is the sum of the value functions across

establishments,

Vτ ({qj}) =

n∑
j=1

Vτ (qj)

and the establishment-level HJB equation of a type-τ establishment is

rVτ (q)− V̇τ (q) = max
zI ,zX

 π̄q −RτI (zI , q)−RτX(zX , q) + zI
∂Vτ (q)
∂q q

+zXVτ (q)− (δτ + dτ )Vτ (q) +
∑

τ ′ λττ ′(Vτ ′(q)− Vτ (q))

 ,
where Vτ (q) is the value of type-τ establishment with quality q and V̇τ (q) is the time derivative of

Vτ (q) function.

As in Mukoyama and Osotimehin (2018), Vτ (q) can be shown to be linearly homogeneous in q

20From (3) and (4), firm-level revenue can be written as
∑n
j=1 Y (t)β (qj(t))

β (A(t)`j(t))
1−β . Assuming that a firm

has n identical establishments with identical product quality q(t) (we show later on that this is the case in equilibrium)
and total labor `(t), then the total revenue is Y (t)β (q(t))β (A(t)`(t))1−β nβ . If n is small then the revenue function
exhibits decreasing returns to `. However, if n is large, ` and n are closely related, and therefore, the revenue function
exhibits higher returns to scale. Consistent with this intuition, Dinlersoz et al. (2018) finds that private firms exhibit
financing behaviors associated with decreasing to scale production functions while public firms do not. The latter
typically have more establishments.
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along the BGP. That is, Vτ (q) = vτq for a constant vτ . The HJB equation above can be normalized

to

rvτ = max
zI ,zX

[
π̄ − hτI (zI)− hτX(zX) + (zI + zX − δτ − dτ )vτ +

∑
τ ′

λττ ′(vτ ′ − vτ )

]
, (7)

where we assume that r − zI − zX + δτ + dτ > 0 and π̄ is given by (6). Accordingly, the HJB

equation (7) implies that the choice of innovation intensities (zI , zX) is a function of the firm type

only. We denote the decision rules as (zτI , z
τ
X).21

Entry: An intermediate firm can enter the market by creating a new product. A new firm draws

its type from an exogenous distribution, where mτ is the probability that an entrant draws the

type τ . Given a type τ , the entrant draws its initial relative quality q̂ from a distribution Φτ (q̂).

We assume that this relative quality q̂ is equal to q(t)/Q(t), where

Q(t) ≡ 1

N(t)

∫
N (t)

qj(t)dj

is the average quality of intermediate goods. The firm’s value of entry V e(t) is thus

V e(t) =
∑
τ

mτ

∫
Vτ (q̂Q(t))dΦτ (q̂).

We assume that any potential entrant can pay a cost φQ(t), denominated in final goods, to begin

production. Therefore the free-entry condition is: V e(t) = φQ(t). By defining the value of entry

relative to average product quality, ve ≡ V e(t)/Q(t), we can rewrite the value of entry as

ve =
∑
τ

vτmτ

∫
q̂dΦτ (q̂) (8)

and free-entry condition as

ve = φ. (9)

Note that once r is given, we can find a value of w̄ that satisfies the free entry condition (9). Let

the number of entrants at time t be µeN(t), where µe is a constant along the BGP.

3.5 Balanced-growth equilibrium

A competitive equilibrium of this economy is a wage w(t), a consumer allocation (C(t), R(t), E(t)), a

final good producer allocation (Y (t), {xj(t)}j∈N (t)), an allocation for intermediate goods producers

({`j(t), qj(t), pj(t), zI,j(t), zX,j(t), nj(t)}j∈N (t)) and a value of entry Ve(t) such that at each instant

(i) consumers optimize, (ii) the final good producer’s allocation solves its profit maximization

problem, (iii) the intermediate good producers allocations solve their profit maximization problem,

21Recall that, from (6), π̄ is a function of w̄ only. Thus, given r and w̄, the equation (7) and the first-order
conditions can solve for vτ , zτI , and zτX .
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(iv) the free entry condition holds (v) the final good market clears, Y (t) = C(t) +R(t) +E(t), and,

(vi) the labor market clears L(t) =
∫
Nt `j(t)dj.

We now construct a balanced-growth equilibrium of this economy. Assume that the population

L(t) grows at an exogenous rate γ. Furthermore, let aggregate quality Q(t) grow at a constant rate

ζ, and the number of establishments N(t) grow at a constant rate η. Denote the growth rate of

final output Y (t) by g. Along a BGP, the growth rates of Y (t), C(t) and R(t) + E(t) must all be

equal. Thus, the Euler equation (1) requires Ċ(t)/C(t) = g because C(t) grows at the same rate

as Y (t). This implies that r = ρ− σg along the BGP.

The quality-invariant component of profit π̄(t) in (6) is constant along the BGP. Therefore,

w(t) must grow at the same rate as A(t)Y (t)
β

1−β . Given that Y (t) grows at rate g and A(t) grows

at rate θ, then w(t) must grow at the rate βg/(1−β) + θ. Since labor income of the representative

consumer must grow at the same rate as consumption and since population growth is γ, the following

relationship must hold

g = γ + θ +
β

1− β
g, (10)

which implies output growth of g = (1− β/(1− β))−1(γ + θ).

4 Characterization of the model

In this section, we analytically characterize aggregate growth and firm-level decisions in the model.

These characterizations will be useful for understanding the how the model draws identification

from the data as well as anchoring the interpretation of quantitative experiments in Section 6. We

will detail the the characterization of distributions for Section 5.

4.1 Output growth

Output growth derives from firm-level investments in internal and external innovations. First, we

examine a decomposition of output growth into the intensive and extensive margin growth rates,

η and ζ, at an aggregate level. Using the labor market clearing condition L(t) =
∫
Nt `j(t)dj along

with firm labor demand in equation (5) yields the following expression,

w̄(t)L(t) = (1− β)

(
N(t)Q(t)

A(t)Y (t)
β

1−β

)β
L(t)1−β. (11)

Since the normalized wage w̄(t) does not grow along the BGP, equation (11) implies a decomposition

of output growth into the growth of the intensive and extensive margins,22

g = η + ζ. (12)

22Equation (11) implies the growth relationship γ = η + ζ − θ − (β/(1 − β))g, which is combined with equation
(10) to yield equation (12).
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Because final output growth can be decomposed into the intensive and extensive margins of firm

growth, it has a natural interpretation as the aggregate outcome of disaggregated firm behavior.

First consider the extensive margin. The total number of establishments of type τ is Nτ (t) ≡
MτN(t), where Mτ ∈ [0, 1] is the share of type τ firms satisfying

∑
τ Mτ = 1. The law of motion

for Nτ (t) is

Ṅτ (t) = zτXNτ (t)− (δτ + dτ )Nτ (t) + µemτN(t)−
∑
τ ′ 6=τ

λττ ′Nτ (t) +
∑
τ ′ 6=τ

λτ ′τNτ ′(t).

The first term is the increase in products due to external innovation, the second term is the loss

of products due to exit, the third term accounts for product entry, and the fourth and fifth terms

capture the product number evolution due to changes in firm types. On the BGP, Nτ (t) grows at

rate η for all τ and thus this equation can be rewritten as:23

η = zτX − (δτ + dτ ) + µe
mτ

Mτ
−
∑
τ ′ 6=τ

λττ ′ +
∑
τ ′ 6=τ

λτ ′τ
Mτ ′

Mτ
, (13)

Next consider the intensive margin. Define the average quality of type τ firms as

Qτ (t) ≡ 1

Nτ (t)

∫
Nτ (t)

qj(t)dj,

where Nτ (t) is the set of actively produced goods by type-τ firms. Further define sτ is the quality

share of type τ firms by

sτ ≡MτQτ (t)/Q(t), (14)

which satisfies, ∑
τ

sτ = 1. (15)

On the BGP, sτ is constant which implies that Qτ (t) has to grow at the same rate as Q(t) for all

types τ . Using these expressions for average quality by type, the growth in firm quality satisfies,

ζ = zτI + µe
mτ

sτ

(∫
q̂dΦ(q̂)− 1

)
+
∑
τ ′ 6=τ

λτ ′τ

(
sτ ′

sτ
− Mτ ′

Mτ

)
.

where the first term is intensive margin innovation’s effect on average quality growth, the second

term is the contribution of entrants that is derived from initial quality net of the number of entrants,

and the last term accounts for changes in firm types.

Finally, using g = η+ζ defines aggregate output growth g as a function of firm-level innovations

23The growth rate of the total number of establishments can also be written as the weighted sum of the growth
rates of the number of type-τ establishments and the entry rate,

η =
∑
τ

Mτ [zτX − (δτ + dτ )] + µe.

which is found by multiplying Mτ to both sides of (13) and summing over τ .
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and shocks,

g =
[
zτI + zτX − (δτ + dτ )

]
+ µe

mτ

sτ

∫
q̂dΦ(q̂)−

∑
τ ′ 6=τ

λττ ′ +
∑
τ ′ 6=τ

λτ ′τ
sτ ′

sτ
. (16)

The first term is the incumbent firms’ contribution to g, the second term characterizes entrants’

contribution to output growth and the final terms capture the impact of changing firm types.24

4.2 Properties of the model with one type

To highlight the mechanisms underlying the model, here we consider the model with one type

(omitting the τ subscript) and provide a sharp characterization of firm-level decisions and general

equilibrium outcomes. Although our quantitative experiments in Section 6 will utilize a specification

with two types, the results with one type deliver an essentially the same qualitative relationships.

First, the one-type growth rates for the intensive margin, extensive margin and aggregate output

are easily obtained from the previous section,

ζ = zI + µe

(∫
q̂dΦ(q̂)− 1

)
(17)

η = zX − δ − d+ µe (18)

g = zI + zX − δ − d+ µe

∫
q̂dΦ(q̂). (19)

In order to determine these growth rates, we must characterize firm-level decisions. To do so,

consider the HJB equation of the firm,

(ρ+ σg)v = π̄ − hI(zI)− hX(zX) + (zI + zX − δ − d)v,

whose first order conditions imply that innovation intensities zI and zX are solely determined by

the firm’s value v and the innovation cost functions hI(·) and hX(·). We can use the free entry

conditions (8) and (9) to obtain the firm’s value from the entry cost, v = ve = φ. Thus, the only

remaining equilibrium object we need for determining growth rates (ζ, η) is the entry rate, µe. The

entry rate can be obtained as the solution to equations (10) and (19),

µe =
1∫

q̂dΦ(q̂)

(
γ + θ

1− (β/(1− β))
−
(
zI + zX − δ − d

))
(20)

where we assume that β < 1/2 to ensure positive entry in equilibrium (µe > 0). Finally, the value

24A simpler expression for g can be found by multiplying sτ on both sides of (16) and summing across τ ,

g =
∑
τ

sτ [zτI + zτX − (δτ + dτ )] + µe

∫
q̂dΦ(q̂).

Appendix F contains a derivation for equation (16).
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of π̄ is pinned down by the HJB after obtaining values for (v, zI , zX).

Given this characterization, the following comparative static exercises are straightforward and

are therefore presented without proof.

Proposition 1 Consider a BGP of the one-type economy. The following comparative statics hold:

(i) Entry Costs: An increase in the entry cost, φ, generates an increase in innovation intensities

(zI , zX) and a decrease in the entry rate (µe). These effects exactly offset and g remains constant.

(ii) Innovation Costs: Suppose that innovation cost functions take the form hi(zi) = χiz
ψ
i where

parameters satisfy χi > 0 and ψ > 1 for i ∈ {I,X}. Then a decrease in χI increases zI but does

not affect zX . A decrease in χX increases zX but does not affect zI . The entry rate (µe) decreases

when either cost χI or χX decreases.

(iii) Technology: An increase in population growth γ, productivity growth θ, or exit rates (δ, d)

does not affect innovation intensities (zI , zX), but does generate higher output growth g and firm

entry µe. Changes in the parameter governing the elasticity of substitution, β, do not affect zI or

zX either, although they influence g and µe.

(iv) Preferences: Changes in the preference parameters (σ, ρ) do not affect zI , zX or g.

From Proposition 1, one key prediction of the model is a trade-off between incumbent invest-

ment in innovative activity and firm entry. If there is an increase in the entry cost φ, the free

entry condition implies that a firm needs to receive higher lifetime compensation for incurring the

increased initial cost of creating a new product for the market. Therefore, conditional on enter-

ing, the firm will invest in innovative activity at a higher rate, offsetting the high entry cost, and

subsequently grow to a larger size along both the intensive and extensive margins.25

However, the balanced-growth condition in equation (10) requires the wages not to grow too

fast relative to productivity and final output. This condition makes it clear that there are limits

to growth due to population and technology dynamics. In particular, incumbent firms’ increased

innovative activity diminishes the incentive of new firms to enter the market due to labor scarcity.

Similarly, exit encourages firm entry because exit frees up resources for production and entrants

have the incentive to engage in product innovation if there are resources with which they can grow

and recover their initial investment. In this sense, the economy exhibits a crowding-out of entrants

by innovative incumbents.

Finally, note that if aggregate output growth were (partially) endogenized, for example through

an externality that leads innovative activity to increase productivity growth, the trade-off between

incumbent innovative activity and firm entry would be relaxed. As a result, the model can infer

the extent to which aggregate output growth is endogenous by using data on entry over time, given

25In the two-type model of Section 6, because χI and χX may vary by firm type, there can be more heterogeneity in
innovative activity. To match the empirical observations in Section 2.1, we indeed find that innovation cost parameters
vary by firm type.
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a set of identified innovation costs. We pursue this extension of the model as a robustness exercise

in Appendix H.2.

5 Distributions of firm sizes and establishment sizes

The properties of our model allow us to analyze the firm size distribution from two different margins.

First, the number of establishments per firm evolves through the external innovation and exit shock.

Second, the size of each establishment evolves through the internal innovation. The first margin

exactly corresponds to the extensive margin in Section 2. The second margin does not directly

correspond to the intensive margin in Section 2, but it is closely related.

