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Abstract

In countries where inflation has been low and stable, price setters display highly dis-
persed aggregate inflation expectations; especially so when they face fewer competitors.
In contrast to the predictions of standard models, realized inflation deviates significantly
from price setters’ aggregate inflation expectations. Instead, their own-industry infla-
tion expectations are more accurate, and aggregate inflation tracks these expectations
closely. I propose a new dynamic model of rational inattention with oligopolistic com-
petition to explain these stylized facts. The Phillips curve relates aggregate inflation
to price setters’ own-industry inflation expectation, and firms forego learning about ag-
gregate variables to focus on their own-industry prices. This incentive is stronger when
every firm faces fewer competitors. Using new firm-level survey evidence, I calibrate the
degree of rational inattention and industry size in the model and find that a two-fold
increase in the number of competitors reduces the half-life and on-impact response of
output to a monetary policy shock by 40 and 15 percent, respectively.
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“[I]t is far, far safer to be wrong with the majority than to be right alone.”

John Kenneth Galbraith (1989)

1 Introduction

Since the seminal work of Friedman (1968) and Phelps (1967), macroeconomists have em-
phasized the importance of expectations for the evolution of prices in the economy. Almost
every modern monetary model relates aggregate price changes to price setters’ expectations
about aggregate inflation.1 This insight has profoundly influenced monetary policy: central
bankers treat anchored expectations not only as a policy objective for controlling inflation,
but also as a potential instrument since the onset of the zero lower bound after the Great
Recession.

In spite of this consensus, empirical evidence on price setters’ expectations of aggregate
inflation are at odds with this theoretical prediction. For instance, Kumar, Afrouzi, Coibion,
and Gorodnichenko (2015) show that despite a long history of low and stable inflation in
New Zealand, firms in that country are exceedingly uninformed about it.2 Managers make
average errors of 2 to 3 percentage points in perceiving current as well as forecasting future
inflation.3 They revise their forecasts by an average of 3.4% after only three months, and
report an average standard deviation of 1% around their inflation forecasts. Similarly, Bryan,
Meyer, and Parker (2015) document that managers in the U.S. also report much higher as
well as more dispersed expectations of overall price changes in the economy. While the theory
predicts that such high and volatile expectations of aggregate inflation should either pass
through to inflation or be accompanied by a deep contemporaneous recession, neither was
the case for these countries at the time of the surveys.

One cannot reconcile these empirical observations with our current models. Either the
survey data are inaccurate in reflecting expectations, or our baseline models are too simplified
to capture the channels that would explain this disconnect. With respect to the latter, I show
in this paper how stable inflation is consistent with such volatile expectations by introducing
a new dynamic model of rational inattention with oligopolistic competition. Firms optimally,
and strategically, choose to learn more about the prices of their competitors at the expense
of knowing less about aggregate variables. I calibrate the degree of rational inattention and

1The timing of these expectations are model-specific. For instance, New Keynesian sticky price models
relate inflation to expectations of future aggregate inflation, while imperfect information models, pioneered
by Lucas (1972), relate it to past expectations of current inflation.

2With a slight abuse of terminology, throughout the paper, I refer to a firm’s managers’ expectations as
firm’s expectations.

3A manager’s perception of inflation is defined as their nowcast of current inflation. In other words, this
perception is the expectation that is formed over current inflation.
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the number of firms within industries using firm-level survey evidence and show that these
features have significant macroeconomic implications for the propagation of monetary policy
shocks to inflation and output.

Although rational inattention is not the only explanation for the large and persistent fore-
cast errors observed in the expectations of managers, complementary evidence from countries
with volatile inflation is inconsistent with alternative explanations such as financial illiteracy,
scarcity of information, and either complexity or lack of transparency in monetary policy.
Comparing the U.S. and Argentina, Cavallo, Cruces, and Perez-Truglia (2014) show that
individuals in lower inflation contexts have significantly weaker priors about the inflation
rate, a finding that supports the rational inattention hypothesis. Moreover, in a recent and
ongoing project with the Central Bank of Iran (CBI), I conduct a survey of firms’ expec-
tations in Iran, a country that has been dealing with highly volatile inflation over the last
four decades. Despite the fact that inflation has ranged from 9% to 40% over the last three
years, firms’ inflation expectations are relatively precise. Their average expectation is only 2
percentage points away from the realized inflation, and despite the high volatility of inflation,
the dispersion of their expectations is only 3.5%. This evidence not only corroborates the
rational inattention narrative but also casts doubt on the aforementioned alternative expla-
nations, as it is highly unlikely that households or firm managers in developed countries are
less literate or have less access to information about monetary policy than managers in Iran
or households in Argentina.

The other building block of the model is the role of imperfect competition at the micro-
level. Although the economy consists of a large number of firms, each one of them only
competes directly with a finite number of others at the micro-level. When asked how many
competitors they face in their main product market, firms in New Zealand report only
between 5 to 8 rivals on average, with 35% of firms responding that they face fewer than 4
competitors, and only 5% reporting that they have more than 15 competitors.

Firms that compete with only a few others do not optimize over their price relative to
an aggregate price index, as is implied by standard models in which a firm is one of a con-
tinuum, but rather relative to the prices of their direct rivals, a feature which has important
implications for monetary policy when information acquisition is endogenous. Every firm
realizes that their rationally inattentive competitors will make mistakes in perceiving the
shocks to the economy, which could hurt the firm by pushing it away from its optimal price.4

Therefore, even in an economy with a single aggregate shock, firms find themselves facing
an endogenous trade-off: how much to track the shock itself versus the mistakes of others.

4 I define what I precisely mean by “mistakes” in the main body of the paper. In short, a mistake is the
part of a firm’s price which is unpredictable by the fundamental shocks of the economy.
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In other words, a firm’s problem is to find an optimal middle ground between being more
wrong about the fundamental shocks with the majority of their competitors and having more
precise estimates of those fundamentals by themselves.

The first contribution of this paper is to show that in the presence of this trade-off,
inflation will depend not just on price setters’ expectations of aggregate inflation but also on
their expectations of own-industry inflation. Furthermore, when there is enough strategic
complementarity in price setting within industries, inflation dynamics will depend primarily
on the latter and little on the former. This can therefore account for how, in countries like
New Zealand and the U.S., aggregate inflation can remain low and stable even when price
setters’ expectations of aggregate inflation are not. The latter simply play little role in price
setting decisions when rationally inattentive price setters have strategic motives, which drive
them to have more precise information about the prices of their competitors at the cost of
being less informed about aggregate inflation.

The second contribution of this paper is to characterize the incentives of firms in track-
ing the mistakes of their competitors, and document the quantitative implications of these
incentives in the propagation and amplification of monetary policy shocks in a dynamic gen-
eral equilibrium model. Within economies where firms face more direct competitors, they
have lower incentives in tracking the mistakes of their rivals because it is more unlikely for
a larger group of competitors to make a mistake on average. Consequently, firms facing a
larger number of competitors allocate a higher amount of their attention to learning the
monetary policy shocks. Therefore, it takes a shorter time for these firms to fully realize the
magnitude of a shock to monetary policy and adjust their prices accordingly, which in turn
translates to a lower persistence in the real effects of a monetary policy shock. I show that
a two-fold increase in the number of competitors that every firm faces directly at the micro-
level of the economy decreases the half-life of output and inflation responses to a one percent
monetary policy shock by 40 and 25 percent, while reducing their on-impact response by 15
and 33 percent respectively.

Another contribution of this paper is calibrating the capacity of processing information,
which has been a difficult task for rational inattention literature so far due to lack of suitable
data. Newly available data on price setters’ expectations from New Zealand, however, cre-
ates an ideal ground for the calibration of this parameter by directly measuring the degree
of information rigidity in firms’ forecasts of aggregate inflation. Moreover, by deriving the
Phillips curve within the rational inattention model, I also relate the capacity of process-
ing information to its analogous parameters in other models of information rigidity, namely
noisy and sticky information models such as Woodford (2003a) and Mankiw and Reis (2002)
respectively, as well as empirical literature that estimates these rigidities using survey data,

4



namely Coibion and Gorodnichenko (2012, 2015). I show that this capacity directly maps to
the Kalman gain, the weight that firms put on their new information, in noisy information
models, and the measure of firms that update their information within a sticky information
model, allowing for a simple comparison of the degree of information rigidity across models.
Utilizing this relationship, I find that the calibrated value of capacity for processing informa-
tion implies a much lower degree of information rigidity than commonly needed in noisy and
sticky information models. price setters in my model ultimately are very good at processing
information, but spend a portion of that attention to tracking the mistakes of their competi-
tors due to their strategic incentives rather than tracking macroeconomic variables. Hence,
in spite of being well-informed about their own optimal prices, price setters’ macroeconomic
beliefs endogenously become akin to those of agents facing large information rigidities for
macroeconomic variables.

The theoretical approach of this paper is closely related to the literature on endogenous
information acquisition in beauty contests.5 In their seminal paper, Hellwig and Veldkamp
(2009) formalize the idea of tracking others’ beliefs in a setting with a measure of agents
and show that the value of public information increases with strategic complementarity in
actions.6 Within this literature, the closest paper to this one is Denti (2015) who formalizes
static information acquisition games with a countable number of players and an unrestricted
information structure, and shows that in such large games, players’ signals are independent
conditional on the fundamental. I also consider a large game by modeling the production
side of the economy, but focus on a case where every firm directly competes with a few
others. Therefore, in spite of having a large number of firms in the model, they optimally
choose to track the mistakes of their few competitors, and directly track their beliefs. Also,
a major departure of my paper from this literature is that it is the first one to investigate
the implications of these oligopolistic incentives in a dynamic stochastic general equilibrium
model, and show that firms’ incentives in tracking one anothers’ beliefs can have important
implications for the magnitude as well as the persistence of output and inflation in response
to monetary policy shocks.

Finally, this paper also builds on the rational inattention literature and the seminal work
of Sims (2003). Maćkowiak and Wiederholt (2009, 2015) show how rational inattention on
the part of firms and households affect the dynamics of inflation and output in the economy.
While this literature has assumed that firms’ signals are independent conditional on the
fundamental shocks, I mainly depart from this literature by micro-founding the endogenous

5For a comprehensive recent survey of this literature see Angeletos and Lian (2016).
6In a similar setting, Myatt and Wallace (2012) show that the endogenous information acquisition of

agents becomes more public in nature as the degree of strategic complementarity increases. Colombo et al.
(2014) show how the acquisition of private information affects the value of public information.
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strategic interactions of agents in tracking mistakes of one another and show that this as-
sumption holds only if firms compete with a measure of others. When, instead, the number
of competitors for every firm in the economy is finite, firms choose signals that incorporate
correlated errors. The dynamic model of this paper also relates to a very recent literature
on characterizing dynamic incentives in information acquisition. Mackowiak, Matejka, and
Wiederholt (2016) show that rational inattention leads to a forward looking behavior in
information acquisition of agents. Furthermore, by formalizing the dynamic incentives of
agents in acquiring information, Afrouzi and Yang (2016) show that agents’ optimal infor-
mation acquisition strategy in dynamics is based on motives of information smoothing over
time. This paper departs from this literature by focusing mainly on strategic incentives of
firms rather than their dynamic incentives.

The paper is organized as follows. Section 2 illustrates the nature of firms’ information
acquisition incentives in a simplified static model and derives a set of testable predictions.
Section 3 relates the predictions of the model to the firm-level survey data from New Zealand.
Section 4 presents the dynamic general equilibrium model. Section 5 discusses the impulse
responses of the calibrated model. Section 6 concludes. Moreover, all the technical deriva-
tions as well as the proofs of all the propositions and corollaries are included in Appendices
A and B, for the static and dynamic models respectively.

2 A Static Model

The goal of this section is to endogenize informational choices of imperfectly competitive firms
and illustrate the equilibrium relationship between aggregate price and the expectations of
firms within a static model. The model presented here is a special case of the dynamic
general equilibrium model that is specified in Section 4. While the general dynamic model
has to be solved using computational methods, the solution to the static case is in closed
form, which provides insight for interpreting the results of the dynamic model.

Since the main purpose of this section is to provide intuition, I focus on the economics
of the forces at work in the main text. All informal claims in this section are formalized in
Appendix A, and the proofs for propositions are included in Appendix A.8.

2.1 The Environment

There are a large number of industries in the economy indexed by j ∈ {1, . . . , J}, and
within every industry there are K firms. Let index j, k denote firm k in industry j. Firms
are price setters and pay attention to a normally distributed fundamental that I denote by
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q ∼ N (0, 1), which represents the underlying source of randomness in the objectives of these
firms. I interpret q as the nominal aggregate demand in this economy, and assume that it is
exogenously drawn by a central bank.

For any realization of the fundamental, and a set of prices chosen by firms across the
economy (q, pj,k)j,k∈J×K , the losses of firm j, k in profits is given by the distance between
their price and a convex combination of q and the average of their competitors’ prices;

Lj,k((q, pj,k)j,k∈J×K) = (pj,k − (1− α)q − α
1

K − 1

∑
l 6=k

pj,l)
2,

where α ∈ [0, 1) denotes the degree of strategic complementarity within industries.7

Two assumptions in the specification of this environment are essential for the results that
will follow, which are also the main departures of this paper from the baseline models of
inflation dynamics with imperfect information. The first assumption is the existence of
strategic complementarity within industries, and the second is the finiteness of the number
of competitors within them.

To illustrate the implications of imperfect information in this environment, it is useful
to consider a reduced form example before we move on to the rational inattention problem
of the firms. For an endowed information set for the economy, let Ej,k[.] be the expectation
operator of firm j, k. Every firm chooses the price that minimizes its expected loss:

∀j, k, pj,k = argminxEj,k[(x− (1− α)q − αpj,−k)
2],

where pj,−k denotes the average price of firm k’s competitors.8 Aggregating the best response
of the firms across the economy, we get the following expression for the aggregate price,

p = (1− α)Ej,k[q] + αEj,k[pj,−k], (1)

where Ej,k[q] is the average expectation across firms of the fundamental, and Ej,k[pj,−k] is
their average expectation of their own competitors’ prices. While this equation resembles the
usual result in beauty contest games, the key departure here is the assumption on finiteness
of firms within industries. The aggregate price no longer depends on the average expectation
of the aggregate price across firms, but the average expectation of their own-industry prices.
In fact, when α is large, as the data will strongly suggest in Section 3, it is mainly the latter

7Here the fundamental q, and prices, (pj,k)j∈J,k∈K , can be interpreted as log-deviations from a steady
state symmetric equilibrium, which allows us to normalize their mean to zero.

8See, for instance, Morris and Shin (2002); Angeletos and Pavan (2007) for a discussion of such games
with exogenous information sets, and the value of information within them.
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that drives the aggregate price.
Although a static model inherently does not incorporate the concept of inflation, in this

case, the intuition that the static model gives us, regarding aggregate prices and expectations
of firms, carries on to the Phillips curve of the dynamic economy. In short, similar to the
aggregate price in the static model, aggregate inflation in the dynamic model is mainly
driven by firms’ average expectations of own-industry price changes rather than by their
expectations of aggregate inflation.

Therefore, in order to understand how prices are determined in the economy, we need to
understand how firms form their expectations of both the fundamental as well as the prices
of their competitors.

2.2 The Information Choice Problem of the Firms

Firms make two choices. First, they choose an information structure subject to their fi-
nite amount of attention that informs them about the fundamental and the prices of their
competitors, and second, they choose a pricing strategy that maps their information to a
price.

I model the information choice problem of the firms following the rational inattention
literature. The spirit of rational inattention is the richness of available information that it
assumes for an economy. This in itself separates a rational inattention economy from one with
an information structure in which agents either observe a set of exogenously imposed signals
or choose their signals from a set that does not allow for sufficiently precise signals. In a
rational inattention world, however, if an action takes place after the nature draws a random
source, then perfect information of that source is available for the agents. For instance, if
firms are setting their prices after a monetary policy shock has taken place, it is unreasonable
to assume that they do not have access to its exact realization, which is also the primary
building block of the full-information rational expectations hypothesis. What distinguishes
rational inattention from full information rational expectations, however, is the recognition
of the fact that availability of information is a different notion that its feasibility for the
firms. The fact that perfect information is available about a monetary policy shock does
not necessarily imply that firms would choose to have perfect information when attention is
costly. Nonetheless, subject to this cost, firms behave optimally and choose their information
set such that it maximizes their ex ante payoffs.

Appendix A.4 shows that if the set of available signals S is rich enough, rationally
inattentive firms always prefer to observe a single signal, rather than observing multiple
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ones.9 The intuition behind this result is that if there is enough variation in the sources of
news within the economy, there is always a single signal available that is precisely what the
manager would like to see, subject to their limited attention.10

Therefore, a pure strategy for any firm j, k is to choose a signal, Sj,k ∈ S, and a pricing
strategy that maps the realization of the signal into the firm’s price, pj,k : Sj,k → R. I show
in Appendix A.3 that in any equilibrium pricing strategies are linear in firms’ signals. I
take this result as given here and focus on linear strategies, where firm j, k chooses Mj,k ∈
R, such that pj,k = Mj,kSj,k. Given a strategy profile for all other firms in the economy,
(Sl,m,Ml,m)(l,m) 6=(j,k), firm j, k’s rational inattention problem is

min(Sj,k∈S,pj,k:Sj,k→R) E[(pj,k − (1− α)q − α 1
K−1

∑
l 6=kMj,lSj,l)

2|Sj,k] (2)

s.t. I(Sj,k; (q,Ml,mSl,m)(l,m)6=(j,k)) ≤ κ

where I(Sj,k; (q,Ml,mSl,m)(l,m)6=(j,k)) measures the amount of information that the firm’s sig-
nal reveals about the fundamental and the prices of other firms in bits.11 This constraint
simply requires that a firm cannot know more than κ bits about the fundamental q and the
signals that others have chosen in S. The following defines an equilibrium for this economy.

Definition 1. A pure strategy equilibrium for this economy is a strategy profile (Sj,k ∈
S,Mj,k ∈ R)j,k∈J×K such that ∀j, k ∈ J × K, (Sl,m,Ml,m)(l,m)6=(j,k) solves j, k’s problem as
stated in equation (2).

It is shown in Appendix A that while there are many equilibria for this game in terms of
the signals that firms choose, all of them are equivalent and unique in one sense: all equilibria
point toward a unique joint distribution in prices of firms. This implies that while many
equilibria could be formed regarding what sources of news firms follow, the joint distribution
of prices is unique and remains unchanged and independent of which equilibrium is being
played by the firms.

9See Section A.2 for a formal definition of a rich information structure. My definition of a rich information
set corresponds to the concept of flexibility in information acquisition in Denti (2015).

10To see this, suppose a manager’s optimal strategy is to see two distinct Gaussian signals, that are not
perfectly correlated, and maps them into their firms’ price using a linear strategy. But notice that this price
cannot be a sufficient statistic of the underlying signals as its dimension is strictly smaller. This means there
is information in manager’s information set that is not used by them in pricing. Therefore, the manager
would prefer to deviate to a signal that eliminates the information that they do not use but is more precise
in terms of the information that they do, which is feasible if the information structure is rich enough to allow
for such a deviation. This is a contradiction with optimality of two distinct signals. Hence, the optimal
signal structure has to be one-dimensional.

11I(.; .) is Shannon’s mutual information function. In this paper, I focus on Gaussian random variables,
in which case I(X;Y ) = 1

2 log2(det(var(X)))− 1
2 log2(det(var(X|Y ))).
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To discuss the incentives that form the equilibrium, I introduce the following reinterpreta-
tion of a firm’s problem. The uniqueness of the joint distribution of prices in the equilibrium
allows us to abstract from the underlying signals and directly focus on how firms’ prices are
related to one another. Let pj,k be the price that firm j, k charges in the equilibrium. The
finite attention of the firm implies that this price cannot be fully revealing of the fundamen-
tal, as figuring out the fundamental with infinite precision requires infinite attention on the
part of the firm. Therefore, any firm’s price can be decomposed into a part that is correlated
with the fundamental and a part that is orthogonal to it:

pj,k = δq + vj,k, vj,k ⊥ q, δ ∈ R.

The vector (vj,k)j,k∈J×K contains the mistakes of all firms in pricing, with their joint distribu-
tion being endogenously determined in the equilibrium.12 I define these orthogonal elements
mistakes because in a world where firms have infinite capacity to process information, all
firms perfectly learn the fundamental and set their prices exactly equal to q. Since this con-
cept is going to be an important part of my argument in this paper, the following definition
formally characterizes it.

Definition 2. A mistake is a part of a firm’s price that is unpredictable by the fundamentals
of the economy.

This sheds light on the economic importance of this decomposition. A mistake is a
source of volatility in a firm’s price that is unpredictable by anyone who only knows the
fundamentals of the economy, and nothing more about the firm’s price. It is important to
mention that these mistakes need not to be independent across firms. In fact, by endogenizing
the informational choices of firms, one of the objectives here is to understand how the
mistakes of different firms relate to one another in the equilibrium, or intuitively how much
managers of competing firms learn about the mistakes of their rivals and incorporate them
in their own decisions.

Moreover, the coefficient δ, which determines the degree to which prices covary with the
fundamental of the economy, is also an equilibrium object. Our goal is to understand how δ

and the joint distribution of mistakes rely on the underlying parameters of the model α,K
and κ. For notational ease, let λ ≡ 1− 2−2κ ∈ [0, 1) be a transformation of a firm’s capacity
for processing information. λ = 0 corresponds to a complete absence of the ability to process
information, κ = 0, and λ → 1 corresponds to an infinite capacity to do so, κ → ∞. From

12Mistakes need not to be independent. In fact, it is at the heart of this paper to understand how these
mistakes are jointly distributed.
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here onwards, I denote λ as the total amount of attention that a firm has at its disposal.
The following definition formally specifies this term.