Note that the existence of these two margins is the major departure from Klette and Kortum

(2004) and Luttmer (2011). In these papers, establishments are homogeneous and each establish-

ment does not grow, so that the only relevant innovation is the external one.

Before analyzing the details, first we note one general property of the model. The model

assumptions imply that the establishments are homogeneous within a firm. A firm starts with

one establishment, and whenever it expands the number of establishments, a new establishment

inherits the same quality as the existing establishments. The intensity of the internal innovation,

zτI , is common across establishments within a firm, while it may change over time. These two

facts mean that establishments share common quality within a firm at any point in time. This

also implies that the establishment sizes are also common within a firm. Although in reality

establishment sizes are not the same within a firm, we view this as a useful simplification which

affords us sharp analytical characterizations. In a balanced-growth equilibrium, the number of firms

grow at the same rate as N(t). The distribution of the number of establishments per firm, n(t),

is stationary (in shares), and the distribution of establishment’s relative quality, q(t)/Q(t), or size,

is also stationary, despite the fact that Q(t) grows exponentially over time. In the following, we

provide further characterizations of the size distributions of establishments and firms. We assume

that the economy is on a stationary BGP.

For the characterization of the distributions, we use the following mathematical notations: for

two strictly positive functions f, g defined over (0, x∗), where x∗ ∈ R∗ ∪ {+∞},

f(x) ∼x→x∗ g(x)

if limx→x∗
f(x)
g(x) = 1;26 and

f(x) ∝x→x∗ g(x)

if f(x) ∼x→x∗ ag(x) for some a > 0. A random variable X defined over R∗ has Pareto tail with the

tail parameter ξ > 0 if Pr(X > x) ∝x→∞ x−ξ, or equivalently

lim
x→∞

xξ Pr(X > x) = a

26This ∼ notation follows the regular variation literature (Bingham et al. (1987)).
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for some a > 0. The distribution has a thin tail if

lim
x→∞

xξ Pr(X > x) = 0

for any ξ > 0. For notational convenience, we assign tail parameter ∞ to distributions with a thin

tail.

5.1 General characterizations

When there are multiple types of firms, it is substantially more complex to characterize the joint

distribution of (n, q̂) for each types than the one-type case. Our approach here is to look at two

separate margins: the distribution of the number of establishments per firm, summarized by M̄τ (n),

which is the measure of type-τ firms with n establishments divided by N(t) (i.e., N(t)-normalized

measure)27 - and the distribution of establishment quality relative to average quality, q(t)/Q(t) a

measure of establishment size. We denote the fraction of type-τ establishments with q(t)/Q(t) ≥ q̂
as H̄τ (q̂).

The distribution of establishment numbers, {M̄τ (n)}∞n=1, can be characterized by the following

difference equations.

0 = −(zτX + δτ + dτ + η)M̄τ (1) + 2δτM̄τ (2) + µemτ

−
∑

τ ′ 6=τ λττ ′M̄τ (1) +
∑

τ ′ 6=τ λτ ′τM̄τ ′(1)
(21a)

for each τ ∈ Γ and

0 = −(n(zτX + δτ ) + dτ + η)M̄τ (n) + (n+ 1)δτM̄τ (n+ 1) + (n− 1)zτXM̄τ (n− 1)

−
∑
τ ′ 6=τ

λττ ′M̄τ (n) +
∑
τ ′ 6=τ

λτ ′τM̄τ ′(n) (21b)

for n > 1 and each τ ∈ Γ. The distribution of establishment-level relative quality, which is pro-

portional to establishment size, H̄τ (q̂), is governed by the following Kolmogorov forward equation:

(zτI − ζ)q̂
dH̄τ (q̂)

dq̂
= −(δτ + dτ + η − zτX)H̄τ (q̂) + µe

mτ

Mτ
(1− Φ(q̂))

−
∑
τ ′ 6=τ

λττ ′H̄τ (q̂) +
∑
τ ′ 6=τ

λτ ′τ
Mτ ′

Mτ
H̄τ ′(q̂).

(22)

Lastly, for the distribution over firm size, notice that all establishments in a firm grow at the

same rate and hence have the same size. Therefore, we just need to keep track of the joint distri-

bution of establishment number and establishment size in order to study the firm size distribution.

That is, the distribution of firm sizes is some “convolution” of the distribution of the number of

establishments per firm and the distribution of establishment sizes and can be derived as follows.

Let Mτ (n, q̂) be the normalized measure of type-τ firms with n establishments and q(t) ≥ q̂Q(t).

27On a BGP, these normalized measures are constant and
∑
τ,n nM̄τ (n) = 1.
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Then

(zτI − ζ)q̂
dMτ (1, q̂)

dq̂
=− (zτX + δτ + dτ + η)Mτ (1, q̂)

+ 2δτMτ (2, q̂) + µemτ (1− Φ (q̂))

+
∑
τ ′ 6=τ

λτ ′τMτ ′ (1, q̂)−
∑
τ ′ 6=τ

λττ ′Mτ (1, q̂) (23a)

for each τ ∈ Γ and

(zτI − ζ)q̂
dMτ (n, q̂)

dq̂
=− (n(zτX + δτ ) + dτ + η)Mτ (n, q̂)

+ (n+ 1)δτMτ (n+ 1, q̂; t) + (n− 1)zτXMτ (n− 1, q̂)

+
∑
τ ′ 6=τ

λτ ′τMτ ′ (n, q̂)−
∑
τ ′ 6=τ

λττ ′Mτ (n, q̂) (23b)

for n > 1 and each τ ∈ Γ. The detailed derivations of these equations are presented in Appendix

G.1.

5.2 Distributions for one-type economy

When there is only one firm type, firm growth is governed by three endogenous numbers: zI , zX ,

and µe. Note that, in this case, our model assumptions imply that for a given firm, the quality (and

therefore the size) of each establishment grows at a deterministic rate zI that is common across

all firms. The average quality Q(t) grows at the rate ζ given in (17). Thus, the quality of the

establishments in a firm who started at time t0 and whose initial draw of the normalized quality is

q̂Q(t0) can be represented as (denoting it by qt0(t))

qt0(t) = q̂Q(t0)ezI(t−t0) = q̂Q(t)e(zI−ζ)(t−t0).

From the labor demand (5) and the labor market equilibrium condition, it is straightforward to

show that along the balanced-growth equilibrium, the relative labor demand `(t)/L(t) of a partic-

ular establishment with quality qt0(t) is equal to qt0(t)/(N(t)Q(t)). Therefore, the cross-sectional

distribution of establishment size at a given time t is the same as the distribution of q̂e(zI−ζ)(t−t0).

Denoting the time-t number of establishments for a firm that starts at time t0 as nt0(t) (note that

nt0(t) is stochastic as the external innovation is random), the (relative) firm size distribution follows

the distribution of nt0(t)q̂e(zI−ζ)(t−t0)/N(t).

Equation (22) becomes

(zI − ζ)q̂
dH̄(q̂)

dq̂
= −(δ + d+ η − zX)H̄(q̂) + µe(1− Φ(q̂)).
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Let us use the change of variables p ≡ log(q̂) and H̃(p) ≡ H̄(exp(p)) to rewrite this equation as:

(zI − ζ)
dH̃(p)

dp
= −(δ + d+ η − zX)H̃(p) + µe(1− Φ(exp(p))).

This is a first-order ODE which has a general solution:

H̃(p) = e
δ+d+η−zX

zI−ζ
(p−p)H̃(p) +

∫ p

p
e
δ+d+η−zX

zI−ζ
(p̃−p) µe

zI − ζ
(1− Φ(exp(p̃)))dp̃,

for each p. Taking the limit p→ −∞, and using (18) to replace µe with δ + d+ η − zX , we arrive

at:

H̃(p) =

∫ p

−∞
e
δ+d+η−zX

zI−ζ
(p̃−p) δ + d+ η − zX

zI − ζ
(1− Φ(exp(p̃)))dp̃. (24)

This expression shows that H̃(log y) is the complementary cumulative distribution function of a

random variable Ye defined by a convolution between a Pareto distribution with scale parameter 1

and tail index (δ+d+η−zX)/(zI−ζ) and a distribution with cumulative distribution function (CDF)

Φ. That is, Ye is expressed as Ye = Ye
1Y

e
2, where Ye

1 ∼ Pareto (1, (δ + d+ η − zX)/(zI − ζ)) and

Ye
2 ∼ Φ.

Notice also that, when Φ is a log-normal distribution, H̃ is a convolution of a Pareto distribution

and a log-normal distribution analyzed in Reed (2001), and more recently, Cao and Luo (2017) and

Sager and Timoshenko (2018). Therefore, we offer an alternative micro-foundation of this convo-

lution distribution with endogenous establishment growth rate, relative to the micro-foundation in

Reed (2001) with exogenous growth rate. Our micro-foundation is also more general because it

allows for any distribution of Φ, while Reed (2001) only allows Φ to be a log-normal distribution.

Using this explicit solution, it is easy to show that when Φ has thin right tail, for example when

Φ is a (left-truncated) log-normal distribution, and zI > ζ, H̄(p) has a Pareto tail with the index

given by:

λe ≡ d+ η − zX + δ

zI − ζ
. (25)

When zI < ζ the distribution has thin tail.

For the distribution of the number of establishments per firm, (21) becomes

0 = −(zX + δ + d+ η)M̄(1) + 2δM̄(2) + µe (26a)

and

0 = −(n(zX + δ) + d+ η)M̄(n) + (n+ 1)δM̄(n+ 1) + (n− 1)zXM̄(n− 1) (26b)

for n > 1. Luttmer (2011) provides a closed form solution for {M̄(n)}∞n=1:

M̄(n) =
1

n

µe
zX

∞∑
k=0

1

υn+k

(
n+k∏
m=n

υm

)
n+k∏
m=1

zXυm
δ

, (27)
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where the sequence {υn}∞n=0 is defined recursively by υ0 = 0 and

1

υn+1
= 1− zXυn

δ
+
η + d+ zXn

δn
.

The distribution of establishment number is given by a discrete random variable X with pdf

Pr(X = n) =
M̄(n)∑
n′ M̄(n′)

. (28)

Recall that, since we normalize the measure of n-establishment firms by the total number of estab-

lishment N(t),
∑

n nM̄(n) = 1, thus
∑

n M̄(n) < 1.

We will show that when zX > δ, this distribution has a Pareto tail with the tail parameter

given by
η + d

zX − δ
. (29)

The following proposition summarizes the last two results.

Proposition 2 On a stationary BGP with zI > ζ and zX > δ and the distribution of entrant sizes

Φ has thin tail, the stationary distribution of establishment sizes (across establishments) and the

stationary distribution of the number of establishments per firm (across firms) have Pareto right

tail and the tail parameters are given by (25) and (29) respectively.

The proof of this proposition is given in Appendix G.2 using a Karamata theorem from the

literature on regular varying sequences and functions (Bingham et al. (1987)). Notice that this

result on the distribution of establishment number is stronger than the one in Luttmer (2011). In

particular, he shows that for any ξ > η+d
zX−δ , limn→∞ n

ξ Pr{X > n} = ∞ and for any ξ < η+d
zX−δ ,

limn→∞ n
ξ Pr{X > n} = 0 while we show

lim
n→∞

n
η+d
zX−δ Pr(X > n) = a

for some a > 0. This implies the last two limits but not vice-versa.

Now, we analyze the distribution of firm size. In a special case where the initial draw satisfies∫
q̂dΦ(q̂) = 1, (17) implies that zI = ζ holds, i.e. the growth rate of each establishment’s product

quality is exactly the same as the growth rate of average quality. As the establishment size dis-

tribution is identical to the distribution of q̂ = q/Q and in this case, q̂ remains constant over an

establishment’s lifetime, establishment size distribution is given by the distribution of initial size

Φ. In addition, all establishment in a firm has the same size so the random variable for firm sizes

Z can be written as Z = XY, where X is the number of establishments and Y is establishment

size in a firm. In the cross-section, X and Y are independent and the cdf of Y is given by Φ. The

pdf for X is given by (28).
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Therefore, the fraction of firms with size Z(t) ≥ ẑ, denoted by M(ẑ), can be computed as28

M(ẑ) =

∑
n M̄(n)(1− Φ(ẑ/n))∑

n M̄(n)
.

To determine the tail index of M(·), we consider the Laplace transformation:29

ϕ(s) =

∫ ∞
0

ẑs (−dM(ẑ)) . (30)

Using the expression for M above, we show in Appendix G.2 that

ϕ(s) =

{∫ ∞
0

ẑsdΦ(ẑ)

}{∑
n M̄(n)ns∑
n M̄(n)

}
.

Assume that the entry distribution Φ has a thin tail and using the characterization in Proposition

2, we show in Appendix G.2 that

ϕ(s) ∝ 1
η+d
zX−δ − s

as s ↑ η+d
zX−δ . Therefore, by the Tauberian theorem in Mimica (2016, Corollary 1.3), M has Pareto

tail with the tail parameter given by (29).

The following proposition summarizes the result.

Proposition 3 On a stationary BGP with zI = ζ and zX > δ, and the distribution of entry sizes

Φ has a thin tail, firm size distribution has Pareto tail with the tail parameter equals to the tail

index of the distribution of the number of establishments per firm given by (29).

When the distribution of entry sizes Φ has a Pareto tail, we can show that the tail parameter

of firm size distribution is the minimum of the tail parameter of Φ and the tail parameter given by

(29).

Now we consider the case in which zI 6= ζ, i.e.
∫
q̂dΦ(q̂) 6= 1. This case is more challenging

because the dynamics of firm size is driven both by the dynamics of the establishment numbers

and of the dynamics of relative establishment sizes. This implies that when we write firm size as

a product of the number of establishments and average establishment size, Z = XY, in the cross-

section, X and Y are correlated, instead of being independent when zI = ζ. For example, when

zX > δ, zI > ζ, over time surviving firms on average have both higher number of establishments

and larger establishments.