Definition 3. The amount of attention that a firm pays to a random variable is the mutual
information between their set of signals and that random variable. Moreover, for any two
random variables X and Y , we say a firm knows more about X than Y if it pays more
attention to X than Y .

In the static model, the amount of attention is directly linked to the absolute value of
the correlation between a firm’s signal and the random variable to which the firm is paying
attention.13 Appendix A shows that when others play a strategy in which 1

K−1

∑
l 6=k pj,l =

δq + vj,−k, the attention problem of firm j, k reduces to choosing the correlation of their
signal with the fundamental and the mistakes of others:

maxρq≥0,ρv≥0(ρq +
ασv

1−α(1−δ)
ρv)

2 ,

s.t. ρ2q + ρ2v ≤ λ .

Here σv ≡ var(vj,−k)
1
2 is the standard deviation of the average mistakes of j, k’s competi-

tors, ρq is the correlation of the firm’s signal with the fundamental, and ρv is its correlation
with the average mistake of its competitors. The information processing constraint reduces
such that the square of the two correlations should sum up to an amount less than λ. Figure
(1) symbolically illustrates the feasible set of correlations and the indifference curve for the
values that maximize the problem above.

The following proposition states the properties of the equilibrium. The closed form
solutions and derivations are included in Appendix A. I focus here on the forces that shape
this equilibrium.

Proposition 1. In equilibrium,

1. Firms pay attention not only to the fundamental, but also to the mistakes of their
competitors: ρ∗v > 0.

2. A firms’ knowledge of the fundamental increases in the number of their competitors
and decreases in the degree of strategic complementarity:

∂

∂K
ρ∗q > 0,

∂

∂α
ρ∗q < 0.

13For two normal random variables X and Y , let I(X,Y ) denote Shannon’s mutual information between
the two. Then I(X,Y ) = − 1

2 log2(1 − ρ2X,Y ) where ρX,Y is the correlation between X and Y . Notice that
I(X,Y ) is increasing in ρ2X,Y .
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3. Firms do not pay attention to mistakes of those in other industries: ∀(j, k), (l,m), if
j 6= l, pj,k ⊥ pl,m|q.

The independence of mistakes from the fundamental implies an endogenously arisen
trade-off for firms in allocating their attention. Higher attention to competitors’ mistakes
has to be compensated by lower attention to the fundamental but this in turn reduces a
firm’s losses by creating coordination between them and their rivals. The existence of this
trade-off is founded on a firm knowing that their competitors make mistakes. In a world
where a firm’s competitors never made mistakes, all the firm would need to know was the
fundamental. This has an important implication regarding what firms know about the fun-
damental in the equilibrium: price setters who pay more attention to the mistakes of others
have less information about the fundamental.

The presence of σv in the objective of the firm unveils another force in determining the
incentive of a firm in paying attention to others’ mistakes. The firm cares not about the
mistake of any single competitor, but about the average mistake that its rivals make all
together. If σv is zero, then the firm does not have any incentive to pay attention to any
possible mistakes made by any individual rival. Therefore, the more the mistakes of a firm’s
competitors “wash out”, the less the firm is worried about them. Intuitively, when the average
mistakes wash out, the firm is fully confident that while there are some rivals that undercut
them by mistake, there are others that compensate by overpricing them. In other words, a
firm’s profits, on average, will not be affected by the mistakes of other firms. Formally, this
dependence to the number of competitors can be seen in the expression for the variance of
others’ mistakes when they play the equilibrium strategy:

σ2
v = σ2

(
1

K − 1
+
K − 2

K − 1
ρ

)
,

where ρ is the correlation of any two competitors’ mistakes and σ2 is their variance, both
of which are firm independent due to the symmetry of the equilibrium strategy. As ρ < 1

due to finite capacity, σ2
v is strictly decreasing in K.14 Thus, the firm’s incentive in paying

attention to the mistakes of its competitors diminishes as their number increases. In fact, in
the equilibrium as K → ∞, σ2

v converges to zero, and firms lose all their interest in learning
about the mistakes of their rivals. In other words, large industries never find it optimal
to coordinate once the information structure is rich enough to allow them to choose their

14This is true for a given σ2, as well as taking into account how σ2 would endogenously change as a result
of changing K. Moreover, the claim that ρ < 1 holds due to the fact that firms can never perfectly correlate
their mistakes if they have finite attention span. Perfect coordination requires infinite precision in acquiring
information and therefore infinite capacity to process information.
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optimal degree of coordination: if industries are large enough, given any degree of positive
correlation in the mistakes of others, the law of large numbers washes out the uncorrelated
part of those mistakes.15 Since the firm only cares about those mistakes by a coefficient
α < 1, it would find it optimal to choose a degree of coordination that is less than what
others have chosen. This implies that in the limit as K → ∞ where the law of large numbers
holds for industries, the only plausible equilibrium is when there is no coordination. If
everybody else chooses not to coordinate, the mistakes wash out, and for any single firm,
there is no average mistake to track.

Another important aspect of the Proposition 1 is how strategic complementarity influ-
ences the choices of these firms. α is the underlying parameter that relates the payoff of a
firm to mistakes of its competitors. When α is zero, the firm pays no penalty for charging a
price that is farther away from the prices of its competitors, implying that the firm’s payoff
depends only on how close its price is to the fundamental itself. Since tracking the mistakes
of others is costly in terms of learning the fundamental, when α = 0, all firms focus solely
on the fundamental and learn about it as much as their finite attention allows them. As α
gets larger, however, the payoffs of firms depend more on the mistakes that others make and
accordingly the firm finds it more in their interest to track those mistakes. This illustrates
the importance of micro-founding these strategic complementarities, which is one of the main
objectives of the model in Section 4.

Appendix A shows that in equilibrium

δ =
λ− αλ

1− αλ
.

This implies that the degree to which prices covary with the fundamental in an industry
depends on strategic complementarity and the capacity of processing information while it is
independent of the number of firms in the industry. We will show this independence is specific
to the static environment and goes away in the micro-founded dynamic model. However,
even within this static environment, this result holds a key insight into the relationship of
expectations and prices.16

Moreover, the fact that higher strategic complementarity decreases δ is a well-known
result in games of incomplete information. Higher capacity for processing information, on

15This is analogous to the result in Denti (2015) which shows that within large games coordination vanishes
once the information structure is unrestricted.

16While Proposition 1 shows that the quality of firms’ information about the fundamental is lower when
K is smaller, the independence of the price level from K points toward the fact that this lower information
quality about the fundamental is compensated by better information of firms about the prices of their
competitors. In the static model, these two forces cancel each other out and make δ independent of K. I
discuss the economic nature of this independence in more detail in the discussion that follows Proposition 7.
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the other hand, increases this covariance: a firm with a higher ability to follow the news is
able to respond more confidently to that news. In particular, the degree of strategic com-
plementarity becomes irrelevant as firms approach infinite capacity to process information.
This corresponds to an environment where firms can perfectly observe the fundamental and
reach common knowledge about it. Once they do so, strategic complementarity is irrelevant
to their action as everyone knows the fundamental perfectly, knows that its opponents know
the fundamental perfectly, and so it goes in the hierarchy of the higher order beliefs. This
common knowledge allows each firm to respond to their knowledge of the fundamental with
the highest confidence and set their price equal to that, while absolutely minimizing their
losses.

2.3 Equilibrium Prices and Expectations

Having characterized the equilibrium, we now have the necessary tools to answer our mo-
tivating question on the relationship between equilibrium prices and expectations. Recall
from equation (1) that in the equilibrium the average price is given by

p = (1− α)Ej,k[q] + αEj,k[pj,−k].

Here, the goal is to understand how the aggregate price co-moves with the average expec-
tations of firms from the objects of the model. The next proposition derives the necessary
results for the argument that follows.

Proposition 2. In equilibrium, the aggregate price co-moves more with the average ex-
pectations from own-industry prices than average expectations of the aggregate price itself,
meaning that

cov(p,Ej,k[pj,−k]) > cov(p,Ej,k[p]).

Moreover, the two converge to each other as K → ∞.

Therefore, what matters for the determination of the aggregate price is not what firms
know about the aggregate price level, but what they know about their own industry prices.
This result also holds in the dynamic model in the sense that inflation is driven more by
the expectations of industry price changes, than the expectations over inflation itself. The
following Corollary shows that the realized price is also closer to the average own-industry
price expectations than the average expectation of the aggregate price.

Corollary 1. In equilibrium, the realized price is closer in absolute value to the average
expectations from own-industry prices than the average expectation of the aggregate price
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itself.
|p− Ej,k[pj,−k]| < |p− Ej,k[p]|

The intuition behind these results relies solely on the incentives of firms in paying atten-
tion to the mistakes of their competitors. In equilibrium, the signals that firms observe are
more informative of their own industry prices than the aggregate economy:

Sj,k =

covaries with aggregate price︷︸︸︷
p + uj︸ ︷︷ ︸

covaries with industry prices

+ ej,k,

where uj ⊥ p is the common mistake in industry j and ej,k is the independent mistake
of firm j, k. The fact that var(uj) 6= 0 by Proposition 1 implies that the firm would be
more confident in predicting their own industry price changes than the aggregate price, and
the two would become the same only if there was no coordination within industries, which
happens when K → ∞.

This result, along with its counterpart in the dynamic model, shows how stable infla-
tion can be an equilibrium outcome even when agents’ expectations of that inflation are
ill-informed. What firms need to know in terms of figuring out their optimal price is a com-
bination of the fundamental q and their own industry price changes. While the aggregate
price will be correlated with both of these objects, aggregate price does not by itself play an
important role in firms’ profits so they do not need to directly learn about it.

Thus, the question becomes how well-informed firms are about their industry price
changes versus the fundamental. The following proposition shows that if strategic com-
plementarity is large enough, then firms know more about the prices of their competitors
than the fundamental, which holds only because they pay attention to their competitors
mistakes.

Proposition 3. In the equilibrium, if strategic complementarity is high enough, a firm knows
more about the average prices of its competitors than about the fundamental and the aggregate
price. A sufficient condition for this result is if αλ ≥ 1

2
.17

This result is built solely on firms’ incentives in paying attention to mistakes of their op-
ponents. To see the reason, notice that the average price of a firm’s competitors incorporates
their average mistake:

pj,−k = δq + vj,−k.

17The necessary and sufficient condition in this sense has a complicated expression that is derived in the
proof of the Proposition. It is shown that this result could hold even in occasions when αλ < 1

2 but K is
small enough. For the purposes of this section, however, we only focus on this sufficient condition.

15



Hence, if a firm only paid attention to the fundamental, it would then know more about the
fundamental than the prices of its competitors since their information would be orthogonal
to the mistakes of others. It is only when the firm pays enough attention to vj,−k that it
would know more about pj,−k than q.

This implies that when α is large, not only are prices more affected by the firms’ average
expectations of their own industries than by the fundamental, but these expectations are
also formed under information sets that are more informative of these prices than they are
of the fundamental. Therefore, poor expectations of the fundamental or aggregate prices are
not necessarily an indicator of how well- or ill-informed firms are about their optimal prices
or prices in their industry.

2.4 An AS-AD Framework and Non-Neutrality of Money

The closed form solution for the static model provides an intuitive framework for analyzing
the real effects of a shock to the nominal demand. In this simple setup the aggregate demand
curve is given by the fact that the deviations of aggregate price and output in the economy
from their mean should add up to the shock to the aggregate demand, q:

p = −y + q.

Moreover, the equilibrium covariance of the aggregate price with q, as characterized in the
previous section, implies the following aggregate supply curve.18

p = (22κ − 1)(1− α)y.

Figure (2) shows how these real effects work in a classic AS-AD graph. When a positive shock
to q shifts the aggregate demand curve of the economy to the right, firms do not observe
it perfectly. Instead, they observe a signal whose value is larger than its mean. From the
perspective of any firm, however, such a realization for its signal can come from a combination
of three independent sources: an increase in aggregate demand q, a common mistake of their
industry in perceiving the realization of q, or an independent mistake on their own part in
perceiving the value of q. The non-neutrality of money rises from firm’s different incentives
in responding to each of these possibilities. The degree to which a firm increases their price
due to a change in q versus a common mistake in their industry is different, while they would
rather not change their price at all in response to their own independent mistakes. These
different incentives make firms reluctant in responding one to one to their realized signal:

18Aggregate supply can be derived from the equilibrium result p = δq = δ(p+ y) ⇒ p = δ
1−δy.
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they respond by a smaller magnitude due to the possibility that it may simply be a mistake,
bearing in mind also the beliefs and responses of their competitors. As a result, when q

goes up by one percent, firms across the economy increase their prices by less than that, on
average. This creates an excess demand for goods, which increases the aggregate output.

The slope of the AS curve, which determines how an increase in q is divided between prices
and output, depends on how much firms are capable of separating the three independent
sources that affect their signals from one another. As κ increases, mistakes become smaller
in the equilibrium as all firms see more informative signals of q. Therefore, if a firm sees
a signal larger than its mean, they assign more probability to the case that the increase is
coming from q rather than a mistake on their own or their competitors’ part. Hence, they
respond more strongly to their signals with a larger increase in their prices, which diminishes
the effect of the shock on their output. Moreover, when strategic complementarity is smaller,
the firms worry less about the mistakes of their competitors, and focus a higher amount of
their attention on finding out the realization of q, which again diminishes the real effects of
the shock. In the extreme case when κ → ∞, signals are infinitely precise in revealing the
realization of q and all firms respond one to one to their signals. This corresponds to an
infinite slope for the AS curve where money is neutral, and output is completely unaffected
by changes in the nominal aggregate demand.

3 Model Predictions and Relation to the Data

I use a unique quantitative survey of firms’ expectations from New Zealand, which is compre-
hensively discussed in Coibion et al. (2015); Kumar et al. (2015). The survey was conducted
among a random sample of firms in New Zealand with broad sectoral coverage. So far, six
waves of the survey have been done over the time frame of September 2013 to July 2016.

Here, I only rely on the aspects of the survey that link the competitiveness of firms to the
quality of their information. Motivated by the predictions of the model, I focus specifically
on firms’ quality of information about aggregates relative to their industries.

3.1 Number of Competitors and Strategic Complementarity

The two underlying assumptions of this paper that drive its main results are the finiteness of
firms within industries and the existence of industry-level strategic complementarities. Two
questions in the survey directly measure these for every firm within the sample and address
these assumptions.

The first asks firms how many direct competitors they face for their main product or
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product line. The average firm in the sample reports that they face eight competitors, as
documented in Table (1), with 35% of firms reporting that they four or fewer competitors. A
breakdown of firms’ answers from different industries shows that this average is fairly uniform
across them. Column (3) of the table also reports a weighted average of firms’ answers to
this question based on their share of production in the whole sample. This weighted average
aims to capture the representativeness of each firm in the economy, and the fact that it is is
5 shows that larger firms, with higher shares of production, face fewer competitors than the
average firm in the sample.

To capture the degree of within industry strategic complementarity firms were asked the
following question.

“[S]uppose that you get news that the general level of prices went up by 10%
in the economy:

a. By what percentage do you think your competitors would raise their prices
on average?

b. By what percentage would your firm raise its price on average?
c. By what percentage would your firm raise its price if your competitors did

not change their price at all in response to this news?”

Given this hypothetical question, the pricing best response derived in the previous section
allows us to back out the degree of strategic complementarity for each firm:

pj,k =

answer to b.︷ ︸︸ ︷
(1− α)Ej,k[q]︸ ︷︷ ︸
answer to c.

+ α Ej,k[pj,−k]︸ ︷︷ ︸
answer to a.

.

The average response of firms to this question is 0.9, which is relatively uniform across dif-
ferent industries. These responses indicate a high degree of strategic complementarity, which
is in line with the standard calibrations of the analog of this parameter in the literature.19

3.2 Knowledge about Industry versus Aggregate Inflation

One of the main predictions of the model is that in the presence of coordination at the
micro-level, firms are more aware of their industry price changes than the aggregate price.

In the fourth wave of the survey, conducted in the last quarter of 2014, firms were asked
to provide their nowcasts of both industry and aggregate yearly inflation. Figure (3) shows
the distribution of firms’ nowcasts of these two objects. While the average nowcast for

19See, for instance, Mankiw and Reis (2002); Woodford (2003b).
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aggregate inflation, 4.3%, is very high and far from the actual inflation of 0.8%, the average
nowcast of firms from their industry prices, 0.95%, is very close to this realized inflation.
This observation directly parallels with the result in Corollary 1 that shows under imperfect
competition prices are closer to average expectations of firms from their own industry prices
than their average expectation of the aggregate price. Also, Table (2) reports the size of firms’
nowcast errors in perceiving the two.20 The average absolute nowcast error from industry
inflation is 1.2%, a magnitude that is considerably lower than the average absolute nowcast
error about aggregate inflation, 3.1%. This evidence is consistent with the prediction of
Proposition 3 which states that in presence of high strategic complementarities firms are
relatively more aware of their industry price changes than the aggregate ones. In addition,
Figure (4) shows that on top of this striking difference in the averages, the distributions of
these nowcast errors are skewed in opposite directions: for nearly two-thirds of firms, their
nowcast error of the aggregate inflation is larger than the mean error, while the reverse is
true in the case of industry inflation.

Firms’ forecasts also exhibit similar patterns. Figure (5) shows the distribution of firms’
average forecasts along with the forecast of the Reserve Bank of New Zealand (RBNZ) for the
aggregate inflation from the sixth wave of the survey, conducted in second quarter of 2016.
Despite a long history of low and stable inflation in New Zealand, a significant number
of firms forecast a high rate of inflation for the following year, with an average of 3.6%.
However, the distribution of forecasts for industry rate of inflation is both narrower and
more symmetric around a mean forecast of 0.8%, which is very close to the range of inflation
that New Zealand has been experiencing in the last few years.21

From the perspective of the standard models of inflation dynamics which relate the rate
of inflation to firms’ expectations of aggregate inflation, these high expectations of aggregate
inflation seem very puzzling. Despite these large inflation forecasts among firms, which are
consistently higher than the 2% target of the RBNZ in all waves of the survey, coupled with
the fact that there were no significant changes in the output gap of New Zealand in this
period, yearly inflation in New Zealand has been even lower than the target. Since the year
2012, yearly inflation has been averaging around 1%, with a high of 1.6% in the second
quarter of 2014 and a low of 0.1% in the third quarter of 2015.

This evidence is also consistent with managers’ subjective uncertainty of aggregate and
industry-level inflation. In the sixth wave of the survey, firms were asked to assign proba-

20Nowcast errors for industry inflation are measured as the distance between firms’ nowcast and the realized
inflation in their industry.

21At the time of the survey, second quarter of 2016, yearly inflation was 0.8 percent, and RBNZ’s forecast
for the following year was 1.5%.
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bilities to different outcomes regarding industry and aggregate yearly inflation.22 Table (3)
reports the standard deviation of managers’ reported distribution for both of these objects,
which I interpret as their subjective uncertainty. Firms are relatively less uncertain about
their industry inflation in the following year than the aggregate one. This relates well to the
prediction of the model in Proposition 3 that in the presence of high industry level strategic
complementarity firms should know more about their industry than the aggregate economy
as a direct implication of their strategic incentives in acquiring information.

3.3 Uncertainty about Inflation versus Number of Competitors

Proposition 1 predicts that knowledge about the aggregate price should be increasing in
the number of a firm’s competitors. This is a unique feature of the oligopolistic rational
inattention model and is a testable prediction. To test this prediction, I run the following
regression.

σπ
i = β0 + β1Ki + εi,

where σπ
i is firm i’s subjective uncertainty about the aggregate inflation, andKi is the number

of competitors that they report in their main product market. The model’s prediction
translates to the null hypothesis that β1 < 0. Panel (a) of Table (4) reports the result
of this regression, and shows that this is indeed the case. This result is also robust to
including firm controls such as firms’ age and employment as well as industry fixed effects.
The significance of this coefficient in explaining firms’ uncertainty about aggregates is an
observation that is not reconcilable neither with full information rational expectation models
nor any other macroeconomic model of information rigidity prior to this paper, and indicates
the importance of strategic incentives in how much firms pay attention to aggregate variables
in the economy.

For comparison, I also run a similar regression of firms’ uncertainty about their industry
prices on their number of competitors:

σπi
i = β3 + β4Ki + ε̃i,

where now σπi
i is the standard deviation of firm i’s reported distribution for their own in-

dustry. Panel (b) of Table (4) shows the result of and shows that they are also negatively
correlated, yet with a smaller magnitude. This is also consistent with the model. As the num-
ber of a firm’s competitors increase, firms become more certain about their price changes: in

22Firms were asked the following two questions: “Please assign probabilities (from 0-100) to the following
ranges of overall price changes in the economy/your industry over the next 12 months for New Zealand.”
The bins to which firms assigned probabilities were identical in both questions.
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larger industries mistakes wash out more effectively due to the law of large numbers, making
the average price change more predictable. The smaller magnitude of the coefficient on the
number of competitors, however, carries an important insight from the model. The same
force that makes the prices of a firms’ competitors more predictable, also discourages firms
from paying attention to their mistakes. To see this from the model, recall that

pj,−k = δq + vj,−k.