To tackle this case, we use the system of differential equations (23). The system of differential

equations (23) for M(n, q̂) simplifies to:

(zI − ζ)q̂
dM(1, q̂)

dq̂
= −(zX + δ + d+ η)M(1, q̂) + 2δM(2, q̂) + µe(1− Φ(q̂))

28Another way to obtain this is to notice that M(n, q̂) = M̄(n)(1− Φ(q̂)) solves (23).
29After a change of variable ẑ = exp(p), the transformation can be re-written in its more familiar form:∫∞
−∞ e

sp (−dM(exp(p))).
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and

(zI − ζ)q̂
dM(n, q̂)

dq̂
= −(n(zX + δ) + d+ η)M(n, q̂) + (n+ 1)δM(n+ 1, q̂) + (n− 1)zXM(n− 1, q̂)

for n > 1. Multiplying both sides of these equations with q̂s−1 and integrate from 0 to ∞ then

integrating by parts ∫ ∞
0

q̂s−1M(n, q̂)dq̂ = −1

s

∫ ∞
0

q̂sdM(n, q̂),

we obtain:

−(zI − ζ)sϕ̂(1, s) = −(zX + δ + d+ η)ϕ̂(1, s)− 2δϕ̂(2, s) +

∫ ∞
0

q̂s−1µe(1− Φ(q̂))

and

−(zI − ζ)sϕ̂(n, s) = −(n(zX + δ) + d+ η)ϕ̂(n, s) + (n+ 1)δϕ̂(n+ 1, s) + (n− 1)zX ϕ̂(n− 1, s)

for n > 1, where

ϕ̂(n, s) ≡
∫ ∞

0
q̂s(−dM(n, q̂)).

For each s ≥ 0, the equations form a system of difference equations and allow us to solve for

ϕ̂(n, s) for all n ≥ 1 using the closed form solution from Luttmer (2011) (with η being replaced by

η − (zI − ζ)s). We show in Appendix G.2 that

ϕ̂(n, s) ∝n→∞ n
− d+η−(zI−ζ)s

zX−δ
−1
.

Now, with the solution for ϕ̂(n, s), we can calculate the Laplace transform (30) as follows:

ϕ(s) =
1∑

n M̄(n)

∑
n

ns
∫ ∞

0
(ẑ/n)s(−dM(n, ẑ/n)) =

∑
n n

sϕ̂(n, s)∑
n M̄(n)

.

Using the asymptotic property of ϕ̂(n, s) above, we show in Appendix G.2 that, if zX > δ and

zX − δ + zI − ζ > 0, ϕ(s) is finite up to s∗ determined by

d+ η − (zI − ζ)s

zX − δ
= s,

or equivalently

λne ≡ η + d

zX − δ + zI − ζ
. (31)

In addition, we can show that

ϕ(s) ∝s↑s∗
1

s∗ − s
.

Therefore, by the Tauberian theorem in Mimica (2016, Corollary 1.3), M has a Pareto tail with the

tail index given by s∗. We summarize these derivations in the following proposition. The detailed
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proof is given in Appendix G.2.

Proposition 4 On a stationary BGP with zX > δ and zX − δ + zI − ζ > 0, firm size distribution

has a Pareto tail with the tail index given by (31). If in addition, zI > ζ, then all three distributions

for establishment sizes, establishment numbers, and firm sizes have Pareto tail and

1

λf
=

1

λne
+

1

λe
− 1

λneλe
(32)

where λe, λne, λf > 1 are respectively the Pareto tail parameters for the distributions for establish-

ment sizes, establishment numbers, and firm sizes.

Because λe, λne > 1, formula (32) shows that λf > λe, λne, i.e. the tail of firm size distributions

is strictly fatter than the tails of either establishment size distribution or establishment number dis-

tribution. The formula can also be used to calculate the tail parameter of the firm size distribution

from the tail parameters for establishment size and establishment number distributions.30

5.3 Discussion for one-type economy

The model features thick tails for all three distributions of interest (total number of workers in the

firm, number of workers per establishment within the firm, and number of establishments within

the firm). The main mechanism that generates these tails is firm growth with random exits. As

a firm grows by adding establishments and adding workers to those establishments, there is a

Poisson arrival of exit shocks (δ and d) that prevent the firm from continuing to grow. Therefore,

the relatively small mass of lucky firms that do not receive an exit shock will continue to grow.

The luckiest firms will eventually grow to be very large relative to the average firm and create a

thick upper tail of the firm size distribution(s). For the one-type characterization in Section 5.2,

the expressions for the Pareto tails reflect these forces.

From Proposition 6 and equation (29), we see that the distribution over the number of estab-

lishments has a Pareto tail equal to (η + d)/(zX − δ). This expression relates the aggregate inflow

of new establishments and outflow of firms through random exit to the the net growth rate for es-

tablishments (zX − δ). The distribution’s tail is fatter when additional establishments accumulate

faster, given random exits induced by establishment and firm shocks δ and d. Using the decompo-

sition of the final output growth rate in equations (17) and (18), we can rewrite the establishment

number distribution’s Pareto tail as:

1 +
µe

zX − δ
.

30The formula (32) approximates the relationships of the estimated tail parameters in the data very well. For
example, for 1995, with the tail parameter of the establishment number distribution of 1.25 in Table 1 and the tail
parameter of the establishment size distribution of 1.40 from the estimation in Appendix E (which is conceptually
different from the tail parameter for the intensive margin in Table 1), formula (32) implies a tail parameter of 1.06 for
firm size distribution, which lies between the estimates 0.99 and 1.10 for firm size distribution in Table 1. Similarly,
for 2015, with the tails parameters of 1.44 and 1.21, formula (32) implies a tail parameter of 1.05 for firm size
distribution, which also lies between the estimates of 0.99 and 1.17 in Table 1.
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This expression shows that the upper tail of the establishment number distribution is fatter when

there is less firm entry and incumbent firms’ net growth is faster. Both elements suggest that tail

fatness is related to selection on random exits: with fewer firms due to less entry, a fat upper tail

only emerges if firms grow fast enough during their finite lifetimes.

Similarly, from equation (25), we see that the distribution over the number of workers per

establishment within a firm has a Pareto tail equal to [(η+ d)/(zI − ζ)]− [(zX − δ)/(zI − ζ)]. This

expression is similar to that for the establishment number distribution. The first term describes a

fat upper tail as arising from low churn in terms of establishment inflow and firm death relative

to high net growth in establishment size (zI − ζ), where growth in intensive margin investments to

firm quality is large relative to aggregate quality growth ζ due to the effect of entrants. The second

term is simply an adjustment for the net growth in establishment number. Again using equations

(17) and (18), this can be written as:

1

1−
∫
N q̂dΦ(q̂)

.

This version of the expression makes clear that the distribution exhibits a fatter tail when the

average entrant is small relative to the average incumbent, so that
∫
q̂dΦ(q̂) is far less than 1. In

this case, the firm must grow over time to catch up to the average incumbent firm, during which

time random exits pare down the mass of growing firms. The more firms need to catch up to the

average incumbent, the more inequality we observe in the distribution.

Finally, we can study the characterization of the overall firm size distribution. From Proposition

8 and equation (31), the Pareto tail of the firm size distribution is equal to (η+d)/(zX−δ+zI−ζ),

which tells us that a fat upper tail emerges when the firm grows fast – on either margin – relative

to the churn of establishment inflows and firm deaths (η+d). This expression can also be rewritten

using equations (17) and (18):
1

1− µe
zX − δ + µe

∫
N
q̂dΦ(q̂)

so that the distribution exhibits a fatter upper tail when entrants are small relative to the average

incumbent (an effect that derives from the establishment size distribution) and when the entry rate

of new firms is low relative to net growth in establishment creation (an effect that derives from the

establishment number distribution).

We can combine these observations with the comparative statics in Proposition 1 to obtain

comparative statics of the tail parameters. For example, the following proposition shows how the

tail parameters vary with changes in fixed-cost.

Proposition 5 An increase in the entry cost, φ, makes the tail of establishment numbers distribu-

tion and firm size distribution fatter (i.e. more inequality at the top), while the tail of establishment

size distribution remains unchanged.
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5.4 Distributions for two-type economy

In Appendix H.1, we show that the one-type model, when estimated, produces too few single-

establishment firms (even though it match very well the Pareto tail index of the distribution of

establishment numbers and the distribution of establishment sizes in the data). Therefore, we need

at least two-types to generate salient features in the data.

Consider an economy with two types: τ ∈ {L,H}. To simplify the derivations of stationary

distributions, we assume that 0 = λLH < λHL (as we will in Section 6), i.e. the H-type can

transition to becoming an L type, but not vice versa.

Using the results for two types in Luttmer (2011) and the derivations in Subsection 5.2, we

can show that, under some parameter restrictions, the stationary distribution of the number of

establishments per firm has Pareto tail with the tail index given by:

min

{
η + λHL + dH

[zHX − δH ]+
,

η + dL

[zLX − δL]+

}
, (33)

where [x]+ ≡ max(x, 0). The formula corresponds to (29) in the case of single type.

Similar, using the procedure from Gabaix et al. (2016) and Cao and Luo (2017), the Pareto tail

parameter of the distribution of establishment sizes is given by

min

{
η + δH + λHL + dH − zHX

[zHI − ζ]+
,
η + δL + dL − zLX

[zLI − ζ]+

}
. (34)

Lastly, assuming that zLX ≤ δL, using Laplace transform as in Subsection 5.2, we can show that

the Pareto parameter of firm size distribution is given by

η + λHL + dH

[zHX − δH + zHI − ζ]+
. (35)

6 Quantitative analysis

In this section, we estimate our model to quantitatively analyze the pattern of firm growth over

the 1995-2014 period. We confirm that the model is able to match the firm size, number of

establishments, and establishment size distributions well. We estimate the model for both 1995

and 2014 data and show how the model informs us about fundamental economic forces that have

changed with average firm size growth over these years.

6.1 Model estimation

First, we describe our two-step estimation procedure. Then we present the estimates and associated

quantitative results.
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6.1.1 Computing equilibrium

Because we can solve for g from (10) as a function of parameters (exogenous growth), we can obtain

r directly from the representative households’ Euler equation (1). After solving the HJB equations

and finding w̄ that satisfies free-entry condition, we can use (15) and (16) to obtain µe and sτ .

Given these, η and Mτ can be solved from (13) and (21).

6.1.2 Overview of the estimation procedure

Although the analytical characterization of the model with one type provided us useful insights,

Appendix D.1 shows that at least two types are needed to match both the extensive and inten-

sive margin distributions. As such, we estimate a simple version of the model with two types:

Γ = {L,H}. H-type firms turn out to have lower cost of external investment and expand their

number of establishments faster. We assume that H-type (“high type”) firms transition to L-type

(“low type”) firms at the rate λHL > 0 while L-type firms do not transition to H-type firms, i.e.

λLH = 0. Thus the L-type is the absorbing state. These are similar to the assumptions made in

Luttmer (2011) (but without differentiating the extensive versus intensive margins as we do here).

These assumptions allow us to easily obtain closed-form solutions for the tail parameters of the

distribution of establishment numbers and establishment sizes. We use these closed form solutions

to estimate the model. Under these assumptions, Luttmer (2011) also provide analytical solutions

for the distribution of establishment numbers which can be used to verify the accuracy of numerical

solutions.

We estimate the model in two steps. In Step 1, we estimate (zHX , z
L
X , λHL, µe,mH ,mL) using

the moments related to the number of establishments per firm (Step 1a); and then we estimate

(zHI , z
L
I ,Φ(·)) using the moments related to the number of employees per establishments (Step 1b).

In Step 2, we assume functional forms for the cost functions hX , hI and estimate the parameters

of these functions using the estimates from Step 1.

Step 1a (Number of establishments per firm): In this step, we choose

(zHX , z
L
X , λHL, µe,mH ,mL)

parameters to target (i) percentiles of the distribution over the number of establishments per firm,

(ii) the slope of the upper tail of the distribution, and (iii) the growth rate of the number of the

establishments η ≈ 1%. The empirical moments are described in Appendix B.

With two types, (13) becomes

η = zHX − δH − dH + µe
mH

MH
− λHL

= zLX − δL − dL + µe
mL

ML
+ λHL

MH

ML
.
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Together with MH+ML = 1, the last equality gives us a unique solution for MH ,ML. In particular,

ML =
−a1 −

√
a2

1 − 4a0a2

2a0

where

a0 = (zHX − δH − dH)− (zLX − δL − dL)

a1 = −(µe(mH +mL) + λHL) + ((zLX − δL − dL)− (zHX − δH − dH))

a2 = µemL + λHL,

and MH = 1−ML. We then obtain η from either equation.

Having η, we can use formula (33) to calculate the Pareto tail index of the distribution of

establishment. We also use (21) to compute the whole distribution of establishment numbers

including the fraction of single establishment firms and several quantiles beyond the top 99%.

Using these model moments, the estimation minimizes a weighted squared sum between the model

and empirical moments.

Step 1b (Establishment size): In this step, we assume that the entry-size distribution Φ follows

a log-normal distribution with mean % and variance ς2:

Φ ∼ exp(N (%, ς2)).

We choose

zHI , z
L
I , %, ς

and target the distribution of establishment sizes as well as the average growth rate of establishment

sizes,

ζ = g − η.

The empirical moments from the establishment distributions include the Pareto tail index and

several quantiles and are computed from the estimated parameterized distributions described in

Appendix E. The estimation of the parametrized distributions uses publicly available BLS data.

In the model, the growth rate ζ can be computed from (16).The tail index of the distribution

of establishment sizes in the model is given by (34). The whole distribution of establishment sizes

can be computed by solving (22) and several quantiles are included in the list of targeted moments.

Using these model moments, the estimation minimizes a weighted squared sum distance between

the model and empirical moments as in Step 1a.

Step 2 (Recovering endogenous variables): In this step, we use the estimates from Step 1a

and Step 1b, including zτi , τ ∈ {H,L}, i ∈ {X, I}, to quantify the remaining model outcomes and

allocations. To execute this step, we must parameterize the innovation cost functions. We assume
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that the innovation cost functions takes the form hτi (z) = χτi z
ψ, for τ ∈ Γ, i ∈ {X, I}, where ψ > 0.

The first order condition in (7) implies ψχτi (zτi )ψ−1 = vτ , and hence

−hτi (zτi ) + zτi vτ =

(
1− 1

ψ

)
zτi vτ .

Substituting this expression in (7) and re-arranging, we arrive at:[
A11 −λHL
0 A22

]
︸ ︷︷ ︸

≡ A

[
vH

vL

]
= π̄

[
1

1

]

where

A11 = r −
(

1− 1

ψ

)
(zHX + zHI ) + δH + dH + λHL

and

A22 = r −
(

1− 1

ψ

)
(zLX + zLI ) + δL + dL + λHL.

From the estimates in Step 1a and Step 1b, all the elements of matrix A are known, including

r = ρ+ σg and g = η + ζ. Therefore we can then solve for vH , vL as functions of π̄:[
vH

vL

]
= π̄A−1

[
1

1

]

Now, combining this result with equations (8) and (9), we obtain

φ = π̄

[
mH

mL

]′
A−1

[
1

1

]
exp

(
−%+

ς2

2

)
.

In other words, π̄ is uniquely determined as a function of φ.

Lastly, we choose φ to match the empirical investment-to-output ratio. On a BGP, we can

decompose Y (t) into C(t), R(t), E(t) and obtain the following expression for the investment-to-

output ratio:

K(t) + E(t)

Y (t)
=

(
µeφ+

∑
τ

sτ (hτX(zτX) + hτI (zτI ))

)(
w̄(t)

1− β

) 1−β
β

. (36)

The derivation of this formula is presented in Appendix F.3.

6.1.3 Parameter values and estimates

A set of parameters are assigned in advance of estimation, while the remaining parameters are

estimated to match empirical moments of the establishment number and size distribution. Table 2

summarizes parameter estimates and targets.
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Table 2: Parameter Values and Targets

Concept Parameter Value Target/Source

Parameters Set in Advance
Elasticity of Demand β 1− (1/1.10) 10% Markup
Intertemporal Elasticity σ 1 Log utility
Discount Rate ρ 0.01 Standard value
Population Growth Rate γ 0.01 Census Bureau
Firm Exit Rates dL, dH 0.4%, 0% BLS
Establishment Exit Rates (1995) δL, δH 12%, 12% BLS
Establishment Exit Rates (2014) δL, δH 10%, 10% BLS
Innovation Cost ψ 2 Quadratic baseline
Semi-Endogenous Growth α 1 Exogenous baseline

Estimated Parameter Targets

Entry Cost φ Investment
Output = 10%, NIPA

Extensive Margin Costs χHX , χ
L
X Establishment number distribution

Intensive Margin Costs χHX , χ
L
X Establishment size distribution

Growth Types λHL,mH Establishment number/size right tail
Entrant Size %, ς Establishment size distribution

The unit of time is set as a year. For preferences, for simplicity we assume log utility and an

effective discount rate of ρ = 0.01. We choose the elasticity of demand for the final good producer

to β = 0.091, which is consistent with a markup of 10% (Basu and Fernald (1995)). We assume

quadratic innovation costs by setting the elasticity to ψ = 2 as a baseline assumption. With

respect to firm and establishment exit rates, we set dH = 0% and dL = 0.4% at the firm level

and δH = δL = 12% in 1995 and δH = δL = 10% in 2015. These values amount to around 3%

quarterly exit rate for establishments and 0.1% quarterly (exogenous) exit rate for firm. Lastly,

we set population growth rate to the post 1960 average of γ = 0.01 and assume purely exogenous

growth α = 1 as a baseline assumption.

The remaining parameters are estimated to match empirical moments. We target η = 0.01 and

ζ = 0.02 to imply a growth rate of final output of 3% for 1995 and η = 0.01 and ζ = 0.01 implying

final output growth rate of 2% for 2015. With ρ = 0.01 and the log utility, this implies that r = 0.04

in (1) for 1995 and r = 0.03 for 2014, which are within the range of values that are standard in

the literature. We choose an entry cost, φ, to match total investment as 10% of total output. We

follow the two-step procedure described in Subsection 6.1.2 to estimate (χXL , χ
X
H , µE , λHL,mH) and

(χIL, χ
I
H , %, ς). Finally, we estimate parameters twice—once for 1995 moments of the establishment

size and number distributions, and once for 2014 empirical moments.

Figure 6 shows that the distribution of the number of establishments per firm matches the

empirical distributions from the 1995 and 2014 data very well. Furthermore, Figure 7 shows that

the distribution of establishment sizes closely matches the parametrized empirical distribution for

1995 and 2014 data described in Appendix E, blue solid line, as well as publicly available BLS
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Table 3: Moment Fitness

Moments Data Model Data Model
1995 2014

Step 1a: Establishment Number Distribution

Establishment growth rate (η) 0.010 0.010 0.010 0.010

Pareto tail index 1.25 1.25 1.21 1.21

Step 1b: Establishment Size Distribution
Average growth rate (ζ) 0.021 0.021 0.013 0.014

Pareto tail index 1.40 1.56 1.44 1.65

Notes: Estimates using Least-Square Minimization.
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Figure 6: Distribution of number of establishment per firm, Data and Model
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Figure 7: Distribution of number of employees per establishment, Data and Model

tabulations of establishment sizes (red circles). The success of the model along these dimensions

has to do with the existence of fat tails in the data. The model generates fat tailed distributions

endogenously, and therefore the estimation procedure is selecting parameters to match the general

slopes of the Pareto tails in the data. Table 3 shows that the model closely matches the remaining

empirical targets including Pareto tail estimates computed from the establishment size and number

distributions.

6.2 Quantitative results

In this section, we compare the results of model estimation from 1995 to that in 2014. Differences

in model outcomes over time inform us about the underlying economic mechanisms that generate

the observed changes in the distributions over number of establishments within a firm and over

average establishment size with a firm. We view this exercise as a growth decomposition of the

data through the lens of our theory.

To begin the comparison of 1995 to 2014 outcomes, Table 4 shows that the high-type firm’s

extensive margin investment rate increased from 32.81% to 51.20% as their investment cost coef-

ficients decreased from 0.7830 to 0.6366. This is not too surprising, as the theory suggests that

the growth in the concentration of firms in the upper tail of the establishment number is partially

driven by increased extensive margin investment. Yet, the model simultaneously uncovers that the

high-type firm’s intensive margin investment rate was zero in both 1995 and 2014, which is driven

by very high investment costs in the model. From the perspective of the model, if an entering firm
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Table 4: Parameter Estimates and Model Outcomes, 1995 versus 2014

Parameter Description Value (1995) Value (2014)

Innovation Investments
zHX H-type external innovation 0.3281 0.5120
zLX L-type external innovation 0.0019 0.0002
zHI H-type internal innovation 0.0000 0.0000
zLI L-type internal innovation 0.1058 0.0822

Innovation Costs
χHX H-type external innovation cost 0.7830 0.6366
χLX L-type external innovation cost 94.2434 941.8146
χHI H-type internal innovation cost ∞ ∞
χLI L-type internal innovation cost 1.6615 2.4823

Firm Entry
µe Entry rate 0.0980 0.0739

φ Entry fixed cost 0.1452 0.1855∫
q̂dΦ(q̂) Entrant size relative to mean 0.4031 0.4317
% Mean of Φ(·) −1.7638 −1.5964
ς Standard deviation of Φ(·) 1.3079 1.2300

Firm Types
λHL H to L transition rate 0.2523 0.4900

mH Fraction of H-type at entry 0.0523 0.0878
mL Fraction of L-type at entry 0.9477 0.9122

Notes: Estimates using Least-Square Minimization

draws the H-type, it has an incentive to invest entirely on the extensive margin to take advantage

of low R&D cost. The firm invests in intensive margin innovation after it receives the transition

shock λHL. The L-type firms invest little along the extensive margin (0.19% in 1995) and more

than H-type firms along the intensive margin (10.58% in 1995). Furthermore, as the establishment

size distribution displays a thinner upper tail over time and theory predicts the establishment size

distribution’s upper tail is partially driven by intensive margin investment rates, we see that L-type

firms invest less in 2014 (8.22%) than in 1995. Finally, the model shows that L-type firms decreased

their extensive margin investment rate from 0.19% in 1995 to 0.02% in 2014.

The model finds that more entrants are high-type firms (5.23% in 1995 and 8.78% in 2014),

yet the average duration of being a high-type has shortened from around 4 years (= 1/0.2523) in

1995 to around 2 years (= 1/0.4900) in 2014. While this shortens the periods of high growth with

extensive margin, a high-type firms also have an increasing incentive to heavily innovate before

becoming a low-type.

With respect to entry, the estimation provides estimates of µe which is the entry rate of firm

relative to the number of establishments. To recover the firm entry rate (relative to the number
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Table 5: BGP Changes and Decomposition

∆ in entry rate (%) %∆ in #estab/firm

Aggregate 1995-2014 −2.47 12.14

Decomposition:

type fraction and persistence (mH , λLH) 2.63 −19.05
establishment entry distribution (%, ς) 0.96 −0.68
fixed cost (φ) −6.20 3.71
external innovation cost (χHX , χ

L
X) −0.51 18.54

internal innovation cost (χHI , χ
L
I ) 6.41 −4.87

establishment exit rates (δH , δL) −4.18 11.05
growth rate g −1.57 7.40

of firms), we need to divide µe by the average number of establishment per firms. As a result,

the model recovers a declining firm entry rate of 7.55% in 1995 to 5.08% in 2014. This decline

is accompanied by an increase in the estimated entry cost. A declining entry rate is consistent

with recent empirical evidence in Decker et al. (2014). The model also recovers an increase in the

average initial size of entering establishments relative to the average incumbent establishments,

from 40.31% in 1995 to 43.17% in 2014. This is consistent with theory, which tells us that an

increase in the size of entrants,
∫
q̂dΦ(q̂), leads to a thinner upper tail of the establishment size

distribution.

With the estimated model, we can conduct counterfactual experiments. Table 5 shows, using

counterfactual decompositions, how the entry rate and the average number of establishment per

firm are affected by the changes in parameters from 1995 to 2014. The table, starting from the

top row that is marked “Decomposition,” begins from the 1995 estimated parameters and “turns

on” the 2014 parameters as we go down each row. At the end of final row, all parameters are

switched to the ones in 2014, and therefore the sum of all rows are equal to the total change. The

first column conducts this exercise for the entry rate. The entry rate decreases by 2.41% in total.

This total turns out to be primarily driven by changes in fixed entry cost and declined exit rate.

The second column is the decomposition for the number of establishments per firm (the extensive

margin), which is the main focus of this paper. The average number of establishment per firm

increases by 12.14% in total. Our decomposition reveals that this total is primarily driven by the

changes in the external innovation cost and the decline in exit rate.

7 Conclusion

In this paper, we decomposed firm growth into two margins: an extensive margin of building

new establishments and an intensive margin of adding workers to existing establishments. We

documented the patterns of extensive and intensive margin firm growth in the U.S. from 1995-2015

and found that U.S. growth is predominantly generated by the addition of new establishments in
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very large firms. We developed a model of firm growth that incorporates both the extensive and

intensive margins as separate types of firm innovations and showed the model can generate a fat

tail of large firms, both in terms of the number of establishments and the number of workers.

We estimate the model parameters for 1995 and 2014, and use the model to interpret the in-

crease in the firm size we observe in the data by fundamental economic changes. We found the

cost for external innovation declined for the firms that are actively expanding with new establish-

ments, whereas the internal innovation cost has increased. Entry cost is higher now, whereas the

average quality at entry has improved. Upon entry, growth through external innovation became

more common but the duration of such a high-growth period is shorter now. A decomposition

exercise revealed that the largest contributors to the recent dominance of large firms with many

establishments is the decline in the external innovation cost and the decline in the exit rate.

An important future research is why these changes occurred during the recent time period.

There are various anecdotes indicating that it became easier to find new locations for stores and

restaurants due to increasing availability of data. This may have contributed to the lower cost

of external innovation. The faster information flow, which makes it easier for a new business to

succeed early but the business model can be imitated more easily, creating a faster obsolescence of

the ability to grow quickly through extensive margin. This type of anecdotes is consistent with the

short duration of high-growth period. The recent literature also point out increase in regulations

and entry barriers that contributed to the decline of the dynamism in the U.S. economy. This is

consistent with the estimated increase in entry costs in our model.
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Appendix

A Data

This data appendix describes the Quarterly Census of Employment and Wages (QCEW) and draws

heavily from the BLS Handbook of Methods.31

A.1 Definitions

The Quarterly Census of Employment and Wages (QCEW) is a count of employment and wages

obtained from quarterly reports filed by almost every employer in the U.S., Puerto Rico and the U.S.

Virgin Islands, for the purpose of administering state unemployment insurance programs. These

reports are compiled by the Bureau of Labor Statistics (BLS) and supplemented with the Annual

Refiling Survey and the Multiple Worksite Report for the purpose of validation and accuracy.

The reports include an establishment’s monthly employment level upon the twelfth of each month

and counts any employed worker, whether their position is full time, part time, permanent or

temporary. Counted employees include most corporate officials, all executives, all supervisory

personnel, all professionals, all clerical workers, many farmworkers, all wage earners and all piece

workers. Employees are counted if on paid sick leave, paid holiday or paid vacation. Employees

are not counted if they did not earn wages during the pay period covering the 12th of the month,

because of work stoppages, temporary layoffs, illness, or unpaid vacations. The QCEW does not

count proprietors, the unincorporated self-employed, unpaid family members, certain farm and

domestic workers that are exempt from reporting employment data, railroad workers covered by

the railroad unemployment insurance system, all members of the Armed Forces, and most student

workers at schools. If a worker holds multiple jobs across multiple firms, then that worker may be

counted more than once in the QCEW.

A.2 BLS Sample

A sample we used as part of the BLS visiting researcher program provided data from 1990 to 2016

and covers thirty-eight states: Alaska, Alabama, Arkansas, Arizona, California, Colorado, Con-

necticut, Delaware, Georgia, Hawaii, Iowa, Idaho, Indiana, Kansas, Louisiana, Maryland, Maine,

Minnesota, Montana, North Dakota, New Jersey, New Mexico, Nevada, Ohio, Oklahoma, Rhode

Island, South Carolina, South Dakota, Tennessee, Texas, Utah, Virginia, Vermont, Washington,

West Virginia, as well as the District of Columbia, Puerto Rico and the U.S. Virgin Islands.