We know that as the number of a firm’s competitors goes up, their knowledge of the funda-
mental, q, also goes up, which is the result in Panel (a). However, this only happens because
firms shift their attention from vj,−k to q, meaning that the decrease in uncertainty about
the fundamental is accompanied by an increase in uncertainty about the mistakes of others.
Hence, the decrease in uncertainty about the fundamental with the number of competitors
should be lower in magnitude for industry prices than aggregate ones.

Panel (c) of Table (4) aims at capturing this effect by regressing the difference between
firms’ uncertainty about their industry relative to the aggregate inflation on the number of
their competitors. This difference is positively correlated with the number of firms’ competi-
tors, consistent with the prediction that firms become relatively more uncertain about their
industry price changes once the decline in uncertainty about the aggregates is extracted.

4 A Micro-founded Dynamic Model

This section extends the simple static model of Section 2 to a micro-founded dynamic gen-
eral equilibrium model, whose ultimate purpose is to quantitatively analyze the effects of
firms’ strategic incentives in propagation of monetary policy shocks to aggregate output and
inflation. All the derivations as well as the proofs for the propositions regarding the dynamic
model are included in Appendix B.

4.1 Households

There is a large variety of goods produced in the economy. In particular, the economy
consists of a large number of industries, j ∈ J ≡ {1, . . . , J}; and each industry consists of
K ≥ 2 firms that produce weakly substitutable goods. The household takes the nominal
prices of these goods as given and forms a demand over product of each firm in the economy.
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In particular, the aggregate time t consumption of the household is

Ct ≡
∏
j∈J

C
1
J
j,t, (3)

Cj,t ≡ Φ(Cj,1,t, . . . , Cj,K,t). (4)

Where Cj,t is the composite demand of household for the goods produced in industry j,
and Φ(.) : RK → R is a continuously differentiable aggregation function that is homogeneous
of degree 1, symmetric across its arguments, and such that Φ(1, . . . , 1) = K. Moreover, a
specific form for Φ(.), which I will use to provide intuition in this section, is a CES aggregator
with elasticity of substitution η > 1,

Φ̄(Cj,1,t, . . . , Cj,K,t) = K

(
K−1

∑
k∈K

C
η−1
η

j,k,t

) η
η−1

.

Equation (3) denotes that the aggregate consumption of the household is Cobb-Douglas in the
composite goods of industries. Also, household preferences over combining and consuming
goods within industries, captured by the form of Φ(.), is central in determining the degree
of within-industry strategic complementarity.23

Since the main purpose of this paper is to study the effects of rational inattention under
imperfect competition among firms, I assume that households are fully informed about prices
and wages.24

The representative household’s problem is

max
((Cj,k,t)(j,k)∈J×K ,Ct,Lt,Bt)∞t=0

Ef
0

∞∑
t=0

βt[log(Ct)− φLt] (5)

s.t.
∑

(j,k)∈J×K

Pj,k,tCj,k,t +Bt ≤ WtLt + (1 + it−1)Bt−1 +
∑

(j,k)∈J×K

Πj,k,t − Tax, ∀t ≥ 0

Ct =
∏
j∈J

Φ(Cj,1,t, . . . , Cj,K,t)
J−1

, ∀t ≥ 0.

where Ef
t [.] is the full information rational expectations operator at time t, Lt is the labor

supply of household, Bt is their demand for nominal bonds, Wt is the nominal wage, it is the
23The generality assumption on the form of function Φ(.) is mainly due to calibration purposes, as the

CES aggregator is too restrictive in matching the level of strategic complementarity observed in the data.
This generality assumption is not new to the literature of oligopolistic pricing in macroeconomic models.
See, for instance, Rotemberg and Woodford (1992).

24While this might not be a very realistic assumption, it is the standard approach in the literature as a
natural first step in separating the implications of rational inattention for households versus firms.

22



net nominal interest rate, Πj,k,t is the profits of firm j, k, and Tax is a constant lump sum
tax that is used by the government to finance a hiring subsidy for firms that eliminates any
long-run inefficiencies of imperfect competition.

I show in Appendix B that household’s optimal behavior implies the following demand
function for the product of firm j, k:

Cj,k,t = PtCtD(Pj,k,t;Pj,−k,t) (6)

where Pt is the price of the aggregate consumption bundle Ct, Pj,k,t is firm j, k’s price,
and Pj,−k,t is the vector of other firms’ prices in sector j. Moreover, the function D(.; .) is
homogeneous of degree −1, which in the case of CES aggregation reduces to

D̄(Pj,k,t, Pj,−k,t) =
P−η
j,k,t∑

l∈K P
1−η
j,l,t

.

Let Qt ≡ PtCt be the aggregate nominal demand for the economy. Then, the household’s
intertemporal Euler and labor supply equations are given by:

1 = β(1 + it)Ef
t [

Qt

Qt+1
] ,

Wt = φQt .

The log-utility implies that the intertemporal Euler equation simply relates the level of
nominal interest rate to the expected growth of the aggregate demand. This creates a natural
duality between formulating monetary policy either in terms of the nominal interest rates, or
specifying a law of motion for the aggregate demand, which is a well-known and frequently
used result in the literature. Moreover, the linear disutility in labor, which corresponds to
an infinite Frisch elasticity of labor supply, implies that the nominal wages are proportional
to the nominal demand.25

4.2 Firms

Firms take wages and their demand from the household side as given and at each period
set their prices based on their chosen information set up to that time; while committing to
produce the realized level of demand that their price induces. Since my main objective is
to examine the real effects of monetary policy through endogenous information acquisition

25The linear disutility in labor is a common assumption in the models of monetary non-neutrality (for
instance, see Golosov and Lucas Jr (2007)) which eliminates the source of across industry strategic com-
plementarity from the household side. I use this assumption to the same end in order to mainly focus on
micro-founding within industry strategic complementarities.
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of these firms, I abstract from other sources of monetary non-neutrality, and in particular
assume that prices are perfectly flexible. After setting their prices, firms then hire labor
from their own industry labor market and produce with a production function that is linear
in their labor demand; Yj,k,t = Lj,k,t. To eliminate the steady state inefficiencies of imperfect
competition, I assume that there is a constant subsidy in the economy for hiring a unit of
labor. Thus, firm j, k’s nominal profit at time t is given by

Πj,k,t = QtΠ(Pj,k,t, Pj,−k,t,Wt),

where
Π(Pj,k,t, Pj,−k,t,Wt) ≡ (Pj,k,t − (1− s̄)Wt)D(Pj,k,t, Pj,−k,t).

Here, Pj,k,t is firm j, k’s own price, and Pj,−k,t is the vector of other firms’ price in industry
j, Qt is the nominal aggregate demand, Wt is the nominal wage, and s̄ is the hiring subsidy
per unit of labor. We assume that there is a large number of industries in the economy so
that every firm’s effect on aggregate nominal demand is negligible.

Firms are rationally inattentive, and at each period t choose their information set opti-
mally from a set of available signals, St. In Appendix B, I carefully define these concepts
for the dynamic model. Here, I focus on characterizing the firms’ problem taking these
definitions as given.

A strategy for any firm is to choose a set of signals to observe over time (Sj,k,t ⊂ St)∞t=0 and
a pricing strategy that maps its information set to their optimal price at any given period,
Pj,k,t : S

t
j,k → R, where St

j,k = (Sj,k,τ )
t
τ=0 is the firm’s information set at time t. Accordingly,

given a strategy for all other firms in the economy, (St
j,l ⊂ St, Pj,l,t : S

t
j,l → R)∞t=0,j∈J,l 6=k, firm

j, k’s problem is to maximize the net present value of their life time profits given an initial
information set that they inherit at the time of maximization:

max
(Sj,k,t⊂St,Pj,k,t:S

t
j,k→R)∞t=0

E[
∞∑
t=0

βtQ0Π(Pj,k,t(S
t
j,k), Pj,−k,t(S

t
j,−k),Wt)|S−1

j,k ] (7)

s.t. I(Sj,k,t, (Wτ , Pl,m,τ (S
τ
l,m))

t
τ=0,(l,m)6=(j,k)|St−1

j,k ) ≤ κ, ∀t ≥ 0

S−1
j,k ∈ S−1 given.

where the constraint implies that the amount of information that a firm can add to its
information set about the state of the economy at a given time is bounded by κ bits.
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4.3 Monetary Policy and General Equilibrium

For simplicity, I assume that the monetary policy is set in terms of the growth of aggregate
demand. Following the literature26, I assume that this growth rate is an AR(1) process with
a persistence of ρ:

log(
Qt

Qt−1

) = ρ log(
Qt−1

Qt−2

) + ut. (8)

Definition 4. A general equilibrium for the economy is an allocation for the household,

ΩH ≡ {(Cj,k,t)(j,k)∈J×K , L
s
t , Bt}∞t=0,

a strategy profile for firms given an initial set of signals

ΩF ≡ {(Sjk,t ⊂ St, Pj,k,t, L
d
j,k.t, Yj,k,t)

∞
t=0}jk∈J×K ∪ {S−1

jk }jk∈J×K ,

and a set of prices {it, Pt,Wt}∞t=0 such that

1. Households: given prices and ΩF , the household’s allocation solves their problem as
specified in Equation (5)

2. Firms: given ΩH , and the implied labor supply and output demand curves, no firm
has an incentive to deviate from ΩF .

3. Monetary Policy: given ΩF and ΩH , {Qt ≡ PtCt}∞t=0 satisfies the monetary policy rule
specified in Equation (8).

4. Markets clear:

Goods Markets: Cj,k,t = Yj,k,t ,∀j, k ∈ J ×K,

Labor Markets :
∑

(j,k)∈J×K L
d
j,k,t = Ls

t .

4.4 Discussion of Incentives

The main challenge in characterizing the solution to the model lies in solving the firms’
problems. To do so, I derive the second order approximation of firms’ losses from sub-
optimal pricing following the rational inattention literature, and assume that they minimize
the expected net present value of these losses subject to the attention constraint.27 At any

26See, for instance, Maćkowiak and Wiederholt (2009); Mankiw and Reis (2002); Woodford (2003a).
27Before the second order approximation, I show profit maximization is equivalent to minimizing these

losses over time.

25



time, given a realization of Pj,−k,t and Qt, a firm’s profit loss from charging a price Pj,k,t is
given by

L(Pj,k,t, Pj,−k,t,Wt) ≡ max
x

Π(x, Pj,−k,t,Wt)− Π(Pj,k,t, Pj,−k,t,Wt)

= (pj,k,t − (1− α)wt − α
1

K − 1

∑
l 6=k

pj,l,t)
2.

Here, small letters denote percentage deviations from the steady state, and α is the de-
gree of industry level strategic complementarity which is now directly linked to the micro-
foundations of the model.

4.4.1 The Source of Strategic Complementarity

Contrary to models of monopolistic competition where constant elasticity of demand implies
a constant markup for firms over their marginal cost, an oligopolistic environment makes
these markups codependent. When a firm in an industry changes their price, in essence, it is
influencing the distribution of the demand across all firms in their industry. In other words,
the elasticity of demand for firms within an industry depends on the relative prices of all
those firms and is no longer a constant. A look at the best response of a firm to a particular
realization of Pj,−k,t and Qt manifests this codependence:

P ∗
jk,t = µ(P ∗

j,k,t, Pj,−k,t)︸ ︷︷ ︸
optimal markup

φ(1− s̄)Qt︸ ︷︷ ︸,
wage

where the optimal markup has the familiar expression in terms of the elasticity of a firm’s
demand, µ(P ∗

j,k,t, Pj,−k,t) ≡
εD(P ∗

j,k,t,Pj−k,t)

εD(P ∗
j,k,t,Pj−k,t)−1

, and εD(Pj,k,t, Pj,−k,t) ≡ − ∂Yj,k,t

∂Pj,k,t

Pj,k,t

Yj,k,t
is firm j, k’s

elasticity of demand with respect to its own price.28 In particular, in the case of the CES
aggregator for industry goods this elasticity is

εD(Pj,k,t, Pj,−k,t) = η − (η − 1)
P 1−η
j,k,t∑

l∈K P
1−η
j,l,t

. (9)

This expression clarifies the source of industry level strategic complementarity in this
economy. Firms lose profits if they do not adjust their markup due to changes in their
competitors’ prices. The expressions for strategic complementarity and markups in the

28The assumption that the aggregator function over industry goods, Φ(.), is homogeneous of degree one
implies that demand elasticities and markups are independent of the level of nominal prices and solely depend
on the relative prices of firms within an industry. In other words, µ(., .) and εD(., .) are homogeneous of
degree zero.
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steady state are:

α =
1− η−1

K
, µ =

η

η − 1
+

1

(η − 1)(K − 1)
.

The specific example of the CES aggregator shows that more competition in terms of the
number of firms not only decreases the average markups of firms, which is a very intuitive
implication of competition, but also decreases the strategic complementarity within indus-
tries. The reason for the latter is simple: as the number of competitors grows within an
industry, every firm becomes smaller in proportion to its competitors and equally incapable
of affecting their elasticity of demand by their price. In other words, when K → ∞ we are
in a state of monopolistic competition within industries, where the optimal markup of every
firm only depends on how differentiated their good is from those of its competitors.

These expressions for the CES aggregator also show why this particular aggregator is too
restrictive for a quantitative analysis of this model. Strategic complementarity under this
aggregator is bounded above by 0.5 because K ≥ 2, which is no way near the value of 0.9
that is observed in the data. To match this level of strategic complementarity quantitatively
while simultaneously keeping the qualitative properties of this aggregator, I consider the
following generalization. Suppose the household’s preferences are such that their elasticities
of demand for goods within industries are given by

εD(Pj,k,t;Pj,−k,t) = η − (η − 1)

(
P 1−η
j,k,t∑

k∈K P
1−η
j,k,t

)1+ξ (
P̄ 1−η∑
k∈K P̄

1−η

)
︸ ︷︷ ︸

= 1
K

−ξ

,

where the new parameter ξ now captures how the elasticity of demand changes with the
relative prices within the industry and allows us to match the elasticity of the markup
independently.29 Notice that this specification preserves the steady state properties of the
CES aggregator up to the elasticities of demand and average markups, and only changes the
elasticity of the elasticity of demand, which is related to the third order derivatives of the
function Φ(.). It embeds the CES aggregator when ξ = 0, and the two are the same function

29Appendix B derives the demand functions that imply such elasticites. While the closed form solution
for Φ(.) is not easy to derive, what we care about are these elasticities, and not the closed form of Φ(.) per
se. An alternative method to match a higher degree of super-elasticity than that of the CES aggregator is to
employ a more general aggregator as in Kimball (1995), a recent survey of whose applications is discussed
in Gopinath and Itskhoki (2011) and Klenow and Willis (2016). I derive the demand function of the firms
given a general form of such an aggregator in Appendix B, and discuss its implications for the degree of
strategic complementarity. I show that while the Kimball aggregator allows for calibrating α to the level
that is observed in the data, such a calibration leads to a counterintuitive result where the degree of strategic
complementarity is decreasing with the elasticity of substitution across industry goods, meaning that a firm’s
profit depends less on the prices of its competitors when their goods become more substitutable. I depart
from this aggregator by directly specifying the elasticity functions.
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for all values of ξ when K → ∞, which corresponds to to having a measure of firms within
industries.30

Proposition 4. There is strict industry level strategic complementarity in pricing, meaning
that α ∈ (0, 1), as long as a firm’s elasticity of demand is increasing in their price, which
corresponds to ξ > −1. Moreover, strategic complementarity is increasing in the elasticity
of substitution η, decreasing in the number of firms within industries, K, and converges to
zero as K → ∞. The expression for α is

α =
(1 + ξ)(1− η−1)

K + ξ(1− η−1)
.

The expression for α manifests how strategic complementarity is affected by both com-
petition and the substitutability of goods. As the number of competitors for a firm goes up
and their market share becomes smaller, their elasticity of demand loses its sensitivity to
the price of the firm relative to its competitors. In the limit when K → ∞, the firm takes
this elasticity as given and realizes that its relative price has no effect on the demand curve
of the industry in which they operate due to its small size. In this limit, the firm knows
that the only demand that they face is only due to the weak substitutability of their good
with respect to their competitors, and understand that their optimal price is just a constant
markup over their marginal cost, independent of what their competitors do.

The elasticity of substitution, however, has the opposite effect on strategic complementar-
ity. The higher is η, the more substitutable the firm’s product is with those of its competitors
implying that the firm would lose more profits if they do not match the optimal relative price
with their competitors. Accordingly, more substitutability translates into higher strategic
complementarity.

Finally, a larger value for the parameter ξ, which captures the sensitivity of the elasticity
of a firm’s demand to the relative prices in its industry, imply a larger degree of strategic
complementarity. This parameter now allows us to match the super-elasticity of a firm’s
demand independently from the its demand elasticity.

4.4.2 Incentives in Information Acquisition

Appendix B thoroughly discusses my approach for solving the rational inattention problem
of the firms. Here I discuss the dynamic and strategic incentives of firms in acquiring
information.

30Notice that these elasticities are also well-defined in the sense that εD(Pj,k,t, Pj,−k,t) ≥ 1 in a neighber-
hood around any symmetric point.
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The specification of a firm’s problem shows how their information set becomes the source
of a dynamic trade-off. At every period, firms understand that the information that they
choose to see will not only inform them about their contemporaneous optimal price, but also
about their future payoffs. The following re-arrangement of a firm’s problem manifests this
trade-off:

Vt(S
t−1
j,k ) = max

Sj,k,t⊂St,Pj,k,t(S
t
j,k)

E[Q0Π(Pj,k,t(S
t
j,k), Pj,−k,t(S

t
j,−k), φQt)︸ ︷︷ ︸

contemporaneous payoff of St
j,k

+ βVt+1(S
t
j,k)︸ ︷︷ ︸

continuation value of St
j,k

|St−1
j,k ]

s.t. I(Sj,k,t, (Qτ , Pl,m,τ (S
τ
l,m))

t
τ=0,l,m6=j,k|St−1

j,k ) ≤ κ,

St
j,k = St−1

j,k ∪ {Sj,k,t}︸ ︷︷ ︸
evolution of the information set

.

The dynamic incentives of a rationally inattentive agent is the main focus of Afrouzi and
Yang (2016).31 At every point in time the agent is choosing an information structure that
serves two purposes: first, it gives them information about their optimal price at that time,
which is the object that they want to learn about and match, and second, it forms a prior
over their optimal prices in future periods. This implies that forward looking agents smooth
out their mistakes over time by creating excess serial correlation in their information set.
Intuitively, the manager of a firm wants to be informed of all their current and future optimal
prices at a given point in time to the degree that it is feasible. Smoothing out mistakes means
that the manager prefers an information set that compensates their current mistakes by ones
in the future that move in the opposite direction. This way, for instance even if they make a
mistake at a given time and charge a sub-optimally high price, their information set would
help them to compensate for that by charging lower prices in the future.

The core difference between this paper and Afrouzi and Yang (2016) is the inclusion of
the strategic trade-off that imperfectly competitive firms face in allocating their attention.
When firms face competitors who make mistakes, they find it optimal to pay attention to
those mistakes in addition to learning the fundamental. Their limited attention defines a
possibility frontier for this attention allocation: an agent who wants to learn more about the
fundamental is bound to learn less about the mistakes of its opponents and vice versa. In
this sense, the objective in this paper is to find the optimal allocation of attention that takes
place in the equilibrium. In particular, in an equilibrium where agents do pay attention to
mistakes of one another, their mistakes become correlated. When the competitors of a firm
in an industry charge a sub-optimally low price by mistake, the firm finds it optimal to pay

31We show in Afrouzi and Yang (2016) when such a problem is indeed a contraction mapping so that a
unique V (.) exists. Here we take that result as given.
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attention to those mistakes and incorporate them in its price.
To better understand the separate roles that these strategic incentives of a firm plays

in their price-setting behavior from its dynamic incentives, in this paper I shut down the
dynamic incentives of firms completely by assuming that in their problem β = 0. The
following Proposition derives the form of the optimal signals.

Proposition 5. Given a strategy profile for all other firms in the economy, a particular firm
prefers to see only one signal at any given time. Moreover, the optimal signal of firm j, k at
time t is

Sj,k,t = (1− α)qt + αpj,−k,t(S
t
j,−k) + ej,k,t

where qt is the nominal aggregate demand, pj,−k,t is the average price of j, k’s competitors,
and ej,k,t is the rational inattention error of the firm.

The closed form for the optimal signal in this case shows how firms incorporate the mis-
takes of their competitors into their information sets. To see this given the strategy of others,
decompose their average price at time t to its projection on the history of fundamentals and
the part that is orthogonal to them

pj,−k,t(S
t
j,−k) = pj,−k,t(Sj,−k,t)|q︸ ︷︷ ︸

projection on realizations of all qt−τ ’s

+ vj,−k,t︸ ︷︷ ︸
orthgonal to all realizations of qt−τ ’s

.

This is analogous to the decomposition that I did in the static model. It separates the
average prices of others to a part that is linearly projected on current and past realizations
of the fundamental, and a part that is orthogonal to it, denoted by vj,−k,t. Similar to before,
we call these the mistakes of a firm’s competitors in pricing. Notice that the finiteness of the
number of competitors immediately implies that var(vj,−k,t) 6= 0. Given this decomposition,
the optimal signal of the firm is

Sj,k,t =

predictive of industry price changes︷ ︸︸ ︷
(1− α)qt + αpj,−k,t(Sj,−k,t)|q︸ ︷︷ ︸

predictive of qt−τ ’s

+ αvj,−k,t + ej,k,t.