A.3 LEHD Sample

The Employer Characteristics File maintained by the Longitudinal Employer-Household Dynamics

program provided data for twenty-eight states: Alaska, Arizona, California, Colarado, Florida,

31See https://www.bls.gov/opub/hom/cew/home.htm for the complete BLS Handbook of Methods.
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Georgia, Iowa, Idaho, Illinois, Indiana, Kansas, Louisiana, Maryland, Missouri, Montana, North

Carolina, New Mexico, New York, Pennsylvania, Oregon, Rhode Island, South Dakota, Texas,

Utah, Washington, Wisconsin, West Virginia, and Wyoming.

A.4 Data cleaning and variable construction

To conform to official statistics, we clean the data in accordance with BLS procedure. First, while

the QCEW contains monthly data as of the 12th of each month, we follow BLS convention by

only using data from the final month within a quarter. As a result, our sample does not capture

establishments that enter and exit within the same quarter. We additionally exclude firms from

calculations in a given quarter if the absolute change in employment from the previous quarter

exceeds 10 times the average employment between the two quarters. Statistics within this paper

are not sensitive to the choice of multiple being 10.

We construct firms as collections of establishment with the same employment identification

numbers (EINs). Firm-level employment is the sum of all employment in establishments associated

with the same EIN and the number of establishments within a firm as the number of establishments

that report using a common EIN. To classify a firm’s industry, we assign to a firm the average self-

reported, 6-digit NAICS code of its establishments so that the firm is classified in the same way as

its establishments are on average.

A firm’s entry date is measured as the date at which the QCEW records a non-zero number of

workers associated with a particular EIN after four consecutive quarters of recording zero workers.

A firm’s exit date is measured as the last date at which the QCEW records a non-zero number

of workers associated with a particular EIN prior to four consecutive quarters of recording zero

workers. A firm’s age is measured by tracking firms after entering. Upon entry, the firm is assigned

an age of 1 quarter and the firm’s age is incremented by 1 quarter for each period that it does not

exit.

B Polynomial approximations of size-rank relationships

B.1 Confidentiality protection for size-rank statistics in LEHD

Characterizing the employment distribution by firm rank, we used the Employer Characteristics File

maintained by the U.S. Census Bureau’s Longitudinal Employer-Household Dynamics Program. A

number of steps were taken to minimize the disclosure risk associated with the release of statistics

on the upper ranks of the firm size distribution. First, instead of a direct size-rank regression, we

coarsened the underlying distribution, employing finer categories the closer we are at the firm size

distribution. Coarsening ensures that there are a large number of observations in each cell, even at

the upper range of the distribution in which we use the finest categories. To limit disclosure risk

further, we estimated a fifth-order polynomial (plus a constant) on the (average) percentile rank

associated with each rank category. To conform to U.S. Census Bureau disclosure requirements,

all point estimates and standard errors were rounded to four decimal points.
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Table B.1: Fifth-order polynomial approximations of size-rank relationships

Employment Establishments Establishment Size
1995 2005 2014 1995 2005 2014 1995 2005 2014

Intercept 16.33 9.586 4.932 11.55 14.11 17.37 13.87 7.406 2.725
(0.04863) (0.04889) (0.04988) (0.06931) (0.06404) (0.06247) (0.04857) (0.04882) (0.04979)

ln(rank) -6.478 0.4619 5.243 -6.302 -8.406 -11.36 -5.143 1.333 6.056
(0.04041) (0.4060) (0.04145) (0.05760) (0.5319) (0.05191) (0.04036) (0.04055) (0.04137)

ln(rank)2 2.224 -0.2067 -1.888 2.274 2.961 3.919 1.723 -0.5921 -2.268
(0.01241) (0.1247) (0.01273) (0.01769) (0.01633) (0.01594) (0.01239) (0.01245) (0.01270)

ln(rank)3 × 10 -3.936 -0.09348 2.583 -4.121 -5.157 -6.550 -3.055 0.6863 3.381
(0.01785) (0.01793) (0.0183) (0.02544) (0.02348) (0.02292) (0.01782) (0.01790) (0.01827)

ln(rank)4 × 102 3.206 0.3817 -1.605 3.354 4.078 5.012 2.528 0.2700 -2.283
(0.01219) (0.01225) (0.01250) (0.0174) (0.01604) (0.0157) (0.01218) (0.01223) (0.01248)

ln(rank)5 × 103 -9.863 -0.2010 0.3571 -0.9933 -1.184 -1.419 0.7974 0.009459 0.5591
(0.003199) (0.003213) (0.003280) (0.00456) (0.004209) (0.004108) (0.003195) (0.003208) (0.003274)

Notes: Authors’ calculations of LEHD microdata. Standard errors are in parentheses. Estimates characterize March of each respective year. All point estimates
and standard errors were rounded to four decimal places to conform to U.S. Census Bureau discloure requirements. The dependent variables employment,
establishments, and average establishment size are in logs.
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B.2 Polynomial estimation procedure and results

We now describe the polynomial approximations that allow us to characterize the distributions

of three measures of firm size: total employment, the number of establishments, and average

establishment size. We first ranked firm-level data by each of these different size measures. Using

these ranks, we started with the smallest rankings, and assigned categories based an observation

being within percentile ranges. The ranges are defined as follows.

1. Starting with the lowest, group observations into 1% bins until the 95th percentile is reached,

for a total of 95 categories.

2. Group observations into 0.5% bins until the 99th percentile is reached, for a total of 8 cate-

gories.

3. Group observations into 0.1% bins until the 99.9th percentile is reached, for a total of 9

categories.

4. Group the remaining observations into 0.01% bins, for a total of 10 categories.

Using this method creates a total of 122 categories. This method of grouping the data was meant

to provide a balance between generating information that can be informative about the tails of the

distributions that we are interested in, which protecting the confidentiality of the underlying micro-

data: even the finest cells have a relatively large number of observations (e.g., 0.01% × 5 million =

500 observations). Each bin was assigned its average percentile rank (e.g., the lowest bin has an av-

erage percentile rank of 0.5, the next has an average percentile rank of 1.5, etc.). Polynomial approx-

imations of our size measures use a transformation of this: log((100− average percentile)× 1000).

The transformation times 1000 was done for computational reasons, but conceptually is just a simple

shift of the intercept because log((100−average percentile)×1000) = log(100−average percentile)+

log(1000). Fifth-order polynomials of this transformation of the average percentile rank (plus a

constant) serve as regressors for each size measure.

One set of dependent variables consist of the lograrithm of each size measure for size in March

of 1995, 2005, and 2014. To avoid approximating the discrete jumps in the distribution between

small values (1, 2, 3, etc.) a random draw form the interval [−0.50.5] is applied to each observation.

Results of these regressions are shown in Appendix Table B.1. A second set of dependent variables

show the nature of firm entry and growth in the year 2005 and employ a polynomial approximation

of 100 − average percentile. Specifically, growth is defined as the change in the log of the size

measure between March of 2004 and March of 2005. Entry is measured as positive employment in

March of 2005 and zero employment in March of 2004. Results of this second set of regressions is

shown in Appendix Table B.2.

B.3 Estimation of the average slope of the size-rank relationship

In order to characterize the slope of the tail of the size-rank relationship, we estimate bivarite

regressions of log(100− average percentile) on the log of each of our size measures. We use the 27
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Table B.2: Fifth-order polynomial approximations of rank relationships, 2005

Growth Rates
Employment Establishments Establishment Size Entry

Intercept× 102 6.614 4.218 2.396 1.035
(0.1477) (0.1363) (0.1973) (0.1067)

rank × 103 6.065 -5.522 11.59 10.91
(0.3037) (0.2802) (0.4056) (0.2157)

rank2 × 104 -4.786 0.2644 -7.430 6.573
(0.1906) (0.1758) (0.2545) (0.1337)

rank3 × 105 0.1430 0.5658 1.996 1.797
(0.004878) (0.04501) (0.06514) (0.0339)

rank4 × 107 1.884 0.5498 2.434 2.041
(0.04517) (0.04998) (0.07235) (0.03738)

rank5 × 109 0.8485 0.1983 1.470 0.8275
(0.02169) (0.02001) (0.02896) (0.01488)

Notes: Authors’ calculations of LEHD microdata. Estimates compare March of 2004 to March
of 2005. Entry implies positive employment in 2005 but not 2004. Growth compares 2005
employment to 2004 employment for those with positive employment in both years. All point
estimates and standard errors were rounded to four decimal places to conform to U.S. Census
Bureau disclosure requirements.

fitted values for the categories corresponding to the 95th percentile and above of the size distribu-

tion. To mimic the relationship what a bivariate size-rank regression on the underlying microdata

would yield, we weight their observations by the share of observations in the percentile groups: 0.5

for the eight half-steps from the 95th percentile until the 99th, 0.1 for the nine tenth-steps from 99.0

to 99.8, and and 0.01 for the ten hundredth-steps 99.90 to 99.99. Figure B.1 shows the polynomial

approximation, and B.2 compare the approximated values and published aggregates for the total

establishment numbers.
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Figure B.1: Polynomial Approximations and Predicted Values, 2005
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Notes: Author’s calculations of Longitudinal Employer-Household Dynamics microdata. Each series shows pre-
dicted values from a regression of the log size measure on a fifth order polynomial of the log percentile rank of
the size measure in March of 2005, rounded to the nearest integer.

Figure B.2: Comparison of Polynomial Approximation to Published Establishment Number Totals
for 2005
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Notes: Author’s calculations of Longitudinal Employer-Household Dynamics microdata and Bureau of Labor
Statistics published aggregates.
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C Additional cross-sectional facts

C.1 Cross-sectional employment patterns

To further explore how firm size is related to intensive and extensive margins, in Figure C.1 we plot

the average of establishment size at each firm (extensive margin) and the average of the number of

establishments at each firm (intensive margin) in different firm size bins.32 When all size measures

are ranked by employment, this ensures that log employment is equal to the sum of the log number

of establishments and the log average establishment size. The number of establishments distribution

has a much steeper slope when ranked this way, which indicates that the largest firms do not always

have the most establishments. Yet the number of establishments plays a very important role at the

upper end of the distribution where its size-rank relationship grows rapidly.

Denoting the firm size by Z, the number of establishments per firm as X, and the average

establishment size for each firm as Y , one can decompose the firm size into extensive and intensive

margin:

log(Z) = log(E[X|XY = Z]) + log(E[Y|XY = Z]) + Ω, (37)

where Ω ≤ 0 and it is equal to zero if and only if var[X|XY = Z] = 0.33 In Figure 2, the left-hand

side of (37) is the horizontal axis, and the first and the second terms are extensive and intensive

margins. The sum of the slopes of the extensive and intensive margins can be different from one

because of the Ω term (which varies with Z).34

C.2 Firm Growth

In Figure C.2 we document firm growth patterns in terms of extensive and intensive margins by

comparing employment in March of 2005 to March in 2004, ranking firms by their size in 2005.35

One-employee firms are likely to have contracted, and two-employee firms had zero growth. In-

cumbent firms with three or more workers are likely to have grown over the course of the year,

by 5% to 9%. For most firms, growth is accomplished through expanding existing establishments

rather than adding to the total. This is because nearly all (96%) of firms have exactly one estab-

lishment, and firms only occasionally transition between having a single establishment and multiple

establishments. The largest firms grow through both expanding existing establishments as well as

adding them. At around the upper percentile (i.e., a log percentile rank of zero) the number of

establishments contribution dominates and more growth in total employment occurs from adding

establishments than expanding them. Figure C.2 also shows that the smallest firms (with only one

32Figure C.1 is constructed from polynomial approximations of the LEHD microdata. For the set of polynomial
estimates from which these are constructed, see Appendix Table B.1.

33The derivation of (37) is in Appendix F.
34Xi (2016) draws a similar figure to Figure 2, although his graph describes different pattern for intensive margin

averages. He is not explicit about how his graph is drawn (including the data source), but we obtain a similar graph
to his once we put the second and the third term in (37) together instead of our intensive margin concept.

35Figure C.2 is constructed from polynomial approximations of the underlying LEHD microdata. The polynomial
estimates are contained in Appendix Table B.2.
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Figure C.1: Size-rank relationships, ranked by employment
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Notes: Author’s calculations of Longitudinal Employer-Household Dynamics microdata. Each series shows fitted
values from a regression of the log size measure on a fifth order polynomial of the log percentile rank of employment
in March of 2005. The employment series is rounded to the nearest integer. The number of establishments and
average establishment size are adjusted via Kuhn-Tucker optimization. See text for additional details.

Figure C.2: Growth rates, ranked by employment
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Notes: Author’s calculations of Longitudinal Employer-Household Dynamics microdata. Each series shows pre-
dicted values from a regression of the log change from 2004-2005 on a fifth order polynomial of the log percentile
rank of employment in March of 2005. Percentiles of the employment distribution that round to the same integer
value are grouped together.
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Figure C.3: Entry rates, ranked by employment
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Notes: Author’s calculations of Longitudinal Employer-Household Dynamics microdata. Each series shows pre-
dicted values from a regression of the entry rate on a fifth order polynomial of the log percentile rank of em-
ployment in March of 2005. Percentiles of the employment distribution that round to the same integer value are
grouped together.

employee) often experienced a contraction. Note that -0.15 change in log employment corresponds

to the average incumbent single-worker firm losing about a sixth of a worker in the previous year.

We measure the entry rates by firm type in Figure C.3.36 For the smallest firms employing just

one worker, about a third of them entered in the last year. Larger firms are less likely to have

entered in the past year, and the probabilities for the upper percentile are close to zero and any

positive probability can likely be attributed to measurement error.