This decomposition of the signal illustrates the main departure of this paper from models
that assume a measure of firms. Since var(vj,−k,t) 6= 0, the signal of a firm co-varies more
with the price changes of its competitors than with the fundamentals of the economy.32 When

32This in itself does not mean that the signal is more predictive of a firm’s competitors’ prices than the
aggregate economy since predictive power of a signal also depends on the volatility of the variable that is
being predicted, and industry prices are more volatile than the aggregate economy. However, as we showed
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there is a measure of firms, however, the term αvj,−k,t disappears and these two covariances
converge to one another. Intuitively, going back to the result in Proposition 3, this implies
that when α is large enough, and there are a finite number of firms in industries, firms are
more informed about their own industry prices than the fundamentals of the economy. In
the next subsection, I show how for large α’s, it is these expectations that mainly drive the
inflation in the economy.

Moreover, given the joint stochastic process of these signals, the best pricing response of
a firm reduces to a Kalman filtering problem, which then implies that

pj,k,t(S
t
j,k,t) =

∞∑
τ=0

δτSj,k,t−τ ,

where (δτ )
∞
τ=0 is a summable sequence.33 It is worth mentioning that these pricing strategies

are not necessarily time independent, as the initial signal structure of firms determines their
initial prior about the state of the economy, and affects their prices for periods to come.
To get around this issue, in solving the model, I assume that the initial signal structure is
such that these firms’ best pricing responses are stationary. This is equivalent to assuming
that the game starts with an information structure that corresponds to the steady state of
firms’ attention allocation problem. Intuitively, these δτ ’s represent the confidence of the
agent on how informative each element of her information set is about the optimal price
that she would like to charge at time t. If a firms did not make mistakes, then the only
signal that would matter for it at time t would be Sj,k,t = (1−α)qt +αpj,−k,t(S

t
j,−k), so that

δ0 = 1, δτ = 0,∀τ ≥ 1. However, making mistakes over time reduces the informativeness of a
firm’s signals and it finds it optimal to put some weight on their previous signals in setting
their prices. Therefore, the more uninformative the signals, the more persistent the response
of firm’s prices would be to a shock over time.

Given the result in this Proposition 5, solving the model reduces to finding the following
fixed point: a symmetric stationary equilibrium is a stationary joint stochastic process for
signals of firms, and a pricing strategy (δ∗τ )

∞
τ=0, such that for any firm whose competitors set

their prices according to this sequence, the firm finds it optimal to use (δ∗τ )
∞
τ=0 for setting

its prices. I solve this problem computationally by truncating the pricing strategy such that
|δ∗τ | = 0,∀τ > T , where T is large enough to verify that the stationary effects of the shock
disappear before T periods, up to a computational tolerance.34 Given the truncated pricing

in Proposition 3, once α gets large enough, this difference is large enough so that firms end up with more
information about their own industry price changes than the fundamental.

33In general, these pricing strategies are time dependent; however, I will focus on an initial signal structure
that supports a stationary equilibrium. For details, see Appendix B.

34 I justify this method by showing that in equilibrium, (δ∗τ )
∞
τ=0 is summable. Intuitively, firms with
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strategy, I find the implied stationary joint stochastic process of signals for firms, characterize
the optimal pricing strategy given this distribution, and iterate until convergence.

4.4.3 Inflation Dynamics and the Phillips Curve

The following Proposition derives the Phillips curve of this economy.

Proposition 6. The Phillips curve of this economy is

πt = (1− α)Ej,k
t−1[∆qt] + αEj,k

t−1[πj,−k,t] + (1− α)(22κ − 1)yt,

where Ej,k
t−1[∆qt] is the average expected growth of nominal demand at t−1, which is the sum

of inflation and output growth, ∆qt = πt+∆yt, Ej,k
t−1[πj,−k,t] is the average expectation across

firms of their competitors’ price changes, and yt is the output gap.

The Phillips curve illustrates the main insight of this paper. In economies with high
industry level strategic complementarity (α close to 1), it is firms’ average expectation of their
own-industry price changes that drives aggregate inflation rather than their expectations of
the growth in aggregate demand.35 Moreover, Proposition 5 shows that with endogenous
information acquisition, a larger α also implies that firms learn more about the prices of
their competitors relative to the aggregate demand; an insight that is comparable with
Proposition 3 in the static model. Therefore, when α is large, not only is inflation driven
more by firms’ expectations of their own industry price changes, but also firms’ expectations
are formed under information structures that are more informative about their own industry
price changes.

Additionally, the slope of the Phillips curve shows how these strategic complementarities,
as well as the capacity of processing information, affect monetary non-neutrality in this
economy. Higher capacity of processing information makes the Phillips curve steeper, such
that in the limit when κ → ∞, the Phillips curve is vertical. When firms have infinite
attention, their estimates of the fundamental as well as their competitors prices are also
infinitely precise. Firms immediately realize changes in the fundamental and react to it

positive capacity of processing information do not use signals that only inform them about a distant past of
the economy.

35For comparison, we show in Afrouzi and Yang (2016) that in an economy with a measure of firms the
Phillips curve is in terms of the firms’ expectations of the aggregate inflation: πt = (1 − α̃)Et−1[∆qt] +
α̃Et−1[πt] + (1 − α̃)(22κ − 1)yt, where α̃ is the degree of across industry strategic complementarity. This is
also comparable to a Phillips curve with sticky information: πt = (1−α̃)Et−1[∆qt]+α̃Et−1[πt]+(1−α̃) λ̃

1−λ̃
yt,

where λ̃ is the fraction of firms that update their information in a given period. Notice that contrary to the
result in this paper, in both these Phillips curve inflation is directly related to firms’ average expectations
of aggregate inflation.
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under the common knowledge that every other firm is also doing so, which leads to complete
monetary neutrality in the economy.

4.5 Calibration

Recall that the rational inattention problem of an industry is characterized by the following
parameters: capacity of processing information for every firm, λ = 1 − 2−2κ ∈ [0, 1); the
number of firms in the industry, K; and the degree of strategic complementarity α. Among
these, the first two are deep parameters of the model; but α is pinned down as a function of
ξ, η and K by the expression in Proposition 4.

Table (5) shows the calibrated values of these parameters. I calibrate the elasticity of
substitution within industry goods, η, to a value of 6 to match the average markup of
30%, reported by the firms in the survey. A value of 6 for this parameter is also in line
with the usual calibration in the macroeconomics literature. Moreover, I set the number of
competitors in industries to a baseline value of 5, the average value reported by the firms
weighted by their market share in the sample. Finally, I calibrate the curvature of the
elasticity of demand, ξ, to 40 in order to match an average strategic complementarity of 0.9
as observed in the data. In addition, I calibrate the persistence of the growth in nominal
demand, ρ, to the persistence of the nominal GDP growth in New Zealand, 0.5.36

Calibrating the capacity of processing information has been a challenge in the rational
inattention literature due to a lack of suitable data so far. However, the New Zealand survey
allows me to calibrate this parameter by directly measuring the quality of firms’ information
about aggregate inflation. To do so, I exploit the fact that λ is Kalman gain of firms in
predicting their optimal prices, meaning that it is the weight that they put on their new
information in predicting their optimal prices. I follow Coibion and Gorodnichenko (2015)
to measure the degree of information rigidity in forecasts of aggregate inflation from the
data, and then taking the calibration of other parameters as given I find λ = 0.7 generates
the same degree of rigidity in firms’ forecasts of aggregate inflation in the model.

A value of 0.7 is relatively large and represents a small degree of information rigidity,
especially compared to the current models of noisy information, which usually assume cali-
brations that imply lower Kalman gains. The empirical literature has also estimated values
that are less than 0.7. For instance, Coibion and Gorodnichenko (2015) estimate a Kalman
gain of 0.5. This model, however, does not need a low value for λ to match the high degree
of aggregate information rigidity due to its endogenous propagation mechanism. Despite a
high λ at the micro level, firms spend a large portion of their attention tracking the mistakes

36I restrict the time series to post 1991 data to be consistent with New Zealand’s shift in monetary policy
towards inflation targeting in that time frame.
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of their competitors and the portion that is allocated to tracking aggregate fundamentals is
therefore significantly lower. Simply put, firms devote a lot of attention to tracking their
optimal prices, even more than what professional forecasters do for inflation. However, since
they do not directly care about aggregate inflation, their forecasts manifests a high degree
of rigidity.

5 Simulations and Counterfactuals

The main driving force of my analysis so far has been the effect of a firm’s number of com-
petitors on their information acquisition incentives. In this section, I further this analysis by
investigating how competition affects the propagation of monetary policy shocks to inflation
and output through these incentives. Figure (6) shows the impulse responses of inflation
and output to a one percent shock to the growth of nominal demand. The intuition behind
non-neutrality of money is similar to the static case with the major difference being the
persistence of real effects in the dynamic model. When the shock hits the economy, firms do
not directly observe the shock itself, but instead see a signal. From the perspective of the
firms, however, a large realization for their signal could also be due to a rational inattention
error, as a result of which they react to the news reluctantly and increase their prices by less
than the increase in nominal demand, leading to higher production. However, in contrast to
the static model, which is equivalent to the dynamic model when qt is i.i.d. over time, the
effect of the shock persists over time because firms know that a shock to the fundamental
continues affecting their optimal prices in later periods. Overtime, as firms keep observing
more signals, they become more certain of both the source of the increase in their signals
and the magnitude of its effect on their optimal price. After enough time passes, firms adjust
their prices completely so that the real effects of the shock disappears.

The figure also shows how higher levels of competition affect the non-neutrality of money
in a very significant fashion, such that doubling competition from its baseline calibration
decreases the half-life of output response to the shock by 40% and reduces its on impact
response by 15%. The effects on the response of inflation are similarly profound. A two-fold
increase in the number of competitors at the micro-level reduces the half-life of inflation
response by 25% and decreases its on impact response by 33%. These large quantitative
effects of competition reflect two distinct channels through which competition alters economic
outcomes. The first channel is the attention reallocation effect that competition has in the
optimal attention allocation of firms given a fixed degree of strategic complementarity. As
the number of competitors increase and the law of large numbers start to hold for the
mistakes of a firm’s competitors, the firm worries less about those mistakes and shifts their
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attention to tracking the fundamental shocks. Moreover, the dependence of α to K implies
that the number of firms in industries also changes the equilibrium distribution of prices
through a second channel, to which I will refer as the strategic complementarity effect.
Higher competition alters the super-elasticities of firms’ demand function and eliminates the
dependence of their profits to the prices of other firms.

While these two channels affect the impulse response functions of the model in the same
direction, from an economic perspective they are different in nature. The reallocation channel
is novel to the literature and characterizes an effect that has been absent in previous models
due to the assumption that every firm interacts with a measure of others, which in this
paper correspond to the case where K → ∞. The strategic complementarity channel is also
new in the sense that it micro-founds the dependence of strategic complementarity to the
number of competitors within every industry, but the effects of different levels of strategic
complementarity on the propagation of monetary policy shocks in models of information
rigidity has already been pointed out in the literature by seminal work of Mankiw and Reis
(2002); Woodford (2003a); Maćkowiak and Wiederholt (2009). Therefore, the contribution of
this paper in pointing out this later channel is mainly linking the strategic complementarity
to the number of firms by micro-founding it. For the rest of this section I focus on both
these channels and analyze the impulse responses of the model for each of them separately.

5.1 The Reallocation Effects of Competition

For several values of K, Figure (7) shows the impulse responses of inflation and output in
the economy to a one percent shock to the growth of aggregate demand, fixing the value
of strategic complementarity to its baseline calibration value of 0.9. By fixing the value of
strategic complementarity, here I have shut down the strategic complementarity channel and
the impulse responses represent only the reallocation effects of competition. Again, higher
number of firms within industries corresponds to a less persistent output response in the
economy, such that doubling competition from its baseline value decreases the half life of
output by 18%, a little less than half of the 40% reduction in half-life under overall effects.

The reason for this relates to equilibrium incentives of firm in allocating their attention
within the industries. When the economy is less competitive – K is small – firms are more
worried about the mistakes of their competitors and allocate a high amount of attention to
tracking those mistakes. Since mistakes are orthogonal to the elements of the fundamental,
when all of the firms in the economy spend more resources to learning the mistakes of
their competitors, they know less about the fundamental. The incentive of learning others’
mistakes diminishes with the size of industries. When every firm in the economy competes

35



with a large number of competitors, it is confident that the mistakes of others wash out,
and allocates more attention to learning the fundamental of the economy. As a result, in a
more competitive economy, firms pay more attention to the fundamental and learn it more
quickly than firms in a less competitive economy. This manifests itself in two dimensions:
when firms pay less attention to the fundamental over time by paying more attention to
the mistakes of their competitor, it takes them more time to learn the fundamental through
their signals. Thus, it takes longer for such firms to learn the shock and perfectly adjust
their prices with respect to it, which then directly leads to a higher persistent response of
output to the shock.

It is also worth mentioning that the effects of competition through this channel are
inherent to the dynamic model and are completely absent in the static models of coordination.
Recall from Section 2 that the average response of output in the static model is independent
of K and is equal to λ−αλ

1−αλ
. This result carries on to the dynamic model in terms of a K-

independent on-impact response of output and inflation to the shock. At first glance to
the reader, this might seem contradictory with the claim that more competitive industries
respond more confidently to monetary policy shocks and manifest lower monetary non-
neutrality.

This calls for a more detailed discussion of the firms’ incentives within industries. Notice
that firms not only respond to fundamental shocks in the economy, but also to the endoge-
nously driven mistakes of their rivals. At any point in time, when a firm receives a signal
with a high value, three possibilities occur to them: this may simply be a mistake that has
occurred to them and only them, or it may be a common mistake across their industry, or it
might be the case that a shock to the fundamental has happened in the economy. The key is
that it is only in the first case that a firm would be unwilling to respond to this signal, while
they would optimally want to respond to either of the later cases. While less competitive
industries receive continuously less informative signals of the fundamental, their signals are
instead more informative of the mistakes of others. In other words, it is always true that
a firm in a less competitive industry, upon receiving any of its signals, is less sure of the
changes in the fundamental. Such a firm, however, is more sure of the fact that it might be
a common mistake in their industry, to which they would also respond by increasing their
price. As a result, in the context of an impulse response function, when a firm sees a high
signal after a long time of seeing zero signals, the on impact response of the firm will be
independent of how competitive their industry is: independent of whether it is due to a
shock to fundamental or a common mistakes, their response is to increase their price.

It is only over time that a firm is able to differentiate between these two cases due to
the fact that shocks to the fundamental are more persistent than the endogenously driven
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mistakes.37 When a firm keeps getting high signals over time, they assign more probability
to the case that the shock was to the fundamental because if it was a common mistake,
it should have had disappeared more quickly from their signals. The following Proposition
formally shows that on impact response of output and inflation to a shock is independent of
the degree of the competitiveness within industries.

Proposition 7. When β = 0, the on impact response of output and inflation in the economy
is independent of the reallocation effects of imperfect competition and is always given by

π0 =
1−α
1−λα

λ ,

y0 =
1−λ
1−λα

.

This result also points toward a fundamental difference between this model and one
that incorporates a measure of firms. It is a feature of rational inattention models that
a lower capacity of processing information or a higher degree of strategic complementarity
increases the persistence of output response.38 However, in those models, such effects are
always accompanied by a lower on impact response of output. In other words, from an
estimation or calibration perspective, those models introduce a trade-off between matching
the on impact response of output and matching the persistence of that response over time.
The model presented here, however, introduces a new micro-founded degree of freedom for
separately matching these two moments.

5.2 The Strategic Complementarity Channel

For several values of K, Figure (8) shows the impulse responses of inflation and output in
the economy to a one percent shock to the growth of aggregate demand only in response to
the strategic complementarity channel. I shut down the reallocation channel by assuming
that there are infinite firms in every industry, but exogenously impose a level of strategic
complementarity that is implied by different levels of K.39 As pointed out in the previ-
ous literature, higher strategic complementarity significantly changes the non-neutrality of
money, such that doubling competition from its baseline value reduces the half-life of output
by 22%, a little more than half of the overall effects in persistence. Moreover, it accounts for
all of the decline in on-impact response of output as implied by Proposition 7.

37A shock to the fundamental will change the level of a firm’s price forever as the fundamental has a unit
root. However, mistakes vanish over time because firms have positive capacity. Hence, mistakes are less
persistent than fundamental shocks.

38See, for instance, Afrouzi and Yang (2016).
39The implied values of strategic complementarity for K = 5, 10 and K → ∞ are 0.9, 0.8 and 0, respectively.
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To discuss the intuition behind this effect recall from Proposition 5 that the optimal
signal of the firm is a combination of current fundamental and the average prices of its
competitors. Although we have shut down the reallocation affects though assuming that a
firm’s competitors do not make mistakes, the optimal signals of firms still hold this form.
Since firms are still rationally inattentive, their optimal pricing strategy puts some weight on
previous signals. This means that when there is higher degrees of strategic complementarity,
instead of tracking the current value of the fundamental, the firm’s signal puts a lot of
weight on previous shocks to the fundamental because their competitors prices are affected
by those previous shocks, which makes their signal less informative of the contemporaneous
shock. As a result, when the firms see a high-valued signal in an economy with a higher
degree of strategic complementarity, they are less confident that the signal is reflecting a
contemporaneous shock to the fundamental, and they respond more reluctantly and less
aggressively than what they would under a lower degree of strategic complementarity, which
explains the change in the on-impact response of output for different values of α.

The intuition behind the change in the persistence of the responses is similar. When
signals continuously put less weight on contemporaneous shocks, it takes firms longer to
become fully informed about a shock, and therefore longer for the effects of the shock to
disappear.

6 Concluding Remarks

“[the] complication is that we do not know whose expectations ‘matter’ for deter-
mining inflation.” Janet Yellen(2015)

Managing aggregate inflation expectations has been at the center of monetary policy makers’
attention not only for controlling inflation but also as a potential instrument after the onset of
the zero lower bound during the Great Recession. However, the expectations of price setters
from aggregate inflation are highly biased and volatile in countries that have had low and
stable inflation for decades, which goes against the close relationship that baseline monetary
models predict between the two. Not only do these unanchored inflation expectations pose a
serious challenge in reconciling standard models with the empirical evidence, but also render
the unconventional monetary policies that aim on managing them ineffective.

In this paper, I develop a model to address this puzzle and show that what matters mainly
for price setters is their expectations of their own industry inflation rather than aggregate
inflation. Managers of firms do not directly care about aggregate inflation and are mainly
concerned with how their own competitors change their prices in the face of a shock. In
fact, when allowed to choose their information structure, managers are willing to sacrifice
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information about the aggregate economy by shifting their attention towards learning their
competitors’ prices. As a result, they are more informed about their optimal prices than
what their expectations of aggregate inflation would suggest.

Moreover, I show that these endogenous informational incentives have significant impli-
cations for the propagation of monetary policy shocks. A two-fold increase in the number of
competitors that a firm faces at the micro level decreases the half-life of output and inflation
responses to a monetary policy shock by 40 and 25 percents respectively. The on impact
effects are similarly large. Doubling the number of competitors for every firm reduces the
on-impact response of output and inflation by 15 and 33 percents respectively.

The results of this paper provide valuable insights for policy makers. On the one hand,
the fact that aggregate inflation is not the primary concern of firms implies that unanchored
inflation expectations are not necessarily a problem for monetary policy. After all, the main
objective of inflation targeting is to stabilize inflation, and in doing so, it eliminates it as a
concern for economic agents. Therefore, the fact that firms do not have to track it closely
when it is low and stable is in itself a success for monetary policy. On the other hand,
this also implies that managing expectations of aggregate inflation is neither an objective
nor necessarily a powerful instrument for monetary policy. These expectations are relatively
unimportant for firms and do not have much impact on their pricing decisions.