36Figure C.3 is constructed from polynomial approximations of the underlying LEHD microdata. The polynomial
estimates are contained in Appendix Table B.2.
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D Additional time-series facts

Figure D.1: Average firm size (number of workers), different age groups
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Notes: Author’s calculations of Quarterly Census of Employment and Wages microdata.

Figure D.2: Average establishment size (number of workers), different age groups
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Notes: Author’s calculations of Quarterly Census of Employment and Wages microdata.

We look at the outcomes for different ages of the firm. Note that the graphs for the age groups

starts at the year 2001, so that we are able to consistently measure the age groups across different

time periods. Figures D.1, D.2, and D.3 repeat the same plots as earlier. Because the significant
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Figure D.3: Average establishment size (number of workers), different age groups
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Notes: Author’s calculations of Quarterly Census of Employment and Wages microdata.

increase in the firm size occurs during 1990s, Figure D.1 does not exhibit any obvious trend over

the sample period for overall firms. However, we can see that there still is an increasing trend for

the firms that are older than 11 years old. As in the case for all firms, the intensive margin does

not exhibit an increasing trend in Figure D.2 for any age group. In contrast, Figure D.3 reveals a

striking contrast across different age groups: the increase in extensive margin for overall economy

is driven by the older firms. This motivates our modeling choice—firms are not born with different

sizes across different time period; rather, their pattern of growth has changed over time.
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E Estimation of parametrized establishment size distributions

In this Appendix, we describe an estimation strategy for recovering model parameters from estab-

lishment size distributions. We assume that the data is drawn from simple parametric distributions

that are known to fit the actual U.S. data from past studies. We first estimate these distributions

using publicly available data on establishment size distributions. This procedure provides us the

data moments from establishment size distributions that we will substitute by the moments that

directly come from our dataset once the disclosure process is complete. The data moments include

the Pareto tail index of the establishment size distribution which cannot be inferred directly from

publicly available data. The tail index is crucial for our estimation procedure.

We assume that in year t, the distribution of establishment size in number of employees (call it

l) takes the following form:

Prt(l ≤ l) = G(log l;µet , σ
e
t , λ

e
t ),

for establishment sizes ` = 1, 2, . . . and in years t = 1995, 2014, where G is the CDF of the convo-

lution between a normal distribution and an exponential distribution (see Sager and Timoshenko

(2018) for more details on this type of distribution):

G(z;µ, σ, λ) ≡ Φn

(
z − µ
σ

)
− e−λ(z−µ)+σ2

2
λ2Φn

(
z − µ− λσ2

σ

)
,

where Φn is the cdf of the standard normal distribution. This distribution flexibly nests both a

normal distribution and an exponential distribution and conveniently allows for a thick right tail.

We estimate µet , σ
e
t , and λet by targeting Table E.1 published by BLS (second and forth column)

for 1995 and 2014 using weighted least square minimization procedure in Sager and Timoshenko

(2018). The estimation yields

µe1995 = 0.6642, σe1995 = 1.3488, λe1995 = 1.4028

and

µe2014 = 0.7170, σe2014 = 1.3896, λe2014 = 1.4423.

The targeted moments are closely replicated as shown in Table E.1 published by BLS (third and fifth

column) and Figure 7. The estimated parameters are similar to those using Census’ establishment

data in Kondo et al. (2019). Notice that the establishment size distribution has a tail parameter that

increases over time (λe2014 > λe1995), indicating that skewness in the establishment size distribution

has declined over time.
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Table E.1: Distribution of establishments by employment

Establishment % of total, 2014 % of total, 1995
Size Bin Data Synthetic Data Synthetic

(a) 1-4 48.94 50.35 49.15 51.36
(b) 5-9 21.11 19.98 22.62 20.16
(c) 10-19 14.26 13.89 13.87 13.65
(d) 20-49 9.80 9.98 8.95 9.50
(e) 50-99 3.27 3.34 3.00 3.09
(f) 100-249 1.86 1.73 1.71 1.57
(g) 250-499 0.47 0.44 0.43 0.40
(h) 500-999 0.18 0.16 0.16 0.15
(i) 1000+ 0.10 0.10 0.09 0.09

Mean size 17.51 18.04 16.87 17.31

F Derivations

F.1 Derivation of (37)

log(Z) = log(E[XY|XY = Z])

= log(E[X|XY = Z]) + log(E[Y|XY = Z]) + log

(
E[XY|XY = Z]

E[X|XY = Z]E[Y|XY = Z]

)
.

Call the final term as Ω. Because E[XY|XY = Z] = Z and E[X|XY = Z]E[Y|XY = Z] =

E[X|XY = Z]E[Z/X|XY = Z] = E[X|XY = Z]E[1/X|XY = Z]Z. From Jensen’s inequality,

E[X|XY = Z]E
[

1

X

∣∣∣∣XY = Z

]
≥ E[X|XY = Z]

1

E[X|XY = Z]
= 1,

and thus Ω ≤ 0 and the equality holds when var[X|XY = Z] = 0.

F.2 Derivation of (16)

From the definition of Qτ (t),

Q̇τ (t)

Qτ (t)
= −Ṅτ (t)

Nτ (t)
+
d
∫
Nτ (t) qj(t)dj/dt∫
Nτ (t) qj(t)dj

. (38)

The first term of the right-hand side is −η. To compute the second term, consider a discrete time

interval ∆t > 0, compute (
∫
Nτ (t+∆t) qj(t + ∆t)dj −

∫
Nτ (t) qj(t)dj)/∆t and set ∆t → 0. Note that
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the denominator of the second term is equal to Q(t)N(t). Because∫
Nτ (t+∆t)

qj(t+ ∆t)dj −
∫
Nτ (t)

qj(t)dj

= [zτI + zτX ]∆tQτ (t)Nτ (t)− (δτ + dτ )∆tQτ (t)Nτ (t) + µe∆tmτQ(t)N(t)

∫
q̂dΦ(q̂)

−
∑
τ ′ 6=τ

λττ ′∆tQτ (t)Nτ (t) +
∑
τ ′ 6=τ

λτ ′τ∆tQτ ′(t)Nτ ′(t) + o(∆t),

where the first term is the additional quality by internal and external innovation, the second term

is the lost quality by exit, the third term is the gain from entry, and the fourth and the fifth terms

are the loss and gain from the transitions of firm types. (The higher-order terms are omitted as

o(∆t).) Dividing by ∆t and taking ∆t→ 0,

d
∫
Nτ (t) qj(t)dj

dt

= Qτ (t)Nτ (t)

zτI + zτX − (δτ + dτ ) + µemτ
Q(t)N(t)

Qτ (t)Nτ (t)

∫
q̂dΦ(q̂)−

∑
τ ′ 6=τ

λττ ′ +
∑
τ ′ 6=τ

λτ ′τ
Qτ ′(t)Nτ ′(t)

Qτ (t)Nτ (t)

 .

Therefore, (38) can be rewritten as

ζ = −η + zτI + zτX − (δτ + dτ ) + µe
mτ

Mτ

Q(t)

Qτ (t)

∫
q̂dΦ(q̂)−

∑
τ ′ 6=τ

λττ ′ +
∑
τ ′ 6=τ

λτ ′τ
Qτ ′(t)Mτ ′

Qτ (t)Mτ

Using the definition of sτ and g = η + ζ, we can obtain (16).

F.3 Accounting for Aggregate Resources

In this subsection, we decompose Y (t) into C(t), R(t),K(t) on a BGP.

Plugging the optimal choice for xj(t), (3), in the aggregate production function (2), we obtain

Y (t) =
(∫
N (t) qj(t)

βxj(t)
1−βdj

) 1
1−β

=

(∫
N (t) qj(t)

β

[
(1− β)

1
β

(
w(t)
A(t)

)− 1
β
Y (t)qj(t)

]1−β
dj

) 1
1−β

= (1− β)
1
β

(
w(t)
A(t)

)− 1
β
Y (t)

(∫
N (t) qj(t)dj

) 1
1−β

=
(

w(t)
(1−β)A(t)

)− 1
β
Y (t) (N(t)Q(t))

1
1−β ,

where the last equality uses the definition of Q(t).

Simplifying Y (t) from both sides, we arrive at:

1 =

(
w(t)

(1− β)A(t)

)− 1
β

(N(t)Q(t))
1

1−β .
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Combining this identity with the labor market clearing condition (11) yields

Y (t) = L(t)A(t) (N(t)Q(t))
β

1−β .

We then use (11) to replace L(t)A(t) with
(
w̄(t)
1−β

)− 1
β
N(t)Q(t)Y (t)

− β
1−β . Thus

Y (t) =

(
w̄(t)

1− β

)− 1−β
β

N(t)Q(t).

On a BGP, E(t) = µeN(t)φQ(t). Therefore

E(t)

Y (t)
= µeφ

(
w̄(t)

1− β

) 1−β
β

The aggregate cost of intensive and extensive margin investment is given by:

R(t) =
∑

τ (hτX(zτX) + hτI (zτI ))
∫
Nτ (t) qj(t)dj

=
∑

τ (hτX(zτX) + hτI (zτI ))Nτ (t)Qτ (t)

= N(t)Q(t)
∑

τ (hτX(zτX) + hτI (zτI )) sτ ,

where sτ is defined in (14). As a result

R(t)

Y (t)
=

(∑
τ

(hτX(zτX) + hτI (zτI )) sτ

)(
w̄(t)

1− β

) 1−β
β

.

Combining the expressions for the ratios E/Y and R/Y , we obtain the fraction of total invest-

ment over output in (36).

G Distributional analyses

G.1 Derivations of Kolmogorov equations

First notice that M̄τ (n) =Mτ (n, 0), therefore (21) is a special case of (23) with q̂ = 0. To derive

the latter, let M̂n,t,q denote the measure of firms with n establishments and with each establishment

having quality of at least q̂Qt. Using standard continuous time manipulation of Poisson processes,
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we have

M̂τ (1, q̂; t+ ∆t) = M̂τ

(
1,

q̂

exp
(
(zτI − ζ)∆t

) ; t

)
− (zτX + δτ + dτ )∆tM̂τ

(
1,

q̂

exp
(
(zτI − ζ)∆t

) ; t

)

+ 2δτ∆tM̂τ

(
2,

q̂

exp
(
(zτI − ζ)∆t

) ; t

)
+ µemτ∆tNt

(
1− Φ

(
q̂

exp
(
(zτI − ζ)∆t

)))

+
∑
τ ′ 6=τ

λτ ′τ∆tM̂τ ′

(
1,

q̂

exp
(
(zτI − ζ)∆t

) ; t

)
−
∑
τ ′ 6=τ

λττ ′∆tM̂τ

(
1,

q̂

exp
(
(zτI − ζ)∆t

) ; t

)
.

Subtracting M̂τ (n, q̂; t) from both sides, dividing by ∆t, and take the limit ∆t→ 0, we obtain

∂M̂τ (1, q̂; t)

∂t
= −q̂(zτI − ζ)

∂M̂τ (1, q̂; t)

∂q̂
− (zτX + δτ + dτ )M̂τ (1, q̂; t)

+ 2δτM̂τ

(
2,

q̂

exp
(
(zτI − ζ)∆t

) ; t

)
+ µemτNt (1− Φ (q̂))

+
∑
τ ′ 6=τ

λτ ′τM̂τ ′ (1, q̂; t)−
∑
τ ′ 6=τ

λττ ′M̂τ (1, q̂; t) .

Now Mτ (1, q̂; t) = M̂τ (1,q̂;t+∆t)
Nt

, thus

∂Mτ (1, q̂; t)

∂t
+ ηMτ (1, q̂; t) = −q̂(zτI − ζ)

∂Mτ (1, q̂; t)

∂q̂
− (zτX + δτ + dτ )Mτ (1, q̂; t)

+ 2δτMτ

(
2,

q̂

exp
(
(zτI − ζ)∆t

) ; t

)
+ µemτ (1− Φ (q̂))

+
∑
τ ′ 6=τ

λτ ′τMτ ′ (1, q̂; t)−
∑
τ ′ 6=τ

λττ ′Mτ (1, q̂; t) .

On a stationary BGP, ∂Mτ (1,q̂;t)
∂t = 0, so we obtain (23a).

Similarly, for n > 1,

M̂τ (n, q̂; t+ ∆t) = M̂τ

(
n,

q̂

exp
(
(zτI − ζ)∆t

) ; t

)
− (zτX + δτ + dτ )∆tM̂τ

(
n,

q̂

exp
(
(zτI − ζ)∆t

) ; t

)

+ (n+ 1)δτ∆tM̂τ

(
n+ 1,

q̂

exp
(
(zτI − ζ)∆t

) ; t

)

+ (n− 1)zτX∆tM̂τ

(
n− 1,

q̂

exp
(
(zτI − ζ)∆t

) ; t

)

+
∑
τ ′ 6=τ

λτ ′τ∆tM̂τ ′

(
n,

q̂

exp
(
(zτI − ζ)∆t

) ; t

)
−
∑
τ ′ 6=τ

λττ ′∆tM̂τ

(
n,

q̂

exp
(
(zτI − ζ)∆t

) ; t

)
.
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Subtracting M̂τ (n, q̂; t) from both sides, dividing by ∆t, and take the limit ∆t→ 0, we obtain

∂M̂τ (n, q̂; t)

∂t
= −q̂(zτI − ζ)

∂M̂τ (n, q̂; t)

∂q̂
− (zτX + δτ + dτ )M̂τ (n, q̂; t)

+ (n+ 1)δτM̂τ

(
n+ 1,

q̂

exp
(
(zτI − ζ)∆t

) ; t

)
+ (n− 1)zτXM̂τ (n− 1, q̂; t)

+
∑
τ ′ 6=τ

λτ ′τM̂τ ′ (n, q̂; t)−
∑
τ ′ 6=τ

λττ ′M̂τ (n, q̂; t) .

Since Mτ (n, q̂; t) = M̂τ (n,q̂;t+∆t)
Nt

, the last equality implies

∂Mτ (n, q̂; t)

∂t
+ ηMτ (n, q̂; t) = −q̂(zτI − ζ)

∂Mτ (n, q̂; t)

∂q̂
− (zτX + δτ + dτ )Mτ (1, q̂; t)

+ (n+ 1)δτMτ

(
n+ 1,

q̂

exp
(
(zτI − ζ)∆t

) ; t

)
+ (n− 1)zτXMτ (n− 1, q̂; t)

+
∑
τ ′ 6=τ

λτ ′τMτ ′ (n, q̂; t)−
∑
τ ′ 6=τ

λττ ′Mτ (n, q̂; t) .

On a stationary BGP, ∂Mτ (n,q̂;t)
∂t = 0, so we obtain (23b).

The derivation of (22) follows closely Cao and Luo (2017) for wealth distribution with persistent

heterogeneous returns.

G.2 Proofs

Proof of Proposition 2.

First, we show that the distribution of establishment sizes has Pareto tail with the tail parameter

given by (25). We rewrite (24) as

e
δ+d+η−zX

zI−ζ
pH̃(p) =

∫ p

−∞
e
δ+d+η−zX

zI−ζ
p̃ δ + d+ η − zX

zI − ζ
(1− Φ(exp(p̃)))dp̃.

Because Φ has thin tail,

1− Φ(exp(p̃)) < Ae
−2

δ+d+η−zX
zI−ζ

p̃

for some A > 0 and for all p̃ > 0, which implies

a =

∫ ∞
−∞

e
δ+d+η−zX

zI−ζ
p̃ δ + d+ η − zX

zI − ζ
(1− Φ(exp(p̃)))dp̃ <∞.

Therefore

lim
p→∞

e
δ+d+η−zX

zI−ζ
pH̃(p) = a.

That is, H has Pareto tail with tail parameter given by (25).

The proof for the distribution of the number of establishments per firm is substantially more
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complicated. By (18), d+η
zX−δ > 1. In this appendix, we provide the proof for the case

d+ η

zX − δ
< 2.

The proof for the case with higher d+η
zX−δ is similar but with much more algebras.

To prove the result, we show a slightly stronger one:

M̄(n) ∝n→∞ n
− d+η
zX−δ

−1
. (39)

To do so we use the probability generating function

P(ω) =
∞∑
n=1

M̄(n)ωn.

The Karamata Tauberian theorem for power series Bingham et al. (1987) allows us to establish

the asymptotic behavior of the cumulative sum of M̄(n) (n → ∞) from the asymptotic behavior

of P(ω) (ω → 1) if the latter diverges. However, P(1) = 1 so the theorem does not directly apply.

In order to apply the theorem, we need to work with P ′′(ω). Lemma 1 below provides us with

the asymptotic behavior of P ′′(ω) (ω → 1). By the Karamata Tauberian theorem for power series

(Bingham et al., 1987, Corollary 1.7.3),

n∑
k=0

(k + 2)(k + 1)M̄(k + 2) ∝n→∞ n
2− d+η

zX−δ . (40)

Now we use this result to prove (39).

Differentiating P(ω) with respect to ω, we obtain

P ′(ω) =

∞∑
n=1

M̄(n)nωn−1 =

∞∑
n=0

M̄(n+ 1)(n+ 1)ωn.

This implies

ωP ′(ω) =

∞∑
n=1

M̄(n)nωn

and

ω2P ′(ω) =

∞∑
n=1

M̄(n)nωn+1 =

∞∑
n=2

M̄(n− 1)(n− 1)ωn.
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Therefore

zXP ′(ω)ω2 − (zX + δ)ωP ′(ω) + δP ′(ω)

=

∞∑
n=2

(
zXM̄(n− 1)(n− 1)− n(zX + δ)M̄(n)n+ δM̄(n+ 1)(n+ 1)

)
ωn

− (zX + δ)M̄(1)ω + δM̄(2)2ω + δM̄(1).

Using equalities (26b), the last equation is equivalent to

zXP ′(ω)ω2 − (zX + δ)ωP ′(ω) + δP ′(ω)

=

∞∑
n=2

(d+ η) M̄(n)ωn − (zX + δ)M̄(1)ω + δM̄(2)2ω + δM̄(1)

= (d+ η)P(ω)−
(
(d+ η + zX + δ)M̄(1)− 2δM̄(2)

)
ω + δM̄(1).

Rearranging and regrouping different terms and using (26a), we arrive at

P ′(ω)
(
δ + zXω

2 − (zX + δ)ω
)

= (d+ η)P(ω)− µeω + δM̄(1). (41)

Differentiating both sides twice and rearranging terms we obtain

P ′′′(ω)
(
δ + zXω

2 − (zX + δ)ω
)

= (d+ η + 2(zX + δ)− 4zXω)P ′′(ω)− P ′(ω)2zX − µe. (42)

Dividing both sides by δ + zXω
2 − (zX + δ)ω and observing that

1

δ + zXω2 − (zX + δ)ω
= − 1

zX − δ

(
1

ω − δ
zX

+
1

1− ω

)
, (43)

we rewrite (42) as

P ′′′(ω) = − (d+ η + 2(zX + δ)− 4zXω)P ′′(ω)
1

zX − δ

(
1

ω − δ/zX
+

1

1− ω

)
+ P ′(ω)2zX

1

zX − δ

(
1

ω − δ/zX
+

1

1− ω

)
+ µe

1

zX − δ

(
1

ω − δ/zX
+

1

1− ω

)
.
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Equivalently,

P ′′′(ω) =
{
− (d+ η + 2(zX + δ)− 4zXω)P ′′(ω) + P ′(ω)2zX + µe

} 1

zX − δ

(
1

ω − δ/zX
− 1

1− δ/zX

)
+
{
− (d+ η + 2(zX + δ)− 4zXω)P ′′(ω) + P ′(ω)2zX + µe

} 1

zX

+ P ′(ω)2zX
1

zX − δ
1

1− ω
+ µe

1

zX − δ
1

1− ω
− 4zXP ′′(ω)

1

zX − δ

+

(
2− d+ η

zX − δ

)
P ′′(ω)

1

1− ω
. (44)

Let Q be defined by

Q(ω) ≡
{
− (d+ η + 2(zX + δ)− 4zXω)P ′′(ω) + P ′(ω)2zX + µe

} 1

zX − δ

(
1

ω − δ/zX
− 1

1− δ/zX

)
.

It follows that Q(ω) is finite for all ω < 1. Lemma 1 and the fact that

1

ω − δ/zX
− 1

1− δ/zX
= O(1− ω)

imply

lim
ω→1
Q(ω) = 0,

when ω → 1. Therefore, by the Riemann-Lebsegue lemma, the Taylor expansion of Q(ω)

Q(ω) =
∞∑
n=0

qnω
n

satisfies

lim
n→∞

qn = 0.

By comparing the power series for both sides of (44), coefficient by coefficient, we obtain

(n+ 3)(n+ 2)(n+ 1)M̄(n+ 3)

= qn + (d+ η + 2(zX + δ)) (n+ 2)(n+ 1)M̄(n+ 2)− 4zX(n+ 1)M̄(n+ 1) + 2zX(n+ 1)M̄(n+ 1)

+
2zX
zX − δ

n∑
k=0

(k + 1)M̄(k + 1) +
µe

zX − δ
− 4zX
zX − δ

(n+ 2)(n+ 1)M̄(n)

+

(
2− d+ η

zX − δ

) n∑
k=0

(k + 2)(k + 1)M̄(k + 2)

Observing that (n + 3)(n + 2)(n + 1)M̄(n) is the leading term on the right hand side of the last

expression, so (40) implies

(n+ 3)(n+ 2)(n+ 1)M̄(n+ 3) ∝n→∞ n
2− d+η

zX−δ .
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This limit is equivalent to (39).

Now (39) together with Lemma 2 yields

Pr(X ≥ n) =
∑
k≥n

M̄(k) ∝ n−
d+η
zX−δ ,

as n→∞.

Lemma 1 Assume d+η
zX−δ ∈ (1, 2), then the second derivative of the probability generating function

satisfies

P ′′(ω) ∝ (1− ω)
d+η
zX−δ

−2

as ω → 1.

Proof. Dividing both sides of (41) and using identity (43), we arrive at

P ′(ω) + P(ω)
d+ η

zX − δ

(
1

ω − δ
zX

+
1

1− ω

)
=
µeω − δM̄(1)

zX − δ

(
1

ω − δ
zX

+
1

1− ω

)
.

Let

ψ(ω) =

(
ω − δ

zX

1− ω

) d+η
zX−δ

which satisfies

ψ′(ω) =
d+ η

zX − δ

(
1

ω − δ
zX

+
1

1− ω

)
ψ(ω). (45)

Then the differential equation for P(ω) above can be rewritten as

d

dω
(P(ω)ψ(ω)) = P ′(ω)ψ(ω) + P(ω)ψ′(ω) = ψ(ω)

µeω − δM̄(1)

zX − δ

(
1

ω − δ
zX

+
1

1− ω

)
.

Integrating both sides from some ω > δ/zX up to any ω ∈ (ω, 1):

P(ω)ψ(ω) = P(ω)ψ(ω) +

∫ ω

ω
ψ(ω̃)

µeω̃ − δM̄(1)

zX − δ

(
1

ω̃ − δ
zX

+
1

1− ω̃

)
dω̃

= P(ω)ψ(ω) +

∫ ω

ω
ψ′(ω̃)

µeω̃ − δM̄(1)

d+ η
dω̃,

where the second equality is due to (45). Equivalently,

P(ω) =
c

ψ(ω)
+

1

ψ(ω)

∫ ω

ω
ψ′(ω̃)

µeω̃ − δM̄(1)

d+ η
dω̃,

where c = P(ω)ψ(ω) > 0.
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Integrating by parts, we obtain∫ ω

ω
ψ′(ω̃)

µeω̃ − δM̄(1)

d+ η
dω̃ = ψ(ω)

µeω − δM̄(1)

d+ η
− ψ(ω)

µeω − δM̄(1)

d+ η
−
∫ ω

ω
ψ(ω̃)

µe
d+ η

dω̃.

Therefore

P(ω) =
c− ψ(ω)µeω−δM̄(1)

d+η

ψ(ω)
+
µeω − δM̄(1)

d+ η
−

∫ ω
ω ψ(ω̃) µe

d+ηdω̃

ψ(ω)
.

The derivatives can be computed explicitly:

P ′(ω) = −
c− ψ(ω)µeω−δM̄(1)

d+η

ψ(ω)

ψ′(ω)

ψ(ω)
+

∫ ω
ω ψ(ω̃) µe

d+ηdω̃

ψ(ω)

ψ′(ω)

ψ(ω)

= −
c− ψ(ω)µeω−δM̄(1)

d+η

ψ(ω)

d+ η

zX − δ

(
1

ω − δ
zX

+
1

1− ω

)

+

∫ ω
ω ψ(ω̃) µe

d+ηdω̃

ψ(ω)

d+ η

zX − δ

(
1

ω − δ
zX

+
1

1− ω

)

and

P ′′(ω)

=
c− ψ(ω)µeω−δM̄(1)

d+η

ψ(ω)


(
d+ η

zX − δ

)2
(

1

ω − δ
zX

+
1

1− ω

)2

− d+ η

zX − δ

(
− 1

(ω − δ
zX

)2
+

1

(1− ω)2

)
+R(ω)

where

R(ω) =
d+ η

zX − δ

(
− 1

(ω − δ
zX

)2
+

1

(1− ω)2

) ∫ ω
ω ψ(ω̃) µe

d+ηdω̃

ψ(ω)

−
(
d+ η

zX − δ

)2
(

1

(ω − δ
zX

)2
+

2

(ω − δ
zX

)(1− ω)
+

1

(1− ω)2

) ∫ ω
ω ψ(ω̃) µe

d+ηdω̃

ψ(ω)

+
d+ η

zX − δ

(
1

ω − δ
zX

+
1

1− ω

)
µe
d+ η

.
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Now,

∫ ω

ω
ψ(ω̃)dω̃ =

∫ ω

ω

(
ω̃ − δ

zX

) d+η
zX−δ

(1− ω̃)
− d+η
zX−δ dω̃

=

∫ ω

ω

(
ω̃ − δ

zX

) d+η
zX−δ

d

(1− ω̃)
− d+η
zX−δ

+1

d+η
zX−δ − 1



=

(
ω̃ − δ

zX

) d+η
zX−δ (1− ω̃)

− d+η
zX−δ

+1

d+η
zX−δ − 1

∣∣∣∣∣∣∣∣
ω

ω

−
∫ ω

ω

d+ η

zX − δ

(
ω̃ − δ

zX

) d+η
zX−δ

−1 1
d+η
zX−δ − 1

(1− ω̃)
− d+η
zX−δ

+1
dω̃

=

(
ω − δ

zX

) d+η
zX−δ (1− ω)

− d+η
zX−δ

+1

d+η
zX−δ − 1

+ cψ +O(1− ω)

where

cψ = −ψ(ω)(1− ω)
d+η
zX−δ − 1

−
∫ 1

ω

d+ η

zX − δ

(
ω̃ − δ

zX

) d+η
zX−δ

−1 1
d+η
zX−δ − 1

(1− ω̃)
− d+η
zX−δ

+1
dω̃.

So ∫ ω
ω ψ(ω̃)dω̃

ψ(ω)
=

1− ω
d+η
zX−δ − 1

+
cψ
ψ(ω)

+ o(1− ω)

Therefore the factor associated with 1
1−ω in R(ω) is(

d+ η

zX − δ
−
(
d+ η

zX − δ

)2
)

1
d+η
zX−δ − 1

µe
d+ η

+
d+ η

zX − δ
µe
d+ η

= 0.

which implies

R(ω) = O(1) +
cψ

ψ(ω)(1− ω)2

d+ η

zX − δ

(
1− d+ η

zX − δ

)
as ω → 1. So

P ′′(ω) ∼ω→1

(
c− ψ(ω)

µeω − δM̄(1)

d+ η
− cψ

)
d+ η

zX − δ

(
d+ η

zX − δ
− 1

)
1

ψ(ω)(1− ω)2

Notice that

c− ψ(ω)
µeω − δM̄(1)

d+ η
− cψ > ψ(ω)

(
P(ω)− µeω − δM̄(1)

d+ η
+

1− ω
d+η
zX−δ − 1

)
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and

P(ω)− µeω − δM̄(1)

d+ η
+

1− ω
d+η
zX−δ − 1

=
P ′(ω)

(
δ + zXω

2 − (zX + δ)ω
)

d+ η
+

1− ω
d+η
zX−δ − 1

=

{
P ′(ω)(δ − zXω)

d+ η
+

1
d+η
zX−δ − 1

}
(1− ω) > 0,

when ω is chosen sufficiently close to δ/zX . Thus

c− ψ(ω)
µeω − δM̄(1)

d+ η
− cψ > 0.