This result does not necessarily rule out policies that target managing expectations, but
rather provides a new perspective on how those policies should be framed. An important
takeaway from this paper is that for such a policy to be successful, it has to communicate the
course of monetary policy to price setters but also convince them that their competitors are
also on board with these changes. In other words, framing policy in terms of the aggregate
variables will not gain as much attention and response from firms as it would if the news
about the policy were to reach them in terms of how their industries would be affected. How
policy can achieve these ends remains a question that deserves more investigation. However,
in light of the results in this paper, the future work needs to focus more on how the policy
would affect firms’ expectations of their own industry price changes rather than the aggregate
ones.
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7 Figures
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Figure 1: The figure symbolically illustrates the optimal correlations that a firm chooses
among their signal, the fundamental q, and the mistakes of their competitors, v.
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Figure 2: The figure depicts the real effects of a shock to a nominal demand within the
static model. The magnitude of the real effect decreases with the capacity of processing
information and increases with the degree of strategic complementarity.
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Actual Inflation=0.8

Average Industry Nowcast=0.95

Average Aggregate Nowcast=4.3
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Figure 3: The figure shows the distributions of firms’ nowcasts for both aggregate and
industry level inflation. The dashed vertical lines show the means of these distributions.
The solid vertical line shows the realized inflation that firms were nowcasting.
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Figure 4: The figure shows the distributions of the size of firms’ nowcast errors for aggregate
and own-industry inflation. The dashed vertical lines show the means of these distributions.
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RBNZ Forecast: 1.5

Average Industry Forecast: 0.8

Average Aggregate Forecast: 3.6
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Figure 5: The figure shows the distribution of firms’ forecast for aggregate and own-industry
inflation. The dashed vertical lines denote the means of these distributions. The solid vertical
line shows the RBNZ’s forecast of aggregate inflation for the same horizon that firms were
forecasting.
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Figure 6: The figure shows impulse response functions of output and inflation to a 1 percent
shock to the growth of aggregate demand, for overall effects of different values of K. More
competitive economies respond more strongly and more quickly to the shock. See Section 5
for a discussion of these results.
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Figure 7: The figure shows impulse response functions of output and inflation to a 1 percent
shock to the growth of aggregate demand, for reallocation effects of different values of K.
More competitive economies respond more strongly and more quickly to the shock. See
Section 5 for a discussion of these results.
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Figure 8: The figure shows impulse response functions of output and inflation to a 1 percent
shock to the growth of aggregate demand, for strategic complementarity effects of different
values of K. More competitive economies respond more strongly and more quickly to the
shock. See Section 5 for a discussion of these results.
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8 Tables

Table 1: Summary Statistics for Number of Competitors and Strategic Complementarity

Number of Strategic
competitorsa complementarityb

Observ- Weighted Weighted
-ations Mean mean Mean mean

(Std. Dev.) (Std. Dev.)
Industry (1) (2) (3) (4) (5)
Construction and Transportation 289 6.8 4.6 0.93 0.93

(4.9) (0.34)
Manufacturing 715 8.2 4.9 0.87 0.96

(6.4) (0.37)
Professional Financial Services 617 8.6 5.0 0.93 0.92

(6.5) (0.28)
Trade 419 9.0 4.7 0.90 0.91

(6.3) (0.32)
Total 2040 8.2 4.8 0.91 0.94

(6.0) (0.33)

a. Column (2) reports the average number of competitors along with standard deviations. Column
(3) reports the average number of competitors weighted by firms’ share of total production in the
sample.
b. Column (4) reports the average strategic complementarity along with standard deviations. Col-
umn (4) reports the average strategic complementarity weighted by firms’ share of total production
in the sample.
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Table 2: Size of Firms’ Nowcast Errors
Size of

nowcast errorsa

Observations Industry inflation Aggregate inflation
Industry (1) (2) (3)
Construction and Transportation 52 0.75 3.95

(0.54) (1.95)
Manufacturing 363 1.43 2.55

(1.72) (2.04)
Professional Financial Services 352 1.51 4.23

(1.59) (1.73)
Trade 302 0.63 2.31

(0.90) (1.93)
Total 1,069 1.20 3.11

(1.49) (2.09)

The table reports the size of firms’ nowcast errors in perceiving aggregate inflation versus industry
inflation for the 12 months ending in December 2014.

Table 3: Subjective Uncertainty in Forecasts of Firms

Subjective uncertainty (std. dev.) in
forecastsa

Observations Industry inflation Aggregate inflation
Industry (1) (2) (3)
Construction and Transportation 289 0.99 1.17

(0.87) (0.76)
Manufacturing 715 0.83 1.01

(0.60) (0.65)
Professional Financial Services 617 0.81 1.01

(0.61) (0.71)
Trade 419 0.85 1.02

(0.63) (0.71)
Total 2,040 0.86 1.04

(0.66) (0.70)

The table reports standard deviations of firms’ reported distribution for their forecasts of industry
and aggregate inflation. Forecasts were for yearly inflation for the 12 months ending in July 2017.
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Table 4: Subjective uncertainty of firms given their number of competitors.

Subjective uncertainty about
Industry inflation rel.

Aggregate inflationa Industry inflationb to aggregate inflationc

firm characteristics (1) (2) (3) (4) (5) (6)

Number -0.021*** -0.024*** -0.010*** -0.007*** 0.012*** 0.017***
of competitors (0.003) (0.003) (0.002) (0.002) (0.003) (0.004)

Firm controls and
No Yes No Yes No Yes

industry fixed effects
Observations 2,040 1,910 2,040 1,910 2,039 1,909
R-squared 0.036 0.050 0.009 0.020 0.007 0.017
Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

The table reports the result of regressing the standard deviation of firms’ reported distribution for
their forecast of aggregate inflation (a), and industry price change (b) on number of competitors
and a set of firm controls. Columns (5) and (6) report the results of regressing the difference of the
two standard deviations on the number of competitors.

Table 5: Calibration

Parameter Description Value Moment Matched

λ Capacity of processing information 0.7 Persistence of now-cast errors

K Number of firms within industries 5 Average Number of Competitors

η Elasticity of substitution within industries 6 Average Markup

ξ Curvature of the elasticity of demand 40 Average strategic complementarity

ρ Persistence of the growth of nominal demand 0.5 Nominal GDP growth in NZ

The table reports the calibrated values of the parameters for the dynamic model of Section 4.
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Appendix

A Static Beauty Contests with Finite Players

This section formalizes the static game in Section 2. The Appendix is organized as follows. I
start by specifying the Shannon mutual information function in Subsection A.1. Subsection
A.2 defines the concept of richness for a set of available information, and characterizes
such a set. The main idea behind having a rich set of available information is to endow
firms with the freedom of choosing their ideal signals given their capacity. Following this,
Subsection A.3 proves the optimality of linear pricing strategies given Gaussian signals, and
Subsection A.4 proves that when the set of available signals is rich all firms prefer to see
a single signal. Subsection A.5 shows that any equilibrium has an equivalent in terms of
the joint distribution it implies for prices among the strategies in which all firms observe
a single signal, and derives the conditions that such signals should satisfy. Subsection A.6
shows that the equilibrium is unique given this equivalence relationship. Subsection A.7
derives an intuitive reinterpretation of a firm’s attention problem that is discussed in Section
2. Subsection A.8 contains the proofs of Propositions 1, 2, and 3 as well as the proof for
Corollary 1.

A.1 Shannon’s Mutual Information

In information theory a mutual information function is a function that measures the amount
of information that two random variables reveal about one another. In this paper following
the rational inattention literature, I use Shannon’s mutual information function for the
attention constraint of the firms, which is defined as the reduction in entropy that the firm
experiences given its signal.40 In case of Gaussian variables, this function takes a simple and

intuitive form. Let (X,Y ) ∼ N (µ,

[
ΣX ΣX,Y

ΣY,X ΣY

]
). Then, the mutual information between

X and Y is given by

I(X;Y ) =
1

2
log2(

det(ΣX)

det(ΣX|Y )
), (10)

where ΣX|Y = ΣX − ΣX,YΣ
−1
Y ΣY,X is the variance of X conditional on Y . Intuitively, the

mutual information is bigger if the Y reveals more information about X, leading to a smaller
det(ΣX|Y ). In the other extreme case where X ⊥ Y , then ΣX|Y = ΣX and I(X;Y ) = 0,
meaning that if X is independent of Y , then observing Y does not change the posterior of

40In his seminal paper Shannon (1948) showed that under certain axioms there is a unique entropy function.
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an agent about X and therefore reveals no information about X.
A result from information theory that I will use for proving the optimality of single

signals is the data processing inequality. The following lemma proves a weak version of this
inequality for completeness.

Lemma 1. Let X,Y and Z be three random variables such that X ⊥ Z|Y .41 Then,

I(X;Y ) ≥ I(X;Z).

Proof. By the chain rule for mutual information42

I(X; (Y, Z)) = I(X;Y ) + I(X;Z|Y ) = I(X;Z) + I(X;Y |Z).

Notice that since X ⊥ Z|Y , then I(X;Z|Y ) = 0. Thus,

I(X;Y ) = I(X;Z) + I(X;Y |Z)︸ ︷︷ ︸
≥0

≥ I(X;Z).

A.2 A Rich Set of Available Information

Definition. Let S be a set of Gaussian signals. We say S is rich if for any mean-zero possibly
multivariate Gaussian distribution G, there is a vector of signals in S that are distributed
according to G.

To specify a rich information structure, suppose in addition to q ∼ N (0, 1) there are
countably many independent sources of randomness in the economy, meaning that there is
a set

B ≡ {q, e1, e2, . . . }

such that ∀i ∈ N, ei ∼ N (0, 1), ei ⊥ q and ∀{i, j} ⊂ N, j 6= i, ej ⊥ ei. Let S be the set of all
finite linear combinations of the elements of B with coefficients in R:

S = {a0q +
N∑
i=1

aieσ(i), N ∈ N, (ai)Ni=0 ⊂ RN+1, (σ(i))Ni=1 ⊂ N}.

We let S denote the set of all available signals in the economy.
41This forms a Markov chain: X → Y → Z.
42For a formal definition of the chain rule see Cover and Thomas (2012).
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Lemma 2. S is rich.

Proof. Suppose G is a mean-zero Gaussian distribution. Thus, G = N (0,Σ), where Σ ∈
RN×N is a positive semi-definite matrix for some N ∈ N. Since Σ is positive semi-definite,
by Spectral theorem there exists A ∈ RN×N such that

Σ = A′ × A.

Choose any N elements of B, and let e be the vector of those elements. Then e ∼ N (0, IN×N)

where IN×N is the N dimensional identity matrix. By definition of S, S ≡ A′e ∈ S. Now
notice that

E[S] = 0, var(S) = A′var(e)A = Σ.

Hence, S ∼ N (0,Σ) = G.

Before proceeding to characterization of the equilibrium, I prove the following Corollary
which is going to be useful in solving the firm’s problems.

Definition. For a vector of non-zero Gaussian signals S∼ N (0,Σ), we say elements of S
are distinct if Σ is invertible. In other words, elements of S are distinct if no two signals in
S are perfectly correlated.

Corollary 2. Let S be an N-dimensional vector of non-zero distinct signals whose elements
are in S. Let G = N (0,Σ) be the distribution of S. Then for any N + 1 dimensional
Gaussian distribution, Ĝ, one of whose marginals is G, there is at least one signal ŝ in S,
such that Ŝ = (S, ŝ) ∼ Ĝ.

Proof. Suppose Ĝ = N (0, Σ̂), where Σ̂ ∈ R(N+1)×(N+1) is a positive semi-definite matrix.
Since G is a marginal of Ĝ, without loss of generality, rearrange the vectors and columns of

Σ̂ such that Σ̂ =

[
x y′

y Σ

]
. If x = 0, then let ŝ = 0 ∼ N (0, 0) and we are done with the

proof. If not, notice that since Σ̂ is positive semi-definite, its determinant has to be positive:

det(Σ̂) = det(xΣ− yy′) ≥ 0.

Since elements of S are distinct, Σ is invertible. Also x > 0. We can write

det(Σ̂) = det(xΣ) det(IN×N − x−1Σ−1yy′) ≥ 0,

which implies

det(IN×N − x−1Σ−1yy′) = 1− x−1y′Σ−1y ≥ 0 ⇔ x ≥ y′Σ−1y.
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Where the equality is given by Sylvester’s determinant identity. Now, choose eN+1 ∈ B
such that eN+1 ⊥ S. Such an eN+1 exists because all the elements of S are finite linear
combinations of B and therefore are only correlated with a finite number of its elements,

while B has countably many elements.43 Let ŝ ≡ y′Σ−1S +

[ √
x− y′Σ−1y

0N×1

]
eN+1. Notice

that ŝ ∈ S as it is a finite linear combination of the elements of B. Notice that cov(ŝ, S) = y

and var(ŝ) = x. Hence, (ŝ, S) ∼ N (0, Σ̂).

A.3 Optimality of Linear Pricing Strategies

Every firm chooses a vector of signals Sj,k ∈ Snj,k , where nj,k ∈ N is the number of signals
that j, k chooses to observe, and a pricing strategy pj,k : Sj,k → R that maps their signal to
a price. Thus, the set of firm j, k’s pure strategies is

Aj,k = {ςj,k|ςj,k = (Sj,k ∈ Snj,k , pj,k : Sj,k → R), nj,k ∈ N}.

Moreover, the set of pure strategies for the game is

A = {ς|ς = (ςj,k)j,k∈J×K , ςj,k ∈ Aj,k,∀j, k ∈ J ×K}.

First, I show that in any equilibrium it has to be the case that firms play linear pricing
strategies, meaning that pj,k =M ′

j,kSj,k, for some Mj,k ∈ Rnj,k .

Lemma 3. Take a strategy ς = (Sj,k, pj,k)j,k∈J×K ∈ A. Then if ς is an equilibrium, then
∀j, k ∈ J ×K, pj,k =M ′

j,kSj,k for some Mj,k ∈ Rnj,k .

Proof. A necessary condition for ς to be an equilibrium is if given (Sj,k)j,k∈J×K under ς,
∀j, k ∈ J ×K, pj,k solves

pj,k(Sj,k) = argminpj,k
E[(pj,k − (1− α)q − α

1

K − 1

∑
l 6=k

pj,l(Sj,l))
2|Sj,k].

Since the objective is convex, the sufficient for minimization is if the first order condition
holds:

p∗j,k(Sj,k) = (1− α)E[q|Sj,k] + α
1

K − 1

∑
l 6=k

E[p∗j,l(Sj,l)|Sj,k]

= (1− α̃)E[q|Sj,k] + α̃E[p∗j(Sj)|Sj,k]

43In fact, there are countably many elements in B that are orthogonal to S.
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where α̃ ≡ α+ α
K−1

1+ α
K−1

< 1, and p∗j(Sj) ≡ K−1
∑

k∈K p
∗
j,k(S

∗
j,k). Thus, by iteration

p∗j,k(Sj,k) = lim
M→∞

((1− α̃)
M∑

m=0

α̃mE(m)
j,k [q] + α̃M+1E(M+1)

j,k [p∗j(Sj)])

where E(0)
j,k [q] ≡ E[q|Sj,k] is firm j, k’s expectation of the fundamental, and ∀m ≥ 1, E(m)

j,k [q] =

K−1
∑

l∈K E[E(m−1)
j,l [q]|Sj,k] is firm j, k’s m’th order higher order belief of its industry’s av-

erage expectation of the fundamental. Similarly E(M+1)
j,k [p∗j(Sj)] is firm j, k’s M + 1’th order

belief of their industry price. Assuming for now that signals are such that expectations are
finite, since α̃ < 1, the later term in the limit converges to zero and we have:44

p∗j,k(Sj,k) = (1− α̃)
∞∑

m=0

α̃mE(m)
j,k [q]. (11)

Now, I just need to show that E(m)
j,k [q] is linear in Sj,k, for all m. To see this, since all

signals in S are Gaussian and mean zero, ∀j, k, let Σq,Sj,k
≡ cov(Sj,k, q) = E[qS ′

j,k]. Also
given j, k, ∀l 6= k, ΣSj,l,Sj,k

= cov(Sj,k, Sj,l) = E[Sj,lS
′
j,k] and ΣSj,k

= var(Sj,k) = E[Sj,kS
′
j,k].

The proof for linearity of higher order expectations is by induction: notice that for m = 0

E(0)
j,k [q] = E[q|Sj,k] = Σq,Sj,k

Σ−1
Sj,k

Sj,k,

which implies 0’th order expectations of firms are linear in their signals. Now suppose ∀j, l
E(m)

j,l [q] = Aj,l(m)′Sj,l for some Aj,l(m) ∈ Rnj,l . Now,

E(m+1)
j,k [q] = K−1

∑
l∈K

Aj,l(m)′E[Sj,l|Sj,k]

=
′

K−1(Aj,l(m) +
∑
l 6=k

Aj,l(m)ΣSj,l,Sj,k
Σ−1

Sj,k
)︸ ︷︷ ︸

≡A
(m+1)
j,k ∈Rnj,k

Sj,k.

The fact that I have assumed ΣSj,k
is invertible is without loss of generality, because if Σj,k is

not invertible, since all signals in Sj,k are non-zero then it must be the case that Sj,k contains
co-linear signals. In that case we can exclude the redundant signals without changing the
posterior of the firm.

44if expectations are not finite, then a best response in pricing does not exist. However, since we are
characterizing a necessary condition in this lemma, I characterize the best pricing responses conditional on
existence.
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Corollary 3. If ς = (Sj,k ∈ Snj,k , pj,k(Sj,k) = M ′
j,kSj,k)j,k∈J×K ∈ A is an equilibrium, then

∀j, k ∈ J ×K,

Mj,k = ((1− α)Σq,Sj,k
Σ−1

Sj,k
+ α

1

K − 1

∑
l 6=k

ΣSj,l,Sj,k
Σ−1

Sj,k
)′

Proof. From the proof of Lemma 3 that if ς is an equilibrium then pricing strategies should
satisfy the following optimality condition:

Mj,kSj,k = (1− α)E[q|Sj,k] + α
1

K − 1

∑
l 6=k

E[M ′
j,lSj,l|Sj,k].

Thus,

M ′
j,kSj,k = (1− α)Σq,Sj,k

Σ−1
Sj,k

Sj,k + α
1

K − 1

∑
l 6=k

M ′
jΣSj,l,Sj,k

Σ−1
Sj,k

Sj,k,

or simply

Mj,k = ((1− α)Σq,Sj,k
Σ−1

Sj,k
+ α

1

K − 1

∑
l 6=k

ΣSj,l,Sj,k
Σ−1

Sj,k
)′.

Given the results in this section, I restrict the set of strategies to those with linear pricing
schemes that sarisfy Corollary 3:

A∗ = {ς ∈ A|ς satisfies Corollary 3}.

A.4 The Attention Problem of Firms

Take a strategy ς ∈ A∗ such that

ς = (Sj,k ∈ Snj,k , pj,k =M ′
j,kSj,k)j,k∈J×K .

For ease of notation let p(ςj,k) ≡M ′
j,kSj,k, ∀j, k ∈ J ×K. Also, let ς−(j,k) ≡ ς\ςj,k. Moreover,

for any given firm j, k ∈ J ×K, let

θj,k(ς−(j,k)) ≡ (q, (p(ςj,l))l 6=k, (p(ςm,n))m 6=j,n∈K)
′
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be the augmented vector of the fundamental, the prices of other firms in j, k’s industry, and
the prices of all other firms in the economy. Now, define

w = (1− α,
α

K − 1
, . . . ,

α

K − 1︸ ︷︷ ︸
K−1 times

, 0, 0, 0, . . . , 0︸ ︷︷ ︸
(J−1)×K times

)′.

Also, for any ς̂j,k ∈ Aj,k, let S(ς̂j,k) denote the signals in S that j, k observes under the
strategy ς̂j,k. Given this notation observe that firm j, k’s problem, as defined in the text,
reduces to

min
ς̂j,k∈Aj,k

Lj,k(ς̂j,k, ς−(j,k)) ≡ E[(p(ς̂j,k)−w′θj,k(ς−(j,k)))
2|S(ς̂j,k)] (12)

s.t. I(S(ς̂j,k); θj,k(ς−(j,k))) ≤ κ,

where given the joint distribution of (S(ς̂j,k), θj,k(ς−(j,k))), the mutual information is defined
by Equation (10) in Section A.1. It is also useful to restate the definition of the equilibrium
given this notation:

Definition. An equilibrium is a strategy ς ∈ A such that ∀j, k ∈ J ×K

ςj,k = argminς′j,k∈Aj,k
Lj,k(ς

′
j,k, ς−(j,k)) (13)

s.t. I(S(ςj,k); θj,k(ς−(j,k))) ≤ κ.

The solution to this problem, if exists, is not unique. To show this, I define the following
relation on the deviations of j, k, given a strategy ς ∈ A∗, and show that it is an equivalence.

Definition. For any two distinct elements {ς1j,k, ς2j,k} ⊂ Aj,k, and given ς = (ςj,k, ς−(j,k)) ∈ A∗,
we say ς1j,k ∼j,k|ς ς

2
j,k if

Lj,k(ς
1
j,k, ς−(j,k)) = Lj,k(ς

2
j,k, ς−(j,k)),

where Lj,k(., .) is defined as in Equation (12).

Lemma 4. ∀j, k ∈ J ×K and ∀ς ∈ A∗, ∼j,k|ς is an equivalence relation.

Proof. Reflexivity, symmetry and transitivity are trivially satisfied by properties of equality.

By definition, notice that the agent is indifferent between elements of an equivalence
class. Now, given ς = (ςj,k, ς−(j,k)) ∈ A∗, let [ς̂j,k]ς ≡ {ς ′j,k ∈ Aj,k|ς ′j,k ∼j,k|ς ς̂j,k}. The
following lemma shows there is always a deviation with a single dimensional signal that
requires less attention.
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Lemma 5. For any j, k ∈ J ×K, ∀ς = (ςj,k, ς−(j,k)) ∈ A∗, ∃ς̂j,k ∈ [ςj,k]ς such that the agent
observes only one signal under ς̂j,k and

I(S(ς̂j,k); θj,k(ς−(j,k))) ≤ I(S(ςj,k); θj,k(ς−(j,k))).

Moreover, ς̂j,k does not alter the covariance of firm j, k’s price with the fundamental and the
prices of all other firms in the economy under ς.

Proof. I prove this lemma by constructing such an strategy. Given ς ∈ A∗, let Σςj,k ≡
var(S(ςj,k)), Σθj,k,ςj,k ≡ cov(θj,k(ς−(j,k)), S(ςj,k)) and Σθj,k ≡ var(θj,k(ς−(j,k))). Thus,

(S(ςj,k), θj,k(ς−(j,k))) ∼ N (0,

[
Σςj,k Σ′

θj,k,ςj,k

Σθj,k,ςj,k Σθj,k

]
).

Moreover, since ς ∈ A∗, then pricing strategies are linear, and by Corollary 3

pj,k(ς) = w′E[θj,k(ς−(j,k))|S(ςj,k)]

= w′Σθj,k,ςj,kΣ
−1
ςj,k
S(ςj,k)

Notice that

Lj,k(ςj,k, ς−(j,k)) = w′var(θj,k(ς−(j,k))|S(ςj,k))w

= w′Σθj,kw −w′Σθj,k,ςj,kΣ
−1
ςj,k

Σ′
θj,k,ςj,k

w.