Lemma 2 Suppose that

M̄(n) ∝n→∞ n
− d+η
zX−δ

−1
,

then

Pr(X ≥ n) =
∑
k≥n

M̄(k) ∝ n−
d+η
zX−δ .

Proof. There exists a > 0 such that

lim
n→∞

M̄(n)

n
− d+η
zX−δ

−1
.

= a.

Therefore, for any ε > 0, there exists n∗ such that, for all n ≥ n∗

a− ε < M̄(n)

n
− d+η
zX−δ

−1
.
< a+ ε

Combining these inequalities with the definition of Pr(X ≥ n), we obtain, for all n ≥ n∗

(a− ε)
∑
k≥n

k
− d+η
zX−δ

−1
< Pr(X ≥ n) =

∑
k≥n

M̄(k) < (a+ ε)
∑
k≥n

k
− d+η
zX−δ

−1
.

Notice that ∑
k≥n

k
− d+η
zX−δ

−1
<

∫
k≥n−1

k
− d+η
zX−δ

−1
dk =

zX − δ
d+ η

(n− 1)
− d+η
zX−δ

and ∑
k≥n

k
− d+η
zX−δ

−1
>

∫
k≥n

k
− d+η
zX−δ

−1
dk =

zX − δ
d+ η

n
− d+η
zX−δ .

Therefore

(a− ε)zX − δ
d+ η

n
− d+η
zX−δ < Pr(X ≥ n) < (a+ ε)

zX − δ
d+ η

(n− 1)
− d+η
zX−δ
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As this applies for any ε > 0, we obtain

lim
n→∞

Pr(X ≥ n)

zX−δ
d+η n

− d+η
zX−δ

= a.

Proofs for Proposition 3. First we derive the expression for ϕ(s) provide in the main text.

ϕ(s) =

∫ ∞
0

ẑs
−d
∑

n M̄(n)(1− Φ(ẑ/n))∑
n M̄(n)

=

∫ ∞
0

ẑs
∑

n M̄(n)dΦ(ẑ/n)∑
n M̄(n)

=

∫ ∞
0

∑
n M̄(n)ns(ẑ/n)sdΦ(ẑ/n)∑

n M̄(n)

=

{∫ ∞
0

ẑsdΦ(ẑ)

}{∑
n M̄(n)ns∑
n M̄(n)

}
.

Now we prove that

ϕ(s) ∝ 1
η+d
zX−δ − s

(46)

as s ↑ η+d
zX−δ . To do so, we use (39) which characterizes the asymptotic behavior of M̄(n). This

result implies that, there exists a > 0 such that: for any ε > 0, there exists n∗ so that

(a− ε)n−
d+η
zX−δ

−1
< M̄(n) < (a+ ε)n

− d+η
zX−δ

−1

for all n ≥ n∗. Therefore(
η + d

zX − δ
− s
) ∑
n≥n∗

(a−ε)ns−
d+η
zX−δ

−1
<

(
η + d

zX − δ
− s
) ∑
n≥n∗

M̄(n)ns <

(
η + d

zX − δ
− s
) ∑
n≥n∗

(a+ε)n
s− d+η

zX−δ
−1

Notice that(
η + d

zX − δ
− s
) ∑
n≥n∗

n
s− d+η

zX−δ
−1

<

(
η + d

zX − δ
− s
)∫ ∞

n∗−1
x
s− d+η

zX−δ
−1
dx = (n∗ − 1)

s− d+η
zX−δ

and (
η + d

zX − δ
− s
) ∑
n≥n∗

n
s− d+η

zX−δ
−1

>

(
η + d

zX − δ
− s
)∫ ∞

n∗
x
s− d+η

zX−δ
−1
dx = (n∗)

s− d+η
zX−δ

Since(
η + d

zX − δ
− s
)∑

n

M̄(n)ns =

(
η + d

zX − δ
− s
) ∑
n<n∗

M̄(n)ns +

(
η + d

zX − δ
− s
) ∑
n≥n∗

M̄(n)ns,
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using the inequalities above and take the limit s ↑ η+d
zX−δ , we obtain

a− 2ε <

(
η + d

zX − δ
− s
)∑

n

M̄(n)ns < a+ 2ε

for all s ∈ (s∗, η+d
zX−δ ) with s∗ sufficiently close to η+d

zX−δ . In other words,

∑
n

M̄(n)ns ∝
s↑ η+d
zX−δ

1
η+d
zX−δ − s

.

Because Φ has thin tail
∫∞

0 ẑsdΦ(ẑ) is finite and continuous in s which implies (46).

Proof of Proposition 4. Let ϕ̂(n, s) denote the Laplace transform ofM(n, q). In Subsection

5.2, we derived the difference equations satisfied by ϕ̂(n, s) similar to the difference equations for

M̄(n). Using these difference equations and following the steps in the proof of Proposition 2, we

can show that, there exists a(s) such that

lim
n→∞

n
d+η−(zI−ζ)s

zX−δ
+1
ϕ̂(n, s) = a(s)

and the convergence is uniform in s. Recall that the Laplace transformation for firm size distribution

can be written as

ϕ(s) =

∑
n n

sϕ̂(n, s)∑
n M̄(n)

,

Armed with this result, we can follow the steps in the proof of Proposition 3 to show that

∑
n

ϕ̂(n, s)ns ∝ 1

s∗ − s

Using this property and applying Mimica (2016, Corollary 1.3), we obtain the tail result stated in

the proposition.

To derive (32), notice that, by (29),

d+ η = (zX − δ)λne

and by (25)

zI − ζ =
d+ η − (zX − δ)

λe
=

(zX − δ)(λne − 1)

λe
.

Plugging these expression in (31), we obtain

λf =
(zX − δ)λne

zX − δ + (zX−δ)(λne−1)
λe

=
λneλe

λne + λe − 1
.

Inverting the first and the last items, we arrive at (32).
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H Robustness exercises

H.1 One-type model

To check whether two firm types are necessary, we re-estimate the model with one firm type. To

do so, we first fix δ = 0.118 and d = 0.004.37 We target η = 0.01 and ζ = 0.021 and the Pareto tail

index of the distribution of number of establishments per firm of 1.25 and the Pareto tail index of

the distribution of establishment size of 1.40, as estimated for 1995.

The Pareto tail index of the distribution of number of establishments per firm is given by (29).

Therefore

zX =
η + d

1.25
+ δ = 0.1294

From (13), we have

µe = η + d+ δ − zX = 0.0028

The Pareto tail index of the distribution of establishment sizes is given by (25), which implies

zI =
η + d+ δ − zX

1.40
+ ζ = 0.0230

From (17), we obtain ∫
q̂dΦ(q̂) = 1− zI − ζ

µe
= 0.2857

We assume that Φ follows a log-normal distribution with mean % and variance ς2. Thus

exp

(
%+

ς2

2

)
=

∫
q̂dΦ(q̂) = 0.2857

37These amount to around 3% quarterly exit rate for establishments and 0.1% quarterly (exogenous) exit rate for
firm.

70

 Electronic copy available at: https://ssrn.com/abstract=3361451 



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

-3

-2

-1

0

1

2

3

4

5

1995 data

1995 model

Figure H.1: Distribution of number of establishments per firm, Data and Model (One-Type)
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Figure H.2: Distribution of number of employees per establishment, Data and Model (One-Type)
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Now, the distribution of the number of establishments per firm is given by (27). Figure H.1

displays this distribution and shows that this model produces too few firms with one establishments,

despite replicating the tail index of the empirical distribution. To better match the data, we

therefore need more than one type.

Notably, however, the model generates a distribution of establishment size close to the estimated

parameterized distribution at the estimated values ς̂ = 1.1936 and %̂ = −1.9652. The model implied

distribution as given by (24) and the empirical distributions are shown in Figure H.2.

H.2 Endogenous growth

In the benchmark model, we assume semi-exogenous growth: α = 1. In this appendix, we consider

alternative specifications with fully endogenous growth α < 1, so that changes in model parameters,

such as the entry cost φ, can affect not only the level but also the growth rate of the economy.

For simplicity of explication, we only provide details for parts of the model, characterization and

computation that are different when α < 1 instead of α = 1.

Intermediate firms: Recall that the production function for intermediate good j is xj(t) =

A(t)`j(t), where A(t) is the labor productivity. To model semi-endogenous aggregate growth,

we allow productivity to be a geometric weighted average of exogenous process exp(θt), and an

endogenous factor, Q(t), such that

A(t) = (eθt)αQ(t)1−α, (47)

where

Q(t) ≡ 1

N(t)

∫
N (t)

qj(t)dj

is the average quality of intermediate goods.

BGP : Along the BGP, the quality-invariant component of profit π̄(t) in (6) is constant. Therefore,

w(t) must grow at the same rate as A(t)Y (t)
β

1−β . Given that Y (t) grows at rate g and A(t) grows

at rate αθ+ (1− α)ζ from (47), then w(t) must grow at the rate βg/(1− β) + αθ+ (1− α)ζ. This

implies that the labor income of the representative consumer, w(t)L(t), grows at the rate of wages

plus population growth. Since labor income must grow at the same rate as consumption, we know

that

g = γ + αθ + (1− α)ζ +
β

1− β
g

must hold.

Next, we can use the labor market clearing condition to further refine the expression for the

growth rate for final output. Total labor demand can be calculated from (5),

∫
N (t)

`j(t)dj =

(
w(t)

(1− β)A(t)

)− 1
β Y (t)N(t)Q(t)

A(t)
.
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The labor market clearing condition L(t) =
∫
Nt `j(t)dj then yields the following expression for w̄(t),

w̄(t) = (1− β)

(
N(t)Q(t)

A(t)Y (t)
β

1−β

)β
L(t)−β.

Since we showed that the normalized wage (or equivalently profit per quality) does not grow along

the BGP, the above expression implies

0 = −γ + (η + ζ)− (αθ + (1− α)ζ)− β

1− β
g,

which can be combined with condition (10) to yield

g = η + ζ.

Hence, the growth of aggregate output is driven by the two margins of firm growth: the growth

of the number of establishments N(t) and the growth of the average quality of products Q(t).

Furthermore, we can rewrite (10) to obtain an explicit formula for ζ given g:

ζ =
1

1− α

(
1− 2β

1− β
g − γ − αθ

)
.

Because η = g − ζ,

η = g − 1

1− α

(
1− 2β

1− β
g − γ − αθ

)
holds.

Note that using the last expression for η, (13) can be rewritten as

g − 1

1− α

(
1− 2β

1− β
g − γ − αθ

)
= zτX − (δτ + dτ ) + µe

mτ

Mτ
−
∑
τ ′ 6=τ

λττ ′ +
∑
τ ′ 6=τ

λτ ′τ
Mτ ′

Mτ
. (48)

One firm type characterization: The single-type case is particularly convenient as it has the

recursive structure in solution. The free-entry condition (9) and (8) imply that

v = ve = φ.

From the first-order condition for innovations, this imply that zI and zX are determined only by φ

and the innovation cost functions hI(·) and hX(·). Then the only endogenous variable to determine

ζ and g in (17) and (19) is µe. Plugging (17) and (19) into (10) yields an equation with one unknown

µe. With some algebra, this equation becomes[(
1− 2β

1− β
− (1− α)

)∫
q̂dΦ(q̂) + 1− α

]
µe+

[
1− 2β

1− β
− (1− α)

]
zI +

1− 2β

1− β
(zX−δ−d) = γ+αθ.
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We assume that β and α are sufficiently small so that the coefficients of µe, zI , and (zX − δ − d)

on the left-hand side are all positive. Then the above steps solve out µe, ζ, g, η, zI , zX , and v as

functions of parameters. The only equilibrium object left here is w̄, which can be solved by the

HJB equation

(ρ+ σg)v = π̄ − hI(zI)− hX(zX) + (zI + zX − δ − d)v

and the relationship (6).

Proposition 6 For BGP equilibra in the one-type economy:

(i) An increase in the entry cost, φ, increases zI and zX , while reducing µe. When α = 1

(exogenous growth), these effects exactly offset and g stays constant. When α < 1 and
∫
q̂dΦ(q̂) ≤ 1,

g increases.

(ii) Suppose that the innovation cost functions take the form

hi(zi) = χiz
ψ
i ,

where i = I,X. The parameters satisfy χi > 0 and ψ > 1. Then a decrease in χI increases zI but

keeps zX the same. The entry rate µe decreases, and when α < 1, the overall growth rate increases.

A decrease in χX increases zX but keeps zI the same. The entry rate µe decreases, and when α < 1

and
∫
q̂dΦ(q̂) ≤ 1, g increases.

(iii) An increase in δ, d, γ, or θ keeps zI and zX constant, while increasing g through an increase

in µe. Changes in α and β do not affect zI and zX either, although they influence g through the

change in µe.

(iv) Changes in the preference parameters σ and ρ do not have any effects on zI , zX , and g.

Computing equilibrium: We can compute the equilibrium when α < 1 as follows. First, make

a guess on g. Once g is known, we can compute r by r = ρ + σg and look for w̄ that satisfies the

free-entry condition (9) by solving (7) for given r and w̄. Then, we compare the initial guess with

the g calculated from the general equilibrium. In particular, the set of equations (15), (16), (21),

and (48) can be used for pinning down µe, g, Mτ , and sτ (2T + 2 equations and 2T + 2 unknowns).

If this g is different from the initial guess, adjust g until we find the fixed point.

74

 Electronic copy available at: https://ssrn.com/abstract=3361451 