Now, let ŝj,k ≡ w′Σθj,k,ςj,kΣ
−1
ςj,k
S(ςj,k). Clearly, ŝj,k ∈ S as it is a finite linear combination

of the elements of Sj,k, and S is rich. Define ς̂j,k ≡ (ŝj,k, 1) ∈ Aj,k. Notice that

Lj,k(ς̂j,k, ς−(j,k)) = w′var(θj,k(ς−(j,k))|ŝj,k)w

= w′Σθj,kw −w′Σθj,k,ςj,kΣ
−1
ςj,k

Σ′
θj,k,ςj,k

w

= Lj,k(ςj,k, ς−(j,k)).

Thus, ς̂j,k ∈ [ςj,k]ς . Also, observe that θj,k(ς−(j,k)) ⊥ ŝj,k|S(ςj,k). Therefore, by the data
processing inequality in Lemma 1

I(ŝj,k; θj,k(ς−(j,k))) ≤ I(S(ςj,k); θj,k(ς−(j,k))).

Finally, observe that pj,k(ς̂j,k, ς−(j,k)) = pj,k(ς) = w′Σθj,k,ςj,kΣ
−1
ςj,k
S(ςj,k). Thus, the covariance

of j, k’s price with all the elements of θj,k(ς−(j,k)) remains unchanged when j, k deviates from
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ςj,k to ς̂j,k.

A.5 Equilibrium Signals

Let E denote the set of equilibria for the game:

E = {ς ∈ A|ς is an equilibrium as stated in Statement (13)}.

the following definition states an equivalence relation among the equilibria.

Definition. Suppose {ς1, ς2} ⊂ E . We say ς1 ∼E ς2 if they imply the same joint distribution
for prices of firms and the fundamental. Formally, ς1 ∼E ς2 if given that (q, pj,k(ς1))j,k∈J×K ∼
G, then (q, pj,k(ς2))j,k∈J×K ∼ G as well.

This is trivially an equivalence relation as it satisfies reflexivity, symmetry and transitivity
by properties of equality.

Lemma 6. Let A∗∗ ≡ {ς ∈ A|ς = (sj,k ∈ S, 1)j,k∈J×K}. Suppose ς ∈ A is an equilibrium for
the game. Then, there exists ς̂ ∈ A∗∗ such that ς̂ ∼E ς.

Proof. The proof is by construction. Since ς is an equilibrium it solves all firms problems.
Start from the first firm in the economy and perform the following loop for all firms: we
know firm 1, 1 has a strategy ς̂1,1 = (s1,1 ∈ S, 1) that is equivalent to ς1,1 given ς. Create a
new strategy ς1,1 = (ς̂1,1, ς−(1,1)). We know that ς1,1 implies the same joint distribution as ς
for the prices of all firms in the economy because we have only changed firm 1, 1’s strategy,
and by the previous lemma ς̂1,1 does not alter the the joint distribution of prices. Now notice
that ς1,1 is also an equilibrium because (1) firm 1, 1 was indifferent between ς1,1 and ς̂1,1 and
(2) the problem of all other firms has not changed because 1, 1’s price is the same under
both strategies. Now, repeat the same thing for firm 1, 2 given ς1,1 and so on. At any step
given ςj,k repeat the process for j, k + 1 (or j + 1, 1 if k = K) until the last firm in the
economy. At the last step, we have ςJ,K = (ς̂j,k)j,k∈J×K , which is (1) an equilibrium and (2)
implies the same joint distribution among prices and fundamentals as ς. Moreover, notice
that ςJ,K ∈ A∗∗.

So far we have shown that any equilibrium has an equivalent in A∗∗, so as long as we
are interested in the joint distribution of prices and the fundamental it suffices to only look
at equilibria in this set. The next lemma shows that given any strategy ς ∈ A∗∗, for any
j, k ∈ J×K, the set of j, k’s deviations is equivalent to choosing a joint distribution between
their price and θj,k(ς−(j,k)).
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Lemma 7. Suppose ς ∈ A∗∗ is an equilibrium. Then, ∀j, k ∈ J ×K, any deviation for j, k
is equivalent to a Gaussian joint distribution between their price and θj,k(ς−(j,k)). Moreover,
if two different deviations of j, k imply the same joint distribution for prices and the funda-
mental, they both require the same amount of attention and the firm is indifferent between.

Proof. Given ς, let Σθj,k be such that θj,k(ς−(j,k)) ∼ N (0,Σθj,k). Notice that Σθj,k has to be
invertible: if not, then there must a firm whose signal is either co-linear with the fundamental
or the signal of another firm, meaning that their signal is perfectly correlated with one of
those. But that violates the capacity constraint of that firm as they are processing infinite
capacity, which is a contradiction with the assumption that ς is an equilibrium.45

Now, from Lemma 5 we know that it suffices to look at deviations of the form (sj,k ∈ S, 1).
First, observe that any deviation of the firm j, k creates a Gaussian joint distribution for

(sj,k, θj,k(ς−(j,k))) as sj,k ∈ S. Moreover, suppose G = N (0,

[
x y′

y Σθj,k

]
) is a Gaussian

distribution. Since Σθj,k is invertible, Corollary 2 implies that there is a signal sj,k ∈ S, such
that (sj,k, θj,k(ς−(j,k))) ∼ G.

For the last part of the lemma, suppose for two different signals s1j,k and s2j,k in S,
(s1j,k, θj,k(ς−(j,k))) and (s2j,k, θj,k(ς−(j,k))) have the same joint distribution. Then, var(θj,k(ς−(j,k))|s1j,k) =
var(θj,k(ς−(j,k))|s2j,k) which implies that

Lj,k((s
1
j,k, 1), ς−(j,k)) = Lj,k((s

2
j,k, 1), ς−(j,k)).

Moreover,

I(s1j,k; θj,k(ς−(j,k))) =
1

2
log2(

det(var(θj,k(ς−(j,k)))

det(var(θj,k(ς−(j,k))|s1j,k)
)

=
1

2
log2(

det(var(θj,k(ς−(j,k)))

det(var(θj,k(ς−(j,k))|s2j,k)
)

= I(s1j,k; θj,k(ς−(j,k))).

Therefore, the firm is indifferent between s1j,k and s2j,k.

This last lemma ensures us that instead of considering all the possible deviations in S,
we can look among all the possible joint distributions. If there is a joint distribution that
solves a firm’s problem, then the lemma implies that there is a signal in the set of available
signals that creates that joint distribution.

45Recall, for any two one dimensional Normal random variables X and Y , I(X,Y ) = − 1
2 log2(1 − ρ2X,Y ),

where ρX,Y is the correlation of X and Y . Notice that limρ2→1 I(X,Y ) → +∞.
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Lemma 8. Suppose ς = (s∗j,k ∈ S, 1) ∈ A∗∗ is an equilibrium, then ∀j, k ∈ J ×K,

s∗j,k = λw′θj,k(ς−(j,k)) + zj,k, zj,k ⊥ θj,k(ς−(j,k)), var(zj,k) = λ(1− λ)var(w′θj,k(ς−(j,k))).

Proof. For firm j, k ∈ J × K, let Σθj,k denote the covariance matrix of θj,k(ς−(j,k)). From
Lemma 5 it is sufficient to look at deviations of the form (sj,k ∈ S, 1). For a given sj,k ∈ S,
(sj,k, θj,k(ς−(j,k))) ∼ N (0,Σsj,k,θj,k), where

Σsj,k,θj,k =

[
x2 y′

y Σθj,k

]
� 0.

First of all, recall that for (sj,k ∈ S, 1) to be optimal, it has to be the case that

pj,k = 1× sj,k

= w′E[θj,k(ς−(j,k))|sj,k]

= x−2w′ysj,k.

Thus,
x2 = w′y.

Now, given sj,k ∈ S, the firm’s loss in profits is

var(w′θj,k(ς−(j,k))|sj,k) = w′Σθj,kw − x−2(w′y)2

and the capacity constraint

I(sj,k; θj,k(ς−(j,k))) ≤ κ

⇔ 1

2
log2(|I− x−2Σ−1

θj,k
yy′|) ≥ −κ

⇔ x−2y′Σ−1
θj,k

y ≤ λ ≡ 1− 2−2κ.

Moreover, from the previous lemma we know that for any (x,y) such that

[
x2 y′

y Σθj,k

]
� 0,

then there is a signal in S that creates this joint distribution. Therefore, we let the agent
choose (x,y) freely to solve

min
(x,y)

w′Σθj,kw − x−2(w′y)2

s.t. x−2y′Σ−1
θj,k

y ≤ λ
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The solution can be derived by taking first order conditions, but there is simpler a way.
Notice that by Cauchy-Schwarz inequality

x−2(w′y)2 = x−2(Σ
1
2
θj,k

w)′(Σ
− 1

2
θj,k

y)

≤ x−2(w′Σθj,kw)(y′Σ−1
θj,k

y).

Therefore,

w′Σθj,kw − x2(w′y)2 ≥ w′Σθj,kw − x−2(w′Σθj,kw)(y′Σ−1
θj,k

y)

= (w′Σθj,kw)(1− x−2y′Σθj,ky)

≥ (1− λ)w′Σθj,kw

where, the last line is from the capacity constraint. This defines a global lower-bound for
the objective of the firm that holds for any choice of (x,y). However, this global minimum
is attained if both the Cauchy-Schwarz inequality and the capacity constraint bind. From
the properties of the Cauchy-Schwarz inequality, we know it binds if and only if

x−1Σ
− 1

2
θj,k

y = c0Σ
1
2
θj,k

w

for some constant c0.Therefore, there is a unique vector x−1y that attains the global minimum
of the agent’s problem given their constraint:

x−1y = c0Σθj,kw.

Now, the capacity constraint binds if

c0 =

√
λ

w′Σθj,kw
.

Together with x2 = w′y, this gives us the unique (x,y):

y = λΣθj,kw, x =
√
λw′Σθj,kw.

Finally, to find a signal that creates this joint distribution, choose s∗j,k ∈ S such that

s∗j,k = λw′θj,k(ς−(j,k)) + zj,k, zj,k ⊥ θj,k(ς−(j,k)), var(zj,k) = λ(1− λ)w′Σθj,kw.

notice that cov(s∗j,k, θj,k(ς−(j,k))) = λΣθj,kw, and var(s∗j,k) = λw′Σθj,kw. Notice that this
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implies the equilibrium set of signals are

s∗j,k = λ(1− α)q + λα
1

K − 1

∑
l 6=k

s∗j,l + zj,k, zj,t ⊥ (q, sm,n)(m,n)6=(j,k)

where var(zj,t) = λ(1− λ)var((1− α)q + α 1
K−1

∑
l 6=k s

∗
j,l).

A.6 Uniqueness of Equilibrium in Joint Distribution of Prices

Having specified the equilibrium signals, I now show that all equilibria imply the same joint
distribution of prices.

Lemma 9. Suppose α ∈ [0, 1). Then, E/ ∼E is non-empty and a singleton.

Proof. I show this by directly characterizing the equilibrium. From previous section we know
that any equilibrium is equivalent to one in strategies of A∗∗. Suppose that (s∗j,k, 1)j,k∈J×K ∈
A∗∗ is an equilibrium, and notice that in this equilibrium every firm simply sets their price
equal to their signal, pj,k ≡ s∗j,k. Also, Lemma 8 showed that this equilibrium signals should
satisfy the following

pj,k = λ(1− α)q + λα
1

K − 1

∑
l 6=k

pj,l + zj,k, zj,k ⊥ (q, pm,n)(m,n)6=(j,k)

where var(zj,t) = λ(1− λ)var((1−α)q+α 1
K−1

∑
l 6=k pj,l). Now, we want to find all the joint

distributions for (q, pj,k)j,k∈J×K that satisfy this rule. Since all signals are Gaussian, the joint
distributions will also be Gaussian.

I start by characterizing the covariance of any firm’s price with the fundamental. For
any industry j, let pj ≡ (pj,k)k∈K and zj ≡ (zj,k)k∈K ⊥ q. Moreover, for ease of notation in
this section let γ ≡ 1

K−1
. Now, the equilibrium condition implies

pj = λ(1− α)1q + λαγ(11′ − I)pj + zj

where 1 is the unit vector in RK , and I is identity matrix in RK×K (therefore 11′ − I is a
matrix with zeros on diagonal and 1’s elsewhere). Notice that

cov(pj, q) = λ(1− α)1cov(q, q)︸ ︷︷ ︸
=1

+ λαγ(11′ − I)cov(pj, q) + cov(zj, q)︸ ︷︷ ︸
=0

⇒

((1 + λαγ)I− λαγ11′)cov(pj, q) = λ(1− α)1
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Now, notice that (1 + λαγ)I − λαγ11′ is a symmetric matrix whose diagonal elements are
strictly larger than its off diagonal elements. It is straight forward to show that

((1 + λαγ)I− λαγ11′)−1 =
1

1 + αλγ
I+

αλγ

(1 + αλγ)(1− αλ)
11′.

Since αλ < 1 ⇒ 1− αλ > 0 and this inverse exists. Now, we have

cov(pj, q) = (
1

1 + αλγ
I+

αλγ

(1 + αλγ)(1− αλ)
11′)λ(1− α)1

=
λ− λα

1− λα
1.

Thus, in any equilibrium, the covariance of any firm’s price with the fundamental q has be
to equal to δ ≡ λ−λα

1−λα
.

Next, I show that for any two firms in two different industries, their prices are orthogonal
conditional on the fundamental. Let pj be the vector of prices in industry j as defined above.
Pick any firm from any other industry l,m ∈ J ×K, l 6= j. Notice that by the equilibrium
conditions zj ⊥ pl,m. Now, notice that

cov(pj, pl,m) = λ(1− α)1cov(q, pl,m)︸ ︷︷ ︸
=δ

+ λαγ(11′ − I)cov(pj, pl,m) + cov(zj, pl,m)︸ ︷︷ ︸ .
=0

With a similar method as above, we get

cov(pj, pl,m) = δ21 ⇒ cov(pj, pl,m|q) = 0.

Therefore, in any equilibrium prices of any two firms in two different industries are only
correlated through the fundamental. This simply implies that firms do not pay attention to
mistakes of firms in other industries.

Now we only need to specify the joint distribution of prices within industries. We have

pj = λ(1− α)1q + λαγ(11′ − I)pj + zj

= B(λ(1− α)1q + zj)

where B ≡ 1
1+αλγ

I+ αλγ
(1+αλγ)(1−αλ)

11′. This gives

pj = δ1q +Bzj,

where Bzj ⊥ q. This corresponds to the decomposition of the prices of firms to parts that are
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correlated with the fundamental and their mistakes. The vector Bzj is the vector of firms’
mistakes in industry j, and is the same as the vector vj in the text. Let Σz,j = cov(zj, zj)

and Σp,j = cov(pj, pj). We have

Σp,j = δ211′ +BΣz,jB
′.

Also, since zj,k ⊥ pj,l 6=k, we have

Dj ≡ cov(pj, zj) = BΣz,j

where Dj is a diagonal matrix whose k’th element on the diagonal is var(zj,k). From the
equilibrium conditions we have

var(zj,k) = λ(1− λ)var((1− α)q + αγ
∑
l 6=k

pj,l)

= λ(1− λ)(1− α)2 + λ(1− λ)α2γ2w′
kΣp,jwk + 2λ(1− λ)α(1− α)δ

where wk is a vector such that w′
kpj =

∑
l 6=k pj,l. Let ek be the k’th column of the identity

matrix. Hence,

e′kDjek = λ(1− λ)(1− α)(1− α + 2αδ) + λ(1− λ)α2γ2w′
k(δ

211′ +BΣz,jB)wk

= (λ−1 − 1)δ2 + λ(1− λ)α2γ2w′
kDjBwk

This gives K linearly independent equations and K unknowns in terms of the diagonal of
Dj. Guess that the unique solution to this is symmetric. After some tedious algebra, we get
that the implied distribution for prices is such that

var(pj,k) =
1− αλ

1− αλ̃
λ−1δ2,∀j, k,

cov(pj,k, pj,l) =
1− αλ

1− αλ̃

λ̃

λ
δ2,∀j, k, l 6= k

where λ̃ ≡ λ+αγλ
1+αγλ

.

A.7 Reinterpretation of a Firm’s Attention Problem.

Take any firm j, k ∈ J × K, and suppose all other firms in the economy are playing the
equilibrium strategy. Moreover, here I take it as given that the firm does not pay attention
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to mistakes of firms in other industries:

cov(pj,k, pl,m|q)l 6=j = 0.

Now, take strategy ςj,−k for other firms and decompose the average price of others such
that pj,−k(ςj,−k) =

1
K−1

∑
l 6=k pj,l(ςj,l) = δq+ vj,−k, where δ and the joint var(vj,−k) is implied

by ςj,−k. Let σ2
v ≡ var(vj,−k) be the variance of the average mistake of other firms in j, k’s

industry when they play the strategy. For sj,k ∈ S, and define

ρq(sj,k) ≡ cor(sj,k, q),

ρv(sj,k) ≡ cor(sj,k, vj,−k).

Notice that firm j, k’s loss in profit given that they observe sj,k is

var((1− α)q + αpj,−k|sj,k) = var((1− α + αδ)q + αvj,−k|sj,k)

= (1− α + αδ)2var(q +
α

1− α(1− δ)
vj,−k|sj,k).

Observe that

var(q +
α

1− α(1− δ)
vj,−k|sj,k) = var(q +

α

1− α(1− δ)
vj,−k)−

cov(q + α
1−α(1−δ)

vj,−k, sj,k)
2

var(sj,k)

= 1 + (
α

1− α(1− δ)
)2σ2

v − (
cov(q, sj,k)√
var(sj,k)

+
ασv

1− α(1− δ)

cov(vj,−k)

σv
√
var(sj,k)

)2

= 1 + (
α

1− α(1− δ)
)2σ2

v − (ρq(sj,k) +
ασv

1− α(1− δ)
ρv(sj,k))

2.

now, to derive the information constraint in terms of the two correlations:

I(sj,k; (q, p∗j,−k)) ≤ κ⇔ 1

2
log2(

var(sj)

var(sj,k|(q, p∗j,−k))
) ≤ κ

Now, notice that

var(sj|(q, p∗j,−k))

var(sj)
= 1− [ ρq(sj) δρq(sj) + σvρv(sj)]

[
1 δ

δ δ2 + σ2
v

]−1 [
ρq(sj)

δρq(sj) + σ2
v

]
= 1− (ρq(sj)

2 + ρv(sj)
2).
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Thus, the information constraint becomes

1

2
log2(

1

1− (ρ2q(sj) + ρ2v(sj))
) ≤ κ⇔ ρ2q(sj) + ρ2v(sj) ≤ λ ≡ 1− 2−2κ.

So j, k’s problem reduces to

max
sj,k∈S

(ρq(sj,k) +
ασv

1− α(1− δ)
ρv(sj,k))

2

s.t. ρq(sj,k)
2 + ρv(sj,k)

2 ≤ λ.

Since the information set is rich, for any pair of (ρq, ρv) ∈ [−1, 1]2, there is a signal in S that
generates that pair. So instead of choosing signals, the agent can choose the correlations:

max
ρq ,ρs

(ρq +
ασv

1− α(1− δ)
ρv)

2

s.t. ρ2q + ρ2v ≤ λ.

A.8 Proofs of Propositions for the Static Model

Here I include the proofs of Propositions 1 to 3. The proofs and derivations for Section 4
are included in Appendix B.

In the order of appearance in the text.

Proof of Proposition 1.

Part 1. Given the result in Lemma 9, notice that since attention is strictly increasing in
the squared correlation:

ρ∗2q = cor(pj,k, q)
2

=
cov(pj,k, q)

2

var(pj,k)

=
K − 1 + αδ

K − 1 + αλ
λ.

but notice that δ = 1−α
1−αλ

λ < λ as long as λ > 0 and α > 0. This implies directly that
ρ∗2q < λ. Thus,

ρ∗2v = λ− ρ∗2q > 0,

meaning that firms pay attention to the mistakes of their competitors.
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Part 2. From the previous part, notice that

∂ρ∗2q
∂K

1

ρ∗2q
=

α(λ− δ)

(K − 1 + αλ)(K − 1 + αδ)
> 0.

Also
∂ρ∗2q
∂α

1

ρ∗2q
=

(K − 1)(δ − λ) + (K − 1 + αλ)α ∂δ
∂α

(K − 1 + αδ)(K − 1 + αλ)
< 0.

the inequality comes from δ − λ < 0 and ∂δ
∂α

= δ λ−1
(1−α)(1−αλ)

< 0.

Part 3. Shown in the proof of Lemma 9.

Proof of Proposition 2.

First of all notice that the aggregate price is given by

p ≡ J−1K−1
∑

j,k∈J×K

pj,k = δq +
1

JK

∑
j,k∈J×K

vj,k

but notice that since J is large and vj,k’s are independent across industries, the average
converges to zero by law of large numbers as J → ∞. Therefore,

p = δq.

Moreover, notice that

Ej,k[pj,−k] =
cov(sj,k, pj,−k)

var(pj,k)
sj,k

= λ̃pj,k

Ej,k[p] =
cov(sj,k, p)

var(pj,k)
pj,k

=
1− αλ̃

1− αλ
λpj,k
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where λ̃ = λ(K−1)+αλ
K−1+αλ

> λ is defined as in the proof of Lemma 9. So, Ej,k[pj,−k] = λ̃p,
Ej,k[p] = 1−αλ̃

1−αλ
λp. notice that

cov(Ej,k[pj,−k], p) = λ̃var(p)

>
1− αλ̃

1− αλ
λvar(p)

= cov(Ej,k[p], p).

Also, notice that if K → ∞ then λ̃→ λ and cov(Ej,k[p], p) → cov(Ej,k[pj,−k], p).

Proof of Corollary 1.

Conditional on realization of the aggregate price

|p− Ej,k[p]| = (1− 1− αλ̃

1− αλ
λ)|p|

> (1− λ̃)|p|

= |p− Ej,k[pj,−k]|.

Proof of Proposition 3.

Since knowledge is directly related to mutual information (as defined in Definition 3), and
mutual information in this static setting reduces to correlations, we need to show

cor(pj,k, pj,−k) ≥ cor(pj,k, q) = cor(pj,k, p).

By plugging in the unique equilibrium distribution from the proof of Lemma 9, we get this
holds if and only if

1− αλ̃

1− αλ
λ ≤ (K − 1)λ̃2

1 + (K − 2)λ̃
.

Moving the terms around, this can be rearranged to

αλ̃ ≥ 1

2
,

meaning that the necessary and sufficient condition for the result is when this inequality
holds. Now, notice that if αλ ≥ 1

2
, since λ̃ ≥ λ, then αλ̃ ≥ 1

2
. Hence, αλ ≥ 1

2
is a sufficient

condition.
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B Online Appendix

The Appendix is organized as follows. Subsection B.1 extends the set of available infor-
mation defined in Appendix A.2 to the dynamic environment. Subsection B.2 includes all
the derivations for the dynamic model that are omitted in the main text. Subsection B.3
discusses the degree of strategic complementarity implied by the Kimball aggregator. Sub-
section B.4 contains the proofs of the Propositions 4, 5, 6 and 7. Subsection B.5 discusses
the computational method that I use for solving the dynamic model.

B.1 Available Information in the Dynamic Model

The set of available signals in the dynamic model is an extension of the one defined in
Appendix A.2. The main difference is the notion of time and the fact that at every period
nature draws new shocks and the set of available information in the economy expands. To
capture this evolution, I define a signal structure as a sequence of sets (St)∞t=−∞ where
St−s ⊂ St,∀s ≥ 0. Here, St denotes the set of available signals at time t, and it contains all
the previous sets of signals that were available in previous periods.

To construct the signal structure, suppose that at every period, in addition to the shock
to the nominal demand, the nature draws countably infinite uncorrelated standard normal
noises. Similar to Appendix A.2, let St be the set of all finite linear combinations of these
uncorrelated noises. Now, define

St = {
∞∑
s=0

aτet−τ |∀τ ≥ 0, aτ ∈ R, et−τ ∈ St−τ},∀t.

First of all, notice that for all t, qt ∈ St, as it is a linear combination of all ut−τ ’s and
ut−τ ∈ St−τ ,∀τ ≥ 0. This implies that perfect information is available about the fundamental
in the economy.

B.2 Derivations

Solution to Household’s Problem (5).

Let βtϕ1,t and βtϕ2,t be the Lagrange multipliers on household’s budget and aggregation
constraints, respectively.

For ease of notation let Cj,t ≡ (Cj,1,t, . . . , Cj,K,t) be the vector of household’s consumption
from firms in industry j ∈ J , so that Cj,t ≡ Φ(Cj,t). First, I derive the demand of the
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household for different goods. ∀j, k ∈ J ×K the first order condition with respect to Cj,k,t is

Pj,k,t =
1

J

ϕ2,t

ϕ1,t

Ct
Φk(Cj,t)
Φ(Cj,t)

(14)

where Φk(Cj,t) ≡ ∂Φ(Cj,t)
∂Cj,k,t

. Notice that given these optimality conditions

∑
(j,k)∈J×K

Pj,k,tCj,k,t =
1

J

ϕ2,t

ϕ1,t

Ct

∑
j∈J

∑
k∈K

Φk(Cj,t)
Φ(Cj,t)

Cj,k,t︸ ︷︷ ︸
=1,∀j∈J

=
ϕ2,t

ϕ1,t

Ct.

where the equality under curly bracket is from Euler theorem for homogeneous functions as
Φ(.) is CRS. Therefore, Pt ≡ ϕ2,t

ϕ1,t
is the price of the aggregate consumption basket Ct. Now,

from Equation (14) notice that

Pj,t ≡ (Pj,1,t, . . . , Pj,K,t) = ∇ log(Φ(
Cj,t

J−1PtCt

)).

Now, I need to show that this function is invertible to prove that a demand function exists.
For ease of notation, define function f : RK → RK such that f(x) ≡ ∇ log(Φ(x)). Notice
that f(.) is homogeneous of degree −1, and the m,n’th element of its Jacobian, denoted by
matrix J f (x), is given by

J f
m,n(x) ≡

∂

∂xn

Φm(x)

Φ(x)
=

Φm,n(x)

Φ(x)
− Φn(x)

Φ(x)

Φm(x)

Φ(x)
.

Let 1 be the unit vector in RK . Since Φ(.) is symmetric along its arguments, for any
k ∈ (1, . . . , K), Φ1(1) = Φk(1), Φ11(1) = Φkk(1) < 0. Since Φ(.) is homogeneous of degree
1, by Euler’s theorem we have

Φ(1) =
∑
k∈K

Φk(1) = KΦ1(1).

Also, since Φk(.) is homogeneous of degree zero46, similarly we have

0 = 0× Φk(1) =
∑
l∈K

Φkl(1).

46Follows from homogeneity of Φ(x). Notice that Φ(ax) = aΦ(x). Differentiate with respect to k’th
argument to get Φk(ax) = Φk(x).
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So, for any l 6= k,

Φkl(1) = − 1

K − 1
Φ11(1) > 0.

This last equation implies that J f (1) is an invertible matrix.47 Therefore, by inverse function
theorem f(.) is invertible in an open neighborhood around 1, and therefore any symmetric
point x = x.1 such that x > 1. We can write

Cj,t
J−1PtCt

= f−1(Pj,t).

It is straight forward to show that f−1(.) is homogeneous of degree -1 simply because f(x)
is homogeneous of degree -1: for any x ∈ RK ,

f−1(ax) = f−1(af(f−1(x))

= f−1(f(a−1f−1(x))

= a−1f−1(x).

Now, notice that
Cj,k,t = J−1PtCtf

−1
k (Pj,t),

where f−1
k (x) is the k’th element of the vector f−1(Pj,t). Finally, since f(.) is symmet-

ric across its arguments, so is f−1(Pj,t), meaning that f−1
k (Pj,t) = f−1

1 (σk,1(Pj,t)), where
σk,1(Pj,t) is a permutation that changes the places of the first and k’th element of the vec-
tor Pj,t. Now, to get the notation in the text let (Pj,k,t, Pj,−k,t) ≡ σk,1(Pj,t) and D(x) ≡
J−1f−1

1 (x), which gives us the notation in the text:

Cj,k,t = PtCtD(Pj,k,t, Pj,−k,t),

where D(., .) is homogeneous of degree -1.
Finally, the optimality conditions of the household’s problem with respect to Bt, Ct and

47With some algebra, we can show that J f (1) = Φ11(1)
K−1 I − Φ11(1)+K−1

K(K−1) 11′, meaning that J f (1) is a
symmetric matrix whose diagonal elements are strictly different than its off-diagonal elements. Hence, it is
invertible.
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Lt are

w.r.t. Ct : C−1
t = ϕ2,t = Ptϕ1,t

w.r.t. Bt : ϕ1,t = β(1 + it)Ef
t [ϕ1,t+1]

w.r.t. Lt : Lt =


0 φ > ϕ1,tWt

L ∈ [0,∞] φ = ϕ1,tWt

∞ φ < ϕ1,tWt

The optimality condition with respect to Lt is not a first order condition because household’s
disutility from labor is linear. Hence, household will supply a positive but finite labor supply
if and only if φ = ϕ1,tWt at which point she is indifferent in supplying any amount of labor.
It is only when φ = ϕ1,tWt that household supplies finite labor.48 Hence, the optimality
conditions are

PtCt = β(1 + it)Ef
t [Pt+1Ct+1], φPtCt = Wt.

Loss Function of the Firms.

Let Π(Pj,k,t, Pj−k,t,Wt) = (Pj,k,t − (1 − s̄)Wt)D(Pj,k,t, Pj,−k,t) denote the profit function of
the firm following the text. Notice that this function is homogeneous of degree 1 as D(., .)

is homogeneous of degree -1.
Now for any given set of signals over time that firm j, k could choose to see, its profit

maximization problem is

max
(Pj,k,t:S

t
j,k→R)∞t=0

E[
∞∑
t=0

βtQ0Π(Pj,k,t, Pj,−k,t,Wt)|S−1
j,k ].

Now, define the loss function of firm from mispricing at a certain time as

L(Pj,k,t, Pj,−k,t,Wt) ≡ Π(P ∗
j,k,t, Pj,−k,t,Wt)− Π(Pj,k,t, Pj,−k,t,Wt),

where
P ∗
j,k,t = argmaxxΠ(x, Pj,−k,t,Wt).

Notice that

min
(Pj,k,t:S

t
j,k→R)∞t=0

E[
∞∑
t=0

βtQ0L(Pj,k,t, Pj,−k,t,Wt)|S−1
j,k ].

has the same solution as profit maximization problem of the firm because L(.) is also homo-
48This is also the limit of the household’s labor supply curve when the Frisch elasticity goes to infinity.
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geneous of degree 1 and
∞∑
t=0

βtQ0

Qt

max
x

Π(x, Pj,−k,t,Wt)

is independent of (Pj,k,t)
∞
t=0. Now, I take a second order approximation to

L[(Pj,k,t, Pj,−k,t, Qt,Wt)
∞
t=0] ≡

∞∑
t=0

βtQ0L(Pj,k,t, Pj,−k,t,Wt),

around a symmetric point where ∀t, Pj,k,t = Pj,l,t|∀l 6=k = P̄ ,Wt = φQ̄ such that

P̄ = argmaxxΠ(x, P̄ , φ).

For any of variables above let its corresponding small letter denote percentage deviation of
that variable from this symmetric point (qt ≡ Qt−Q̄

Q̄
and so on). Observe that up to second

order terms

L(Pj,k,t, Pj,−k,t,Wt) ≈ L(P̄ , P̄ , φQ̄)

+ (p∗j,k,t − pj,k,t)P̄
∂

∂Pj,k,t

Π(P̄ , P̄ , φQ̄)

+ (p∗2j,k,t − p2j,k,t)
P̄ 2

2

∂2

∂P 2
j,k,t

Π(P̄ , P̄ , φQ̄)

+ (p∗j,k,t − pj,k,t)
∑
l 6=k

pj,l,tP̄
2 ∂2

∂Pj,k,t∂Pj,l,t

Π(P̄ , P̄ , φQ̄)

+ (p∗j,k,t − pj,k,t)wtφQ̄P̄
∂2

∂Pj,k,t∂Wt

Π(P̄ , P̄ , φQ̄).

But notice that L(P̄ , P̄ , φQ̄) = 0, and p∗j,k,t =
P ∗
j,k,t−P̄

P̄
is such that

Π1(P
∗
j,k,t, Pj,−k,t, φQt) = 0,

meaning that

p∗j,k,tP̄
∂2

∂P 2
j,k,t

Π(P̄ , P̄ , φQ̄)+
∑
l 6=k

pj,l,tP̄
∂2

∂Pj,k,t∂Pj,l,t

Π(P̄ , P̄ , φQ̄)+wtφQ̄
∂2

∂Pj,k,t∂Wt

Π(P̄ , P̄ , φQ̄) = 0.

Plug this into the above approximation to get

L(Pj,k,t, Pj,−k,t,Wt) = − P̄
2

2
Π11(pj,k,t − p∗j,k,t)

2.

74



Therefore, the approximation gives

L[(Pj,k,t, Pj,−k,t, Qt,Wt)
∞
t=0] = −1

2
Π11Q̄P̄

2︸ ︷︷ ︸
>0

∞∑
t=0

βt(pj,k,t − p∗j,k,t)
2,

which implies that up to this second order approximation the profit maximization of the firm
is equivalent to

min
(pj,k,t:S

t
j,k→R)∞t=0

E[
∞∑
t=0

βt(pj,k,t − p∗j,k,t)
2|S−1

j,k ].

The following part of the Appendix derives the specific form of p∗j,k,t.

General Form of α.

To derive the expression for p∗j,k,t, recall that P ∗
j,k,t is such that

Π1(P
∗
j,k,t, Pj,−k,t,Wt) = 0.

Considering the specific form of the profit function this gives

P ∗
j,k,t =

εD(P
∗
j,k,t, Pj,−k,t)

εD(P ∗
j,k,t, Pj,−k,t)− 1

(1− s̄)Wt

=
εD(P

∗
j,k,t, Pj,−k,t)

εD(P ∗
j,k,t, Pj,−k,t)− 1

(1− s̄)φQt,

where εD(P ∗
j,k,t, Pj,−k,t) ≡ −∂D(Pj,k,t,Pj,−k,t)

∂Pj,k,t

Pj,k,t

D(Pj,k,t,Pj,−k,t)
. Define the super-elasticity of demand

for a firm as

εεD(Pj,k,t, Pj,−k,t) ≡
Pj,k,t

εD(Pj,k,t, Pj,−k,t)

∂

∂Pj,k,t

εD(Pj,k,t, Pj,−k,t).

Notice that since D(., .) is homogeneous of degree -1, then εD(., .) and εεD(., .) are both
homogeneous of degree zero. For ease of notation let εD ≡ εD(1, 1) and εεD ≡ εεD(1, 1).

Now, recall from the previous section that p∗j,k,t is a derived by a first order log-linearization
of this equation, which implies

p∗j,k,t = (1− α)qt + α
1

K − 1

∑
l 6=k

pj,l,t,
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where
α ≡ εεD

εεD + εD − 1
. (15)

Notice that α ∈ [0, 1) as long as εεD ≥ 0 which happens if and only if a firm’s elasticity of
demand is increase in their own-price.

Derivation of Demand Given Elasticities.

I assumed that every firm’s own-price elasticity has the form

ε(Pj,k,t, Pj,−k,t) ≡ −D1(Pj,k,t, Pj,−k,t)

D(Pj,k,t, Pj,−k,t)
Pj,k,t = η − (η − 1)Kξ

(
P 1−η
j,k,t∑

k∈K P
1−η
j,k,t

)1+ξ

.

A particular solution to this partial differential equation is

log(D(Pj,k,t, Pj,−k,t)) = log(
P−η
j,k,t∑

l 6=k P
1−η
j,l,t

)− Kξ

1 + ξ

(
P 1−η
j,k,t∑

l 6=k P
1−η
j,l,t

)1+ξ

2F1(1+ξ, 1+ξ; 2+ξ;−
P 1−η
j,k,t∑

l 6=k P
1−η
j,l,t

),

where 2F1(., .; .; .) is the hypergeometric function. This is also the particular solution to the
above PDE that coincides with the CES demand when ξ = 0. To see this, we use the identity

2F1(1, 1; 2; x) =
log(1−x)

x
. Therefore, when ξ = 0, we have

log(D(Pj,k,t, Pj,−k,t)) = log(
P−η
j,k,t∑

k∈K P
1−η
j,k,t

).

Now, given the particular solution to the PDE we can define the system of equations,

(Cj,k,t)k∈K = J−1QtD(Pj,k,t)k∈K ,

and the inverse of this function gives us a system of first order partial differential equations
in terms of the function Φ(.) as shown in derivations of household’s utility function.

B.3 Strategic Complementarity under Kimball Demand

In the main text of the paper, I consider a generalization of the elasticities under CES aggre-
gator and derive the strategic complementarities under this generalization. An alternative
approach in the literature is using Kimball aggregator, which is also a generalization of the
CES aggregator. In this section, I derive the demand functions of firms given this aggrega-
tor and show that the strategic complementarity implied by these demand functions cannot
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satisfy all of the following properties simultaneously:

1. There is weak strategic complementarity in pricing (0 ≤ α < 1).

2. There is substantial strategic complementarity in the data (α = 0.9).

3. Strategic complementarity is increasing with the elasticity of substitution within in-
dustries (∂α

∂η
≥ 0).

The Kimball aggregator assumes that the function Φ(Cj,1,t, . . . , Cj,K,t) is implicitly defined
by

1 = K−1
∑
k∈K

f(
KCj,k,t

Φ(Cj,1,t, . . . , Cj,K,t)
), (16)

where f(.) is at least thrice differentiable, and f(1) = 1 (so that Φ(1, . . . , 1) = K). Observe
that this coincides with the CES aggregator when f(x) = x

η−1
η . To derive the demand

functions, recall that the first order conditions of the household’s problem are

Pj,k,t = J−1Qt

∂
∂Cj,k,t

Cj,t

Cj,t

,∀j, k

where Cj,t = Φ(Cj,1,t, . . . , Cj,K,t). Implicit differentiation of Equation (16) gives

Pj,k,t = J−1Qt

f ′(
KCj,k,t

Cj,t
)∑

l∈K Cj,l,tf ′(
KCj,l,t

Cj,t
)
,∀j, k. (17)

To invert these functions and get the demand for every firm in terms of their competitors’
prices, guess that there exists a function F : RK → R such that∑

l∈K Cj,l,tf
′(

KCj,l,t

Cj,t
)

J−1Qt

= F (Pj,1,t, . . . , Pj,K,t).

I verify this guess by plugging in this guess to Equation (17):

∀j, l : f ′(
KCj,l,t

Cj,t

) = Pj,l,tF (Pj,1,t, . . . , Pj,K,t)

⇒ KCj,l,t

Cj,t

= f ′−1(Pj,l,tF (Pj,1,t, . . . , Pj,K,t))

⇒ 1 = K−1
∑
l∈K

f(
KCj,l,t

Cj,t

) = K−1
∑
l∈K

f(f ′−1(Pj,l,tF (Pj,1,t, . . . , Pj,K,t)))
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Thus, the guess implies that the function F (.) is implicitly defined by

1 = K−1
∑
k∈K

f(f ′−1(Pj,l,tF (Pj,1,t, . . . , Pj,K,t))),

which is well-defined as the expression only depends on (Pj,k,t)k∈K and hence F (.) only
depends on the vector of these prices. This verifies my guess for existence of such a function.
It is straight forward to show that F (.) is symmetric across its arguments and homogeneous
of degree -1.49 Now, notice that given these derivations,

J−1QtF (Pj,1,t, . . . , Pj,K,t) =
∑
l∈K

Cj,l,tf
′(
KCj,l,t

Cj,t

)

=
Cj,t

K

∑
l∈K

KCj,l,t

Cj,t

f ′(
KCj,l,t

Cj,t

)

=
Cj,t

K

∑
l∈K

f ′−1(Pj,l,tF (Pj,1,t, . . . , Pj,K,t))Pj,l,tF (Pj,1,t, . . . , Pj,K,t)

⇒
Cj,t

K
=

J−1Qt∑
l∈K Pj,l,tf ′−1(Pj,l,tF (Pj,1,t, . . . , Pj,K,t))

.

Now, notice that

Cj,k,t =
Cj,t

K
f ′−1(Pj,k,tF (Pj,1,t, . . . , Pj,K,t))

= J−1Qt
f ′−1(Pj,k,tF (Pj,1,t, . . . , Pj,K,t))∑

l∈K Pj,l,tf ′−1(Pj,l,tF (Pj,1,t, . . . , Pj,K,t))
.

This gives us the demand function of firm j, k as a function of the aggregate demand, its
own price and the prices of its competitors. Similar to the main text we can write this as

Cj,k,t = J−1QtD(Pj,k,t, Pj,−k,t), D(Pj,k,t, Pj,−k,t) ≡
f ′−1(Pj,k,tF (Pj,1,t, . . . , Pj,K,t))∑

l∈K Pj,l,tf ′−1(Pj,l,tF (Pj,1,t, . . . , Pj,K,t))

To derive the degree of strategic complementarity, we just need to derive the elasticity and
super elasticity of a single firm’s demand around a point where all firms are charging the
same price. The homogeneity of degree minus one for the firm’s demand implies that these
elasticities are independent of the scale of this symmetric point, so I do it around the point

49Symmetry is obvious to show. To see homogeneity, differentiate the implicit function that defines F (.)
with respect to each of its arguments and sum up those equations to get that for any X = (x1, . . . , xK) ∈ RK ,
−F (X) =

∑
k∈K xk

∂
∂xk

F (X). Now, notice that for any a ∈ R, X ∈ RK , ∂aF (aX)
∂a = 0. Thus, for any X ∈ RK ,

aF (aX) is independent of a, and in particular aF (aX) = F (X) ⇒ F (aX) = a−1F (X).
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(1, . . . , 1) ∈ RK . Without loss of generality since the function F (.) is symmetric around its
arguments, I do this for firm j, 1. Now, notice that

D(x, 1) =
f ′−1(xF (x, 1, . . . , 1))

(K − 1)f ′−1(F (x, 1, . . . , 1)) + xf ′−1(xF (x, 1, . . . , 1))
,

where F (x, 1, . . . , 1) is implicitly defined by

K = (K − 1)f(f ′−1(F (x, 1, . . . , 1))) + f(f ′−1(xF (x, 1, . . . , 1))).

Before deriving the strategic complementarity, in the spirit of the CES aggregator I define
η ≡ − f ′(1)

f ′′(1)
as the inverse of the elasticity of f ′(x) at x = 1, and assume η > 1. It is straight

forward to show that η is the elasticity of substitution between industry goods around a
symmetric point. Moreover, the elasticity of demand for every firms around a symmetric
point is η − (η − 1)K−1 similar to the case of a CES aggregator.

Now, I define ζ(x) ≡
∂ log(− ∂ log(f ′(x))

∂ log(x)
)

∂ log(x)
as the elasticity of the elasticity of f ′(x):

ζ(x) =
f ′′′(x)

f ′′(x)
x− f ′′(x)

f ′(x)
x+ 1.

For notational ease let ζ ≡ ζ(1) and assume ζ ≥ 0 (ζ = 0 corresponds to the case of CES
aggregator). These assumptions (η > 1 and ζ ≥ 0 are sufficient for weak strategic comple-
mentarity, α ∈ [0, 1)).While the usual approach in the literature is to assume K → ∞ and
look at super elasticities in this limit, a part of my main results revolve around the finiteness
of the number of competitors and the fact that the degree of strategic complementarity is
decreasing in K. Therefore, I derive the degree of strategic complementarity for any finite
K. With some intense algebra we get

α =
ζ(K − 2) + (1− η−1)2

ζ(K − 2) + (1− η−1)K
∈ [0, 1).

Notice that this imbeds the CES aggregator when ζ = 0, in which case α = (1 − η−1)K−1.
This generalization allows us to match a high degree of strategic complementarity by choosing
a large ζ. However, this leads to a counterintuitive result where the degree of strategic
complementarity decreases with the elasticity of substitution:

To derive the condition under which α is increasing in the elasticity of substitution η,
notice that

∂α

∂η
=
d(1− η−1)

dη

∂α

∂(1− η−1)
= (η−2)

(1− η−1)2K − ζ(K − 2)(K − 2(1− η−1))

(ζ(K − 2) + (1− η−1)K)2
,
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thus
∂α

∂η
≥ 0 ⇔ ζ ≤ (1− η−1)2K

(K − 2)(K − 2(1− η−1))
,

which holds for any K if and only if ζ ≤ 0, which combined with the condition ζ ≥ 0, implies
that ζ = 0 is the only case where α ∈ [0, 1) and ∂α

∂η
≥ 0.

But notice that if ζ = 0, then

α =
1− η−1

2
≤ 1

2
.

Thus, the Kimball demand also fails to generate a degree of strategic complementarity as
high as the average of 0.9 in the data, while keeping the properties α ∈ [0, 1) and ∂α

∂η
≥ 0.

B.4 Proofs of Propositions for the Dynamic Model

Proof of Proposition 4.

Recall from Equation (15) that

α =
εεD

εεD + εD − 1
,

where εD is a firm’s elasticity of demand and εεD is its super-elasticity of demand in a
symmetric point. Given the form of elasticities

εD(Pj,k,t, Pj,−k,t) = η − (η − 1)Kξ

(
P 1−η
j,k,t∑

k∈K P
1−η
j,k,t

)1+ξ

,

we have εD = η −K−1(η − 1). Moreover,

εεD =

[
∂εD(Pj,k,t, Pj,−k,t)

∂Pj,k,t

Pj,k,t

εD(Pj,k,t, Pj,−k,t)

]
Pj,k,t=1,∀k

=
(η − 1)2(1 + ξ)(K − 1)K−2

η −K−1(η − 1)
.

Plug these into the derivation for α and we get

α =
(1 + ξ)(1− η−1)

K + ξ(1− η−1)
.

Q.E.D.

Proof of Proposition 5.

This proof is an adaptation of the result in Lemma (8) for the dynamic case. Many arguments
in the proof are similar and are omitted to avoid repetition.
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At a given time t, let (St−1
j,k )(j,k)∈J×K denote the signals that all firms have received until

time t− 1, and are born with at time t. In particular, for any j, k,

St−1
j,k = (. . . , Sj,k,t−3, Sj,k,t−2, Sj,k,t−1),

where ∀τ ≥ 1, Sj,k,t−τ ⊂ St−τ . This implies that (1) Sj,k,t−τ only contains information that
were available at time t− τ , and therefore are available at time t, and (2) Sj,k,t−τ is available
for all other firms in the economy in case they find it desirable to learn about it.

Given this initial signal structure, pick a strategy profile for all firms at time t:

ςt = (Sj,k,t ⊂ St, pj,k,t : S
t
j,k,t → R)(j,k)∈J×K ,

where St
j,k,t = (St−1

j,k,t, Sj,k,t). First, similar to the static case, we can show that in any equi-
librium strategy pj,k,t(St

j,k) is linear in the vector St
j,k. This result follows with an argument

similar to Lemma (3). Given this, let pj,k,t(St
j,k) =

∑∞
τ=0 δ

τ
j,k,tSj,k,t−τ denote the pricing strat-

egy for any (j, k) ∈ J ×K. This is without loss of generality because the equilibrium has to
be among such strategies. Notice that due to linearity and definition of St, pj,k,t(St

j,k) ∈ St,
∀(j, k) ∈ J ×K.

Now, pick a particular firm j, k and let ς−(j,k),t denote the signals and pricing strategies
that ςt implies for all other firms in the economy except for j, k. Similar to Subsection A.4
let

θj,k,t(ς−(j,k),t) ≡ (q, (pj,l,t(S
t
j,l))l 6=k, (pm,n,t(S

t
m,n))m6=j,n∈K)

′

be the augmented vector of the fundamental, the prices of other firms in j, k’s industry, and
the prices of all other firms in the economy. Now, define

w = (1− α,
α

K − 1
, . . . ,

α

K − 1︸ ︷︷ ︸
K−1 times

, 0, 0, 0, . . . , 0︸ ︷︷ ︸
(J−1)×K times

)′.

Since β = 0, firm j, k’s problem is

min
Sj,k,t⊂St

var(w′θj,k,t(ς−(j,k),t)|St
j,k)

s.t. I(Sj,k,t, θj,k,t(ς−(j,k),t)|St−1
j,k ) ≤ κ.

To show that a single signal solves this problem, suppose not, so that Sj,k,t contains more
than one signal. Then, we know that

pj,k,t(S
t
j,k) = w′E[θj,k,t(ς−(j,k),t)|St

j,k].
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Notice that I am assuming signals are such that these expectations exist. If not, then the
problem of the firm is not well-defined as the objective does not have a finite value. To
get around this issue, for now assume that the initial signal structure of the game is such
that expectations and variances are finite. Since both θj,k,t(ς−(j,k),t) and St

j,k are Gaussian,
pj,k,t(S

t
j,k) =

∑
δtj,k,τSj,k,t−τ by Kalman filtering. Here for any Sj,k,t−τ that is not a singleton,

let δtj,k,τ be a vector of the appropriate size that is implied by Kalman filtering. Therefore,
by definition of St, pj,k,t(St

j,k) ∈ St, meaning that there is a signal in St that directly tells
firm j, k what their price would be under St

j,k and ς−(j,k),t. Let Ŝt
j,k ≡ (St−1

j,k , pj,k(S
t
j,k)) and

observe that by definition of pj,k,t(St
j,k)

var(w′θj,k,t(ς−(j,k),t)|St
j,k) = var(w′θj,k,t(ς−(j,k),t)|Ŝt

j,k).

Therefore, we have found a single signal that implies the same loss for firm j, k under St
j,k.

Now, we just need to show that it is feasible, which is straight forward from data processing
inequality: since pj,k,t(St

j,k) is a function St
j,k, we have

I(pj,k,t(St
j,k), θj,k,t(ς−(j,k),t)|St−1

j,k ) ≤ I(Sj,k,t, θj,k,t(ς−(j,k),t)|St−1
j,k ) ≤ κ.

which concludes the proof for sufficiency of one signal.
Now, given St−1

j,k and θj,k,t(ς−(j,k),t) let Σj,k,t|t−1 ≡ var(θj,k,t(ς−(j,k),t)|St−1
j,k ). Without loss

of generality assume Σj,k,t|t−1 is invertible. If not, then there are elements in θj,k,t(ς−(j,k),t)

that are colinear conditional on St−1
j,k , in which case knowing about one completely reveal the

other; this means we can reduce θj,k,t(ς−(j,k),t) to its orthogonal elements without limiting the
signal choice of the agent. Now, for any non-zero singleton Sj,k,t ∈ St, it is straight forward
to show that

I(Sj,k,t, θj,k,t(ς−(j,k),t)|St−1
j,k ) =

1

2
log(1− z′tΣ

−1
j,k,t|t−1zt),

where zt ≡
cov(Sj,k,t,θj,k,t(ς−(j,k),t)|St−1

j,k )√
var(Sj,k,t|St−1

j,k )
.The capacity constraint of the agent becomes

z′tΣ
−1
j,k,t|t−1zt ≤ λ ≡ 1− 2−2κ.

Moreover, notice that the loss of the firm becomes

var(w′θj,k,t(ς−(j,k),t)|St−1
j,k , Sj,k,t) = w′Σj,k,t|t−1w − (w′zt)

2.

This means that the agent can directly choose zt as long as there is a signal in St that induces
that covarinace. I first characterize the zt that solves this problem and then show that such
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a signal exists. Notice that minimizing the loss is equivalent to maximizing (w′zt)
2. The

firm’s problem is

max
zt

(w′zt)
2

s.t. z′tΣ
−1
j,k,t|t−1zt ≤ λ.

By Cauchy-Schwarz inequality we know

(w′zt)
2 ≤ (w′Σj,k,t|t−1w)(z′tΣ

−1
j,k,t|t−1zt)

≤ λw′Σj,k,t|t−1w,

where the second inequality follows from the capacity constraint. Observe that

z∗t =

√
λ

w′Σj,k,t|t−1w
Σj,k,t|t−1w

achieves this upper-bar. The properties of the Cauchy-Shwarz inequality imply that this is
the only vector that achieves this upper-bar. Hence, z∗t is the unique solution to the firm’s
problem.50

Now, I just need to show that a signal exists in St that implies this z∗t . To see this let

S∗
j,k,t = w′θj,k,t(ς−(j,k),t)+ej,k,t, ej,k,t ⊥ (θj,k,t(ς−(j,k),t), S

t−1
j,k ), var(ej,k,t) = (λ−1−1)w′Σj,k,t|t−1w.

Notice that S∗
j,k,t ∈ St, and that

cov(S∗
j,k,t, θj,k,t(ς−(j,k),t)|St−1

j,k )√
var(S∗

j,k,t|S
t−1
j,k )

=

√
λ

w′Σj,k,t|t−1w
Σj,k,t|t−1w,

meaning that S∗
j,k,t solves the firm’s problem. The optimal pricing strategy of the firm is

p∗j,k,t(S
t
j,k) = E[w′θj,k,t(ς−(j,k),t)|St

j,k].

Finally, to get the form of the signal as shown in the Proposition simply plug in the vectors
w and θj,k,t(ς−(j,k),t) to get

S∗
j,k,t = (1− α)qt + α

1

K − 1

∑
l 6=k

pj,l,t(S
t
j,l) + ej,k,t.

50This solution can also be obtained by applying the Kuhn-Tucker conditions.
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Q.E.D.

Proof of Proposition 6.

From the proof of Proposition 5 recall that in the equilibrium, for all (j, k) ∈ J ×K,

pj,k,t(S
t
j,k) = w′E[θj,k,t(ς−(j,k),t)|St

j,k]

where St
j,k = (St−1

j,k , Sj,k,t) and Sj,k,t = (1 − α)qt + α 1
K−1

∑
l 6=k pj,l,t(S

t
j,l) + ej,k,t. Now, from

Kalman filtering

w′E[θj,k,t(ς−(j,k),t)|St
j,k] = E[w′θj,k,t(ς−(j,k),t)|St−1

j,k ]+
w′cov(Sj,k,t, θj,k,t(ς−(j,k),t))

var(Sj,k,t|St−1
j,k )

(Sj,k,t−E[Sj,k,t|St−1
j,k ]).

Notice from the proof of Proposition 5 that

w′cov(Sj,k,t, θj,k,t(ς−(j,k),t))

var(Sj,k,t|St−1
j,k )

=
λ

w′Σj,k,t|t−1w
w′Σj,k,t|t−1w = λ.

Thus, using pj,k,t as shorthand for pj,k,t(St
j,k),

pj,k,t = (1− λ)E[Sj,k,t|St−1
j,k ] + λSj,k,t.

Finally, notice that pj,k,t−1 = E[Sj,k,t−1|St−1
j,k ]. Subtract this from both sides of the above

equation to get

πj,k,t ≡ pj,k,t − pj,k,t−1 = (1− λ)E[∆Sj,k,t|St−1
j,k ] + λ(Sj,k,t − pj,k,t−1),

where ∆Sj,k,t = Sj,k,t − Sj,k,t−1. Now, subtract λπj,k,t from both sides and divide by (1− λ)

to get

πj,k,t = E[∆Sj,k,t|St−1
j,k ] +

λ

1− λ
(Sj,k,t − pj,k,t).

Averaging this equation over all firms gives us the Phillips curve. To derive it, I take the
average of every term separately and then sum them up.

Ej,k
t−1[∆Sj,k,t] ≡ 1

JK

∑
(j,k)∈J×K

E[∆Sj,k,t|St−1
j,k ]

=
1

JK

∑
(j,k)∈J×K

E[(1− α)∆qt + απj,−k,t|St−1
j,k ]

= (1− α)Ej,k
t−1[∆qt] + αEj,k

t−1[πj,−k,t]
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where πj,−k,t ≡ 1
K−1

∑
l 6=k(pj,l,t − pj,l,t−1) is the average price change of all others in industry

j except k. Moreover,

1

JK

∑
(j,k)∈J×K

(Sj,k,t − pj,k,t) = (1− α)qt + α
1

JK

∑
(j,k)∈J×K

1

K − 1

∑
l 6=k

pj,l,t −
1

JK

∑
(j,k)∈J×K

pj,k,t︸ ︷︷ ︸
=(α−1) 1

JK

∑
(j,k)∈J×K pj,k,t

+
1

JK

∑
(j,k)∈J×K

ej,k,t︸ ︷︷ ︸
≈0

.

The last term is approximately zero because J is large and ej,k,t ⊥ pm,l,t,∀m 6= j, meaning
that errors are orthogonal across industries regardless of coordination within them. Now,
define pt ≡ 1

JK

∑
(j,k)∈J×K pj,k,t, and recall that qt = pt + yt. Therefore,

1

JK

∑
(j,k)∈J×K

(Sj,k,t − pj,k,t) = (1− α)(qt − pt) = (1− α)yt.

Finally, define aggregate inflation as the average price change in the economy, πt ≡ 1
JK

∑
(j,k)∈J×K πj,k,t.

Plugging these into the expression above we get

πt = (1− α)Ej,k
t−1[∆qt] + αEj,k

t−1[πj,−k,t] + (1− α)
λ

1− λ
yt.

Finally, notice that λ
1−λ

= 1−2−2κ

2−2κ = 22κ − 1.
Q.E.D.

Proof of Proposition 7.

By the assumption of an impulse response, it corresponds to a sequence of signals that are
zero until the initial time 0 when a shock hits. Therefore, at this initial time

Ej,k
−1[∆qt] = Ej,k

t−1[πj,−k,t] = 0.

Hence, the Phillips curve implies

π0 = (1− α)
λ

1− λ
y0.
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Moreover, 1 = ∆q0 = π0 +∆y0. But ∆y0 = y0 as y−1 = 0. Plug this into the above equation
to get

π0 = (1− α)
λ

1− λ
(1− π0)

=
(1− α)λ

1− αλ
.

Additionally,

y0 = 1− π0 =
1− λ

1− αλ
.

Q.E.D.

B.5 The Symmetric Stationary Equilibrium and the Solution Method.

To characterize the equilibrium, I will use decomposition of firms’ prices to their correlated
parts with the fundamental shocks and mistakes as defined in the main text. I start with
the fundamental qt itself. Notice that since qt has a unit root and is Gaussian, it can be
decomposed to its random walk components:

qt =
∞∑
n=0

ψn
q ũt−n,

where ũt−n =
∑∞

τ=0 ut−n−τ , and (ψn
q )

∞
n=0 is a summable sequence as ∆qt is stationary and

∆qt =
∞∑
n=0

ψn
q ut−n.

Now, following Proposition 5 we know that given an initial signal structure for the game
(S−1

j,k )(j,k)∈J×K , the equilibrium signals and pricing strategies are

Sj,k,t = (1− α)qt + α 1
K−1

∑
l 6=k pj,k,t(S

t
j,k) + ej,k,t,

pj,k,t(S
t
j,k) = E[(1− α)qt + α 1

K−1

∑
l 6=k pj,l,t(S

t
j,l)|St

j,k] =
∑∞

τ=0 δ
τ
j,k,tSj,k,t−τ , ∀(j, k) ∈ J ×K, t∀t ≥ 0.

To characterize the equilibrium, I do a similar decomposition analogous to the one in the
static model. Given the pricing strategies of firms at time t, decompose their price to its
correlated parts with the fundamental and parts that are orthogonal to it over time:

pj,k,t(S
t
j,k) =

∞∑
n=0

(anj,k,tũt−n + bnj,k,tvj,k,t−n).
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Here,
∑∞

n=0 b
n
j,k,tvj,k,t−n is the part of j, k’s price at time t that is orthogonal to all these

random walk components (mistake of firm j, k at time t). Moreover, vj,k,t−n is the innovation
to j, k’s price at time t that was drawn at time t−n. In other words, I have also decomposed
the mistake of the firm over time. This decomposition is necessary because other firms follow
all these mistakes, but they can only do so after it was drawn at a certain point in time, in
the sense that no firm can pay attention to future mistakes of their competitors as they have
not been made yet.

Before proceeding with characterization, I define the stationary symmetric equilibrium.

Definition 5. Given an initial information structure (S−1
j,k )(j,k)∈J×K , suppose a strategy

profile (Sj,k,t ∈ St, pj,k,t : S
t
j,k → R)k∈K,t≥0 is an equilibrium for the game. We call this a

symmetric steady state equilibrium if the pricing strategies of firms is independent of time,
t ≥ 0, and identity, k ∈ K. Formally, ∃{(an)∞n=0, (b

n)∞n=0}, such that ∀t ≥ 0,∀(j, k) ∈ J ×K,

pj,k,t =
∞∑
n=0

(anũt−n + bnvj,k,t−n).

To characterize the equilibrium, notice that we not only need to find the sequences
(an, bn)∞n=0, but also the joint distribution of vj,k,t−n’s across the industries. To see this,
take firm j, k and suppose all other firms are setting their prices according to pj,k,t =∑∞

n=0(a
nũt−n + bnvj,k,t−n). Then, firm j, k’s optimal signals are

Sj,k,t = (1− α)qt + α
1

K − 1

∑
l 6=k

pj,k(S
t
j,k) + ej,k,t

=
∞∑
n=0

[
((1− α)ψn

q + αan)ũt−n + αbn
1

K − 1

∑
l 6=k

vj,l,t−n + ej,k,t

]
,

where by properties of the equilibrium ej,k,t is the rational inattention error and is orthogonal
to ũt−n and vj,l,t−n, ∀n ≥ 0,∀l 6= k. Using the joint distributions of errors (vj,k,t−n)k∈K , by
Kalman filtering, the firm would choose to set their price according to a

pj,k,t =
∞∑
n=0

δnSj,k,t−n

=
∞∑
n=0

(ãnũt−n + b̃n
1

K − 1

∑
l 6=k

vj,k,t−n + c̃nej,k,t−n)
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for some sequences (ãn, b̃n, c̃n). But in the equilibrium,

pj,k,t =
∞∑
n=0

(anũt−n + bnvj,k,t−n).

This implies,

an = ãn, bnvj,k,t−n = b̃n
1

K − 1

∑
l 6=k

vj,l,t−n + c̃nej,k,t−n,

where ej,k,t−n ⊥ vj,l,t−n,∀l 6= k. Using the second equation we can characterize the joint
distribution of (vj,k,t−n)k∈K ,∀n ≥ 0. This joint distribution is itself a fixed point and should
be consistent with the Kalman filtering behavior of the firm that gave us (ãn, b̃n, c̃n)

∞
n=0 in

the first place.
Finally, notice that underneath all these expressions we assume that these processes are

stationary meaning that the tails of all these sequences should go to zero. Otherwise, the
problems of the firms are not well-defined and do not converge. I verify this computationally,
by truncating all these sequences such that ∀n ≥ T̄ ∈ N, an = bn = 0 where T̄ is large,
solving the problem computationally, and checking whether the sequences go to zero up to
a computational tolerance before reaching T̄ . In my code I set T̄ = 100. The economic
interpretation for this truncation is that all real effects of monetary policy should disappear
within 100 quarters. Such truncations are the standard approach in the literature for solving
dynamic imperfect information models.

The following algorithm illustrates my method for solving the problem.

Algorithm 1. Characterizing a symmetric stationary equilibrium:

1. Start with an initial guess for (an, bn)T̄−1
n=0 , and let for a representative firm j, k

Sj,k,t =
T̄−1∑
n=0

[
((1− α)ψn

q + αan)ũt−n + αbn
1

K − 1

∑
l 6=k

vj,l,t−n + ej,k,t

]
.

2. Using Kalman filtering, given the set of signals implied by previous step, form the best
pricing response of a firm and truncate it. Formally, find coefficients (ãn, b̃n, c̃n)

T̄−1
n=0

such that

pj,k,t ≈
T̄−1∑
n=0

(ãnũt−n + b̃n
1

K − 1

∑
l 6=k

vj,l,t−n + c̃nek,t−n).
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3. ∀n ∈ {0, . . . , T̄ − 1}, update an = ãn, and bn such that

bnvk,t−n = b̃n
1

K − 1

∑
l 6=k

vj,l,t−n + c̃nek,t−n,

using ek,t ⊥ v−k,t, and the symmetry of the distribution of (vj,k,t)k∈K .

4. Iterate until convergence of the sequence (an, bn)T̄−1
n=0 .
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